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ABSTRACT

The sign types corresponding to an affine Weyl group Wa were first studied in [3]. In the present paper,
I generalize all the results of [3] on sign types to the case when Wa is an indecomposable affine Weyl group
of an arbitrary type. As a result, I verify Carter's conjecture on the cardinality of sign types of type <D,
where <D is the root system determined by Wa.

In [3], we defined sign types of the Euclidean space E spanned by the root system
0 of type An_v These sign types are the connected components of the complement
of a certain set of hyperplanes in E and can be regarded as certain equivalence classes
of Wa, where Wa is the affine Weyl group of type An_x identified with the set of alcoves
of £ via its action on E. The sign types play an important role in the study of the affine
Weyl groups [3]. We described sign types of E and showed that the number of sign
types of £ is («+ I)""1 in [3].

I am very grateful to Professor R. W. Carter who told me that the formula
(n+1)71"1 can be rewritten (h + \)1, where / = n-1 is the rank of <D and h is the Coxeter
number of 0 . He then conjectured that this result can be generalized to the case when
O is an indecomposable root system of any other type.

In the present paper, I shall generalize all the results of [3] on sign types to the
case when <X> is an indecomposable root system of an arbitrary type. The main results
are Theorems 2.1 and 8.1. We start with the definition of an admissible sign type in
terms of a 0-tuple over Z. Then §§ 3-5 are reserved for the proof of Theorem 2.1.
Theorem 2.1 asserts that the set 5^(0) of admissible sign types can be identified with
the set of certain equivalence classes of Wa. We also deduce in §6 that £?(<&) can be
identified with the set of connected components of the complement of a certain set
of hyperplanes in E. Finally, we prove Theorem 8.1 in §§7-8 and thus verify the above
conjecture of Carter.

1. Preliminary

Let <D be an indecomposable reduced root system. Choose a simple root system
II = {<*!, ...,OL1) of <t>. Let 0 + , 0 ~ be the corresponding positive and negative root
systems of 0 . Let E be the Euclidean space spanned by 0 with positive definite inner
product < , > such that |a|2 = <a, a> = 1 for any short root a of 0 . For any oce0,
av = 2a/<a, a> is called the coroot of a. The set 0 v = {av | aeO} of coroots is again
a root system such that the set {a/, ...,ajv} affords a choice of simple root system
in it. Let — ô  be the highest short root of 0 . Then ( — o^)y is the highest (co)root
of 0 v . Let h be the Coxeter number of 0 . Then h is also the Coxeter number of 0 v .

Let Wbt the Weyl group of 0 generated by the reflections^ on £"for a e 0 , where
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sa sends x t o j c - < x , a v > a . Let Q denote the root lattice 2<D. Let N denote the group
consisting of all translations Tk operating on E for XeQ, where Tk sends x to x + k.
We denote by Wa the group of affine transformations of E generated by N and W.
It is well known that Wa is the semidirect extension of W by the normal subgroup
N on which the action of W is known. Any we Wa has a unique decomposition
w = wTk with We Wand keQ.

For linear and affine transformations, we shall denote the operation on the right
and compose them accordingly. With this convention, we define s0 = saQ T_aQ, st = sa,
1 < / ̂  /. It is known that Wa (respectively W) is a Coxeter group on generators
s0,sv...,st (respectively sv...,sl). We denote A = {so,sl,...,sl}. The group Wa will be
called an affine Weyl group.

We define the length l(w) of an element w e Wa to be the smallest number r such
that there exists an expression w = 5(1)^(2) ...s{r) with s(i)eA. An expression of w
is called a reduced form if it is a product of /(w) generators.

The symbol ^ denotes the Bruhat order on Wa (defined, for example, in [5]). For
any w e Wa, we associate two subsets of A as follows:

<£(w) = {s e A | sw < w},

$(w) = {s e A | ws < w}.

Given any two sets S, R, we call x = (jq)i€/j an i?-tuple over S if xteS for all
ieR. Sometimes we simply call x an /?-tuple when there is no danger of confusion.
Two /^-tuples x = (xi)ieR and y = (y^eR are said to be equal if xt = yt for all ieR.

For any a e O + , keZ and a positive real number m, we define a hyperplane

and a stripe
H*-,k = H-a, -k = {veE\k < <y,av> < k + m}.

We call any non-empty connected simplex of

kel

an alcove of E. Each alcove of £"has the form C\ae^+ H\. k for a O +-tuple (k(X)(xe<t>+
over Z. The following results are well known.

