SIGN TYPES CORRESPONDING TO AN AFFINE WEYL
GROUP

JIAN-YI SHI

ABSTRACT

The sign types corresponding to an affine Weyl group W, were first studied in {3]. In the present paper,
I generalize all the results of 3] on sign types to the case when W, is an indecomposable affine Wey! group
of an arbitrary type. As a result, I verify Carter’s conjecture on the cardinality of sign types of type @,
where ® is the root system determined by W,.

In [3], we defined sign types of the Euclidean space E spanned by the root system
® of type A,_,. These sign types are the connected components of the complement
of a certain set of hyperplanes in E and