LEMMA 1.1 [4, Lemma 1.1]. Let Ax = n<xe<D+^a;o- Then Ax is an alcove of E
which can also be expressed in the form (f]x e n H]/Pg) D H1-^, o5 where the ca satisfy the
equation

(-«o)v = 2 caa
v.

aeYl

THEOREM 1.2 [4, Theorem 5.2]. Let Ak = naea>+ ^t;fca
 witn kaeZ. Then Ak is

an alcove of E if and only if for any cc,fie<&+ with <x+f]e<£>+, the inequality

holds.

It is well known that the right action of Wa on E induces a bijective map
wh-^(A1)w — Aw from the set of elements of Wa to the set 51 of alcoves of E. Thus
any alcove of £ has the form Aw, Aw = f]aeiS>+ #1;*(JI,.«) or Aw = f)ae*Hl.k(w a)



58 JIAN-YI SHI

with the convention that k(w, — a) = — k(w, a) for any ae<D+. We shall identify Wa

with 51 as a set under the correspondence w\-+Aw. Later the integers k(w, a) indexed
by we Wa and ae<J> always stand for the coordinates of the alcove Aw. The following
result is known.

PROPOSITION 1.3 [4, Proposition 4.2]. Let w' = ws^ with we Wa andSJEA. Then

for any aeO>, we have ^ ^ = k(wA(x)Sj)+k{Sp(xl

2. Admissible sign types

A O-tuple X = (A'Jagd, over the set { + , —, O} is called a sign type of type O if
the set {Xa, X_a) is either {O, O} or { + , —} for any aeO . We see that a sign type
(̂ a)ae<D is entirely determined by the O+-tuple (Ar

a)aeO+. So sometimes we can
identify (Ar

ot)a±p+ with (Xa)(xe(S, and call (Xa)ae<s>+ a sign type.
Let Sf = y (O) be the set of all sign types of type <J>. Let

+ - ' + - ' + - ' o + ' oo' oo'
O - + O - O - -

O - ' O - ' - + ' - + ' - + ' - O ' - O ' - -
Let

[ O O O - - - + O
G2= OO, +O, + 0 , 0 0 , - O , - O , + 0 , 0 - ,

I O O + O O - + O

O O O + + - + + +
o - , + - , - - , o - , + - , - - , - - , + - , + - ,
- 0 - - 0 - - - +

- - - O - - - + - .

Let

oo - o - - - - o+ o+ o+
- o, - o, - o, - - , o o, o o, - o,

o - - - oo
- o — o+ o+ o+ - + + +

- +, - +, + o, o +, - +, - +, + o,
o - - - - - - - o -

+ + ++ ++ ++ ++ o - —
o +, - +, + +, + +, + +, o - , o - ,
— — o - — +- o+ o +
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oo o - - - - - oo
- - , - - , + - , + - , o - , - - , + - ,
0+ - + O+ O+ + + + + + +
o - - - +o + - ++ ++ + +

+ - , + - , + - , + - , + o, + - , + +

Given an indecomposable positive subsystem O' + of $ of rank 2, we say that a
sign type (Xa)ae(S> + is admissible if one of the following conditions is satisfied:

(1) <D'+ has type A2, say <D'+ = {aJ,<x+P}. Then

(2) d>'+ has type B2, say O'+ = {<xj,<x+0,2<x+p}. Then (Xc

(3) <D/+ has type G2, say O'+ = {a,^,a+)9,2a+y9,3a+y9,3a+2^}. Then

eG3.

We say that a sign type (X^ e o is admissible if for any indecomposable positive
subsystem O' + of <D of rank 2, the sign type (Xa)ae<s>'+ is admissible.

Let & = ^ (O) be the set of all admissible sign types of W.
Define a map w ^

by sending Aw = i; k(w,a) to Xw = (X(w,a))0Le(j> such that for any ae<D,

k(w, a) > 0 o X(w, a) = + ,

k(w, a) = 0 o X(w, a) = O,

k(w, a ) < 0 o X(w, a) = —.

By Theorem 1.2, one can check that C(^a) — &*- Thus C induces a map from Wa to
y which we still denote by C- In particular, one can check directly that C(Wa) = Sf
when O has rank 2. In the following sections we shall go further and show the
following.

THEOREM 2.1. ((Wa) = Sf(Q>)for any indecomposable root system fl>.

We denote n U {- a,,} by ft.
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3. Some results on Xp, flefi

Sections 3 and 4 will be reserved mainly for the proof of Theorem 2.1. We assume
that rank Q> > 2 in these two sections.

For any X = (Xa)ae<j,eSf, we define mx = #{aeO>+ \Xa = - } .

LEMMA 3.1. Assume that X = {Xa)ae^>eS/> and mx > 0. Then there exists some
/?e IT satisfying Xp = —.

Proof. It is enough to show that if Xae{ + , O} for all a e l l then mx = 0, that
is, for any /?e<D+, we have Xpe{ + ,0}. Now we assume that Xo,e{ + , O} for all
a e l l . We apply induction on ht(/?) ^ 1, the height of/?e<D+. The result is obviously
true when ht(/?) = 1, by our assumption. Now assume that ht(/?) > 1. Then we can
write P = y + S for some y,deQ> + . By the inductive hypothesis, ^ , ^ £ { + , 0 } - By
symmetry, we need only to consider the following cases.

(i) {y,6,P) forms a positive subsystem of <D of type A2. By the hypothesis that
Xe & and Xy, X$ e {+, O}, we have

+ + + O |
' +0 ' O + ' 00 ' OOi'

that is, Xfie{ + ,O}.
(ii) {y,5,(l,d+fi} forms a positive subsystem of O of type B2. Then by the same

reasoning as in (i), we have

+
- Q,

+

o+ + ,
+

+
+ +
+

O v
, ool,

o+

that is,
(iii) {S-y,y,d,fi} forms a positive subsystem of <D of type B2. Then by the same

reasoning as above, we have

f O O O + O +
ejOO, +O, +O, +O, + + , +

I O O + + + +

that is, A^e{ + ,O} .
Therefore, our result follows by induction.

Call a sign type X = dominant if mx = 0.
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LEMMA 3.2. Assume that X = ( I ^ ^ e y is dominant. Assume that not all Xa,
a e O , are equal to O- Then X_ao = + .

Proof. One can check the result directly when rank $ = 2. Now assume that
rank O > 2. By our condition, there exists some ae<D + with Xa = + .

(i) First assume that a is a short root of O (including the case when the roots in
<t> all have the same length). Then a ^ — a0. By a well-known result, there exists a
sequence of roots

Po = <x,Pi,-;Pr = -cco
in O + such that for every /, 1 ̂  / ^ r, fa_x < fa and fa = (fii-1)SYt with some j ^ e l l .
Clearly, all fa, 0 <y < r, are short roots. Now it is enough to show that if Xpi_y = +
for some /, 1 ̂  / ^ r, then Xp = + . Our conditions on ^_ l 5 fit clearly imply that
<A-i,y*v> = - 1 and hence A = A - i + 7r I f 7i is short then { A - i ^ i ^ J forms a
positive subsystem of O of type A2. Then by the assumption that XeSf, Xpti = +
and XYi e {+, O}, we have

6s.+o'

which implies that Xp = + . If yt is long then {/^_l5ft,/^,/^_i+/?i} forms a positive
subsystem of O of type B2. Then by the assumption that Pt_x = + , )>*£{ + , O} and

we have

which also implies that Xp = + . As i runs over 1,2, ...,r in turn, we can show that
X_ao = + from Xa by repeatedly using the above argument.

(ii) Now assume that the roots in tf> have two different lengths and that a is a long
root. Let fi be the highest (long) root of <D. Then there exists a sequence of long roots

in O+ such that for every /, 1 ̂  / ^ r, p\_a < fjt and fa = (fa^l)sYi with some ytell.
By a similar argument to that in (i), we can show that Xp = + from Xa = + .

We see that O has type Bh Ct or F4 according to our assumption. In any of these
cases, { — 2a0—p\ao+p\ — a,,,/?} forms a positive subsystem of <I> of type B2. So by the
hypothesis that XeSf, Xp = + and ^ - 2 a o _ / j , A^+0,X_a<je{ + , OK we have

o + o
+ o, + +

which implies that X_Xo = + .
Putting (i) and (ii) together we conclude that X_ao =
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4. The sign types X and X" for XeSf

Here we shall give three key lemmas for the proof of Theorem 2.1. We assume
that rank O > 2 in this section.

LEMMA 4.1. Assume that X = (Xa)a e o G 9* is dominant and assume that not all Xa,
<xe<D, are zero. Then we have X_Xo = + by Lemma 3.2. Let X - ( A ^ g ^ be in W
satisfying X'a = A"(a) So for any ae<J>+. Let X" = C O a e ( D be obtained from X by
replacing X'mo = e by X'E<XQ = O, e = ±. Then {X, X") n ^ # 0 .

Sketch of the proof We must show either that (A^)a6O'+ are admissible
for all indecomposable positive subsystems <D'+ of <b of rank 2, or that (X^)ae<s>'+
are admissible for all these subsystems O ' + of O. To do this, we need only show that
if <j>'+, <j>"+ are two indecomposable positive subsystems of O of rank 2 then either
(X'a)ae<t>'+ o r COae<D"+ m u s t be admissible. If -Oo^<D'+ nO"+ then either

with - or

with -ao^<D"+. So our result follows by the assumption that Xe£f. If
n O"+ then we have one of the following cases.

(a) <D'+ = <D"+ and both have type A2 or 2?2.

(b) <X>/+ # O"+ and they are both in some indecomposable positive subsystem of
O of type Az, Bz or C3.

We can verify our result case by case. For example, in case (a) with O ' + of type
A2, we assume that (X'X e & ^y (O ' ) . Say 0>/+ = {a,)9, a+y?}. Then -o^ = OL+0. Since

is dominant and Ar_oto = + , we have

Thus

*+0

By the assumption of (X'a)

+ + + + }e^ +• +o' o+f oor

- - ' o- ' -o ' oo

'), we get

r ,\ oo



SIGN TYPES CORRESPONDING TO AN AFFINE WEYL GROUP 63

But then

x:
O

oo

is admissible.

LEMMA 4.2. Assume that X=(Xa)ae(!>€^ and Xp= - for some / fel l . Let
X = TOaeo be such that Xa = X{aL)gfjfor all ae<P. Let X" = (XXe<t> be obtained
from X' by replacing X$ = e by X"$ = O, e = ± • Then either X or X" (or both) must
be in Sf.

The strategy of the proof for this lemma is similar to that for Lemma 4.1 but is
more complicated. We omit the detail.

LEMMA 4.3. Assume that X = (Xx)a e $ e Sf and mx = 1. Then by Lemma 3.1, we
have Xo = — for some / fel l . Let X" = 0C)xe(j> be a sign type of Wsatisfying

for any a e <D+. Then X"

Proof. Let O ' + be any positive subsystem of <J> of rank 2. We must show that
(A )̂ae<D<+ is admissible.

If /?<£<!>'+ then (X%)aeQ'+ = (Xa)ae((i>'+)g . Since (<J>/+)^ is also a positive
subsystem of O of rank 2, the admissibility of (A^)ae<D + follows from XeSf.

Now assume that /?e<X>/ + . We know that # ' + either has type ^ 2 or B2. First
suppose that O / + has type A2 with O / + = {/?, y,y9+y}. By the assumption that XeSf,
mx = 1 and Xp= —, we have

O O

Thus

fi+Y

Y" X"

- o ' - + ' - +

loo' oo' o+J

which is admissible. Next suppose that O/+ has type B2 with O'+ = {P,y,fi+y,fi+2y}.
By the same reasoning as above, we have

e |oO, O + , O + , + +
I O O + +
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f O O O O
ejOO, +0, +0,
loo +

which is admissible also. Finally, suppose that O ' + has type B2 with
<J> + = W,yJ+y,20+y}. We have

0 0 + +
o- , + - , + - , + -
o o o + .

So

0 0 0 +
)0, +0, +0, +0
0 0 + +

vhich is again admissible.
Therefore we have X" e Sf.

5. The proof of Theorem 2.1

It is known that the result is true when O has rank 2. So we may assume that
rankO > 2. It is also known that the inclusion ((\Va) £ Sf holds in general. Now we
define nx = #{<xe<D+ \Xa * O} and mx = #{aeO+ \Xa = - } for any Xz¥.

Assume that we are given a sign type X = (X^ e O in Sf. We must find an element
w of Wa such that ((w) = X. We apply induction on nx ^ 0. It is clear that CO) = X
in the case when nx = 0. Now assume that nx > 0.

(a) If mx = 1 then by Lemma 3.1 there exists some /fel l such that Xp = —. Let
X" = (XX e * G <? be defined by

O if a = p,

for any <xe<D+. Then by Lemma 4.3 we have X" e£? with nx- <nx. By the inductive
hypothesis, there exists some w'zC,-\X"). Let w = w'sp. Then ((w) = X by Propo-
sition 1.3.

(b) If mx > 1 then there exists some fi(\)eU. with A^(1) = - by Lemma 3.1. Let
A — (."a/oie'I' oenneu oy A.^ — {ofi&Rfu any * f c * . i_»ci /i — l^a / ieO^**

be obtained from X' by replacing ^ ( 1 ) = £ by A^(1) = O, c = ± . Then by
Lemma 4.2, one of A" and X" must be in 5^. We denote this sign type by A^l) (note that
when both X' and X" are in ¥ we can freely choose one of them and call it A^l)). Clearly
mxw = mx — 1. If mxw is still greater than 1 then the same process can be carried
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on and we get a sequence of sign types Ar(0) = X,X(l), ...,X(m) in Sf with m = mx

such that for every i, l^i^m, X(i—\)p(i)= — with some /?(/)€ II, and either
AXOa = X(i-\\a)gp{i) for all ae<D or X(i)a = X(i-\)i0L)gfj(i) for all ae<D-{e0(O} and
-̂ (Oefli) = O- In particular, X(m)ep{m) = O- Since w ^ ) = w^(i_1} —1, we have
mX(i) = mx — i and in particular wA-(m_1) = 1. Hence such a sequence
X(0),X(\),...,X(m) does exist in y. Clearly nx(m) <nx. Thus by the inductive
hypothesis, there exists some xet,~l{X(m)). Let w = xsp{m)sp{m_l) ...sp{1). Then by
Proposition 1.3, we have {(u>) = X.

(c) If mx = 0 then X is dominant. Since nx > 0, we see by Lemma 3.2 that
Ar_ao = + . Let X = (X'a)lxe<p be in SF satisfying X'a = X^gQ for all a e O and let
X" = ( X ' ) a e * e y be obtained from X' by replacing X'eao = e by X'eao = O- Then
Lemma 4.1 asserts that {A", A"'} n ̂  # 0 . Denote one of {X\ X") 0 ̂  by A^l). Then
either nX(l) < nx, or nx(1) = «^ and m^(1) > 0. So either by the inductive hypothesis
or by (b) we can find some xeC,~l(X{\)). Let w = xs0. Then by Proposition 1.3, we
get £(w) = X, again.

Therefore our result follows by induction.

6. The geometrical interpretation of admissible sign types

Let 2T = {//a;T|aeO+, x = 0,1}. Then the connected components of
E—[JHeyH are open simplices. We see that any alcove of E lies in some
connected component of E— {jHe^H and that two alcoves correspond to the same
sign type if and only if they are in the same connected component of E— [JHe^-H.
So by Theorem 2.1, the map ( induces a bijection between the set of connected
components of E— {JHe$-H and the set y . Then we can identify these two sets.

EXAMPLES 6.1. (1) When O has type A2, say O+ = {X,[i, A+/z}, the number of
connected components of E—{JHe$-H is 16. Each.of these components determines
a sign type

X=

as in Figure 1.

FIG. 1

JLM 35



66 JIAN-YI SHI

(2) When O has type E2, say O+ = {A,//, A+/i,A + 2̂ *}, then E-\JHe^-Hhas 25
connected components each of which determines a sign type

as in Figure 2.

FIG. 2

(3) Let <I>+ = {X,fx, k+n, A+ 2//, X + 3fi, 2A. + 3/J.} be the positive system of 3> of
type G2. Then E— \JH e g- H has 49 connected components each of which determines
a sign type

^ + 3fl

A + 3/i

as in Figure 3.
It is well known that any alcove of E has /+ 1 facets. In [4], we labelled any facet

of an alcove by an element se A such that the following result holds.

LEMMA 6.2 [4, Lemma 6.1]. Ifw, w'e Wa have the relation w' = st wfor somesteA
then the alcoves Aw and Aw- share the common st-facet. Conversely, if Aw and Aw> are
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FIG. 3

two alcoves of E which share a common facet then the labelling of this facet for Aw is
the same as for Aw-, say st-facet. We have w' = st w.

The following result is due to the convexity of an admissible sign type.

PROPOSITION 6.3. For any XeSf and w,yeC,~\X), there exists a sequence of
elements w0 = w, wx,..., wr = y in Wa such that for every h, j with 0 ^ h ^ r and
1 ^j ^r, whe t,~\X) and w;- = Sj w ^ for some s^ e A.

Proof. We see that each connected component of E—\JHey-H is convex. Our
condition means that w, y are in the same connected component X of E— \JH B$-H.
So there exists a sequence of alcoves Ao = AW,AX, ...,Ar = Ay in X such that for
every j , 1 <y ^ r, Aj and At_x share a common wall. Hence our result follows by
Lemma 6.2.

Recall that 0i{w) = {s e A | ws < w} for any w e Wa. Now we need the following.

LEMMA 6.4 [4, Proposition 4.3(ii)].

3-2
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By the definition of the map ( and Lemma 6.4, the function M(w) on (,~\X) for
any XeSf is constant. So we can define M(X) - @(w) for any weC,~\X). We see
from Lemma 6.4 that 0t(X) = {steA\XXi = - } .

7. The shortest elements of^~\X),

The shortest elements of C""1^), XeSf, have very nice properties. They will play
a crucial role in the calculation of the cardinality of Sf.

PROPOSITION 7.1. Let U be a set of sign types of y such that there exists
some YeU which can be obtained from any ZeU by substituting some non-zero signs
by zero signs. Then there exists an element yeC~1(Y) such that
\k(y,<x)\ = min{\k(x,<x)\\ xe(-\U)} for all

Proof We apply induction on / = nY ^ 0. The result is trivial in the case when
/ = 0.

(1) First assume that mY > 0. Then by Lemma 3.1 there must exist some
X = t]{\)eY\ with Yk= —. Then we also have Zk = — for any ZeU. Let
Y' = TOaeo = ^ b e defined by Y'a = Y{aUl for all ae«>. Let Y" = {Y"a)ae<befbe
obtained from Y' by replacing Y'eX with Y"eX = O, £ = + • We define Z',Z"e^ from
any Ze U in the same way as Y', Y" from Y. Then by our assumption on U we see
that Y" can be obtained from Z" (respectively Z') with ZeU by replacing some
non-zero signs by zero signs. We also see that Y' can be obtained from Z' with ZeU
by replacing some non-zero signs by zero signs. We can show that if Z" e y for some
ZeU then f e ^ . Thus by Lemma 4.2, we have either Y"eSf or

{Z', Z" | Ze U} n Sf = {Z' \ Ze U).

Let U1 = {Z\Z"\ZeU}ny and let

r ifyen =w [r

Then Y(\) can be obtained from any sign type of U1 by replacing some non-zero signs
by zero signs.

If mY{l) = mY—\ > 0 then the same process can be carried on by substituting
U1 and 7(1) for U and Y. We get a sequence of subsets U° = U, U1, ...,Um in
y , a sequence of sign types Y(0) = Y, Y(\),..., K(m) in Sf and a sequence of simple
roots n(\),n(2), ...,n(m) in IT with m = mY. These roots are such that for every /,
1 ^ / ^ m, and for any X = (Xa)ae<t>eUi~1, the following conditions hold.

(a) * , ( i ) = - .
(b) Let X =VTXe*e& be defined by X'a = X(a)g(i) for all aeO and let

X" = (X^)ae^ey be obtained from X' by replacing A^^ by X^(i) = O- Then
f/4 = {A", A"'| A'e t/*"1} n Sf and 7(0e C/* is defined to be Y(i- 1)" if Y(i- \)" e!/>
or to be Y(i— 1)' otherwise. Then by Lemma 4.2 and the above result we see that for
every /, 0 ^ i ^ m, 7(0 can be obtained from any Xe Ul by substituting zero signs for
some non-zero signs. In particular, we see from Lemma 4.3 that Y{m) = Y(m— 1)"
and so nY(m) < nY.

Let M = {we Wa\C(w)e Um} and <Sf = C'KU). Then by Proposition 1.3, the map
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<f>: w>-*wsn(m)sri(m_1) ...$,,(!) gives a bijection from Jt to <% which satisfies
l(w) + m = /(^(w)) for any w e J .

By the inductive hypothesis, there exists an element y of C,~x{Y{m)) satisfying
\k(y,ot)\ = rmn{\k{x,<x)\\xeJf} for all ae<D + . By the rule of the right action of
Wa on 21, we see that for any aeO, the difference \k{(j>{w), a)| — \k(w, a)| is a non-
negative constant on weJf. Thus we have

,a)| \xeJi) = min{\k(x,a)\

for all oceO+. Clearly, </>(y)e(~1(Y). So our result follows in this case.

(2) Next assume that mY = 0. Then by Lemma 3.2, we have Y_ao = + and also
Zao = + for all Z = (ZX e * G £/. Let F = (Y'X 6 o e ̂ b e defined by r a = r(a) fo for all
aeO. Let Y" = ^ ) a e O e ^ be obtained from Y by replacing y;ao by Y'tH = O. We
define Z',Z"EW from any ZeU in the same way as F , F' were defined from F
Then Y" can be obtained from Z" (respectively Z') with ZEU by replacing some
non-zero signs by zero signs. Also, F can be obtained from Z' with Ze £/ by replacing
some non-zero signs by zero signs.

We claim that if Z"E¥ for some ZEU then Y'ES?, since otherwise, this would
imply Yi$T which contradicts the fact that {F, Y") n ̂  # 0 . Thus we have either

or

We define
Y" if]
F otherwise.

Let U = {Z', Z" | ZE U} n y . Then f can be obtained from any XE U' by substituting
zero signs for some non-zero signs. We also have nY ^ nY.

If Y = F' then A2y < nY. By the inductive hypothesis, we have

= min{\k(x,<x)\\xE(-l(U)}

for any ae O and some .yeC"1^)- If ? = F then my > 0. By the case which we have
discussed with F and U' instead of Y and U, we also have

for any ae<J> and some yE(~\Y). Then in either case, 4>\ wh-nw,, gives a bijection
from C~W) to C"H^) which satisfies

for all weC~l(U')-So
,ot)| \XEC~W)}

= min{\k(x,<x)\\xE£-l(U)}.

Clearly, (j>(y) is in C~1(Y). So our result is also true in this case. By induction, we reach
our goal.

The element yEC,~\Y) in the above proposition is clearly the shortest element of
£,~l(U) which is unique. In particular, when U consists of a single sign type, we get
the following.
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PROPOSITION 7.2. For any XeSf, there exists a unique shortest element, say y, of
C,~\X) which is characterized by the requirement that

,<x)\ = min{\k(x,<x)\\xe(-1(X)}

for all aeO, where the k{x, a) are as in Proposition 7.1.

Now we shall give another criterion for an element to be the shortest element of

Let w', weWa and s^eA satisfy w' = s^w and l(w') = l(w) — 1. Then by the
definition of the left action of Wa on the alcove set 51 we have k(w', a) = k(w, a) for
all ae<D+ but one. Let the exceptional one be /?e<$+. Then we have
\k{w',P)\ = \k{w,p)\-1 and k{w',P) = k(wj)±\. Now assume that w is the shortest
element of {'^((w)). Then by Proposition 7.2, we must have k(w,fi) = ±\ and
k{w',P) = 0. In particular, w'$£-%{w)).

PROPOSITION 7.3. Let XeSf and we^~\X). Then w is the shortest element of
C,~\X) if and only if, for any se S£{yt), we have sw$£,~\X).

Proof. Let w be the shortest element of C,~\X). By the above discussion, it is
sufficient to show that if yeC,~\X) with y ^ w then there must exist some seHf(y)
such that syeC'KX). Now assume that yeC'^X) with y ^ w. Then by Proposition
7.2, we have, for any ae<I>+,

=k(w,<x) =

and the set D = {ae<D+ \k(y,<x) ^ k(w,<x)} is non-empty. Let

D+ = {aeD\Xx= +} and D~ = {<xeD\Xlx= -}.

Set a = k(y,a)-\-\-k(w,<x) and b = 1-a. Let

^ 1 = 0 Ha; &(«;,«)' ^ 2 = 0 . Ha.\ k(w, o)» ^ 3 = \\_Ha\k(y,a)
a e < D + - D <xeD+ aeD

with the convention that Kt = E if the set of indices for the corresponding intersection
is empty. Let K = Kx n K2 n Kz. We have Aw, Ay<^K<^X regarded as sets of vectors
of E. On the other hand, we see that for any alcove A e 51, either A <z K or A(\K= 0.
So Kc&n be regarded as a set of all elements x of Wa with Ax c= .£. Thus w (respectively
y) is the shortest (respectively longest) element in K. Since K is a convex set of E, which
contains more than one alcove of E, there must exist some alcove Ax in K with
x # y such that Ax and ^ share a common facet. That is, x = sy for some 56 A by
Lemma 6.2. Clearly, we have 5€<Sf(̂ ) and xeC'^X). Thus our result follows.

8. The cardinality o

In this section, our aim is to prove Carter's conjecture.

THEOREM 8.1 (Carter's conjecture). |^(O)| = (h+ \)1, where I = rankO and h
is the Coxeter number o/O.

To prove our result, we need an earlier result.
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PROPOSITION 8.2 [4, Proposition 3.4]. Let weWa. Then for any
-\ a) = k(w, - ( a )

L C l E(S) = {w e Wa | w is the shortest element of C"x(C(w))}.

Let ^ S ) " 1 = {w| w"1e£(S)}. For any we Wa, we see from Propositions 8.2, 7.2 and
7.3 that w e ^ S ) " 1 if and only if k(w, X) = — 1 for any ^ e ^ ( w ) and this is the
case if and only if k(w, X) ̂  — 1 for any s^ e A, where we assume that

s*w = I laeO"a; k(w, a.)-
We define

av>>A:}, H~.k = {yei?| <y,av> < k}

for any a e O + and keZ. Then regarded as a set of alcoves of E, E^S)'1 is the set
of all alcoves of E contained in H = (f]a e n H+. _1)C\Hzao; 2.

Define Z cz Wa to be a left connected set of Wa if for any x,ysZ, there exists a
sequence of elements xQ = x,x1,...,xr = y in Z such that for every /, 1 ^ i'^ r,
x^_! xjl e A. Then by the convexity of H we see that E{S)~l is a left connected set of

By the way, any admissible sign type, regarded as a set of elements of Wa, is a
left connected set of Wa by the convexity of the sign type in E.

EXAMPLES 8.3. When the rank of O is 2, E{S)~X is the set of all alcoves in the
fully shaded area of each of Figures 4, 5 and 6. From these figures, we see that

FIG. 4. Type

H = / /+ . _! n //a2; -iH-a0; 2 a r e a ^ triangles (the fully shaded areas) similar to the
corresponding alcoves Ax (the alcoves labelled by 1). The scale of Ax to H is 1 :h+1
and so the area of H is (/i+ l ) d i m £ times that of Ax, where h is the Coxeter number
of cD. Then / / contains (h+ l ) d i m £ alcoves altogether.

Recall from §1 that / f j 1 ^ = {veE\k < <u,av> < k + m} for any ae<D+, fceZ
and m > 0 in U.
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FIG. 5. Type B2

FIG. 6. Type G2
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LEMMA 8.4. Let Hh+1 = (C)aen^.+J:\fe«)OHlti-i-h. Then H = Hh+\ where
I

Proof. Since #*»+_1>1
/Ca c Ht, - i f°T all a e n , and / / ^ I - A <= #-<«„; 2. the

inclusion / / 2 //ft+1 is obvious.
Now let veH. To prove that veHh+1, it is enough to show that

for a e n and that <i>,(-oOv> > \-h.
For a e n , we have av = ((-«„)* - Z a ^ 6 n ^ v ) / c a . So

We also have

<(oyy ( a > a < > a
aell a e n a e n

So H c //»+! and hence # = //A+1.

Recall that n = nu{-Oo}.
LEMMA 8.5. Letm>0be an integer and let the U-tuple k = (£a)a e n over 1 satisfy

the condition that k_ao = Z a e n c«k<x- Let

a e n °
//P contains exactly mdim £ alcoves of E.

Proof. We have ^ = H\o by Lemma 1.1, where k0 = (ka)aefi, with ka = 0 for
all a, satisfies the condition /Lao = £a 6 n

 ca ̂ a- Then for any integer m > 0, //Po is
similar to ̂  in geometrical shape and the scale of Ax is one wth part of that of Hft.
So the volume of H^Q is md i m £ times that of Ax. This implies that /fgj contains
exactly mdim £ alcoves of E. Now we take any other fl-tuple k = (ka)a e n with
k_ao = Z«6nca^a- T n e n t n e r e exists a unique vector veis satisfying <u,av> = ka for
all a e n and <y,( —Oo)v> = k_ao. Let Tv be the translation on E which sends the
origin to v. Then Tv also sends /JP0 to i/P. Hence # P also contains wdlm E alcoves of
E by the condition that the ka, a eft, are all integers.

COROLLARY 8.6. Let Hh+1 be defined as in Lemma 8.5. Then Hh+1 contains exactly
(h+\)1 alcoves of E, where h is the Coxeter number o/O and I is the rank of®.

Proof. Let k = (fca)aen with ka = -1 for all a e n and k_ao=\-h. Then
Hh+i _ fffc+i s m c e &mE = /, the result follows by Lemma 8.5.

Proof of Theorem 8.1. By Proposition 7.2, it is enough to show that
\E(S)\ = (h+\)1 or, equivalent^, to show that ^(S)"1! = (h+l)1. But this follows
by Lemma 8.5 and Corollary 8.6.
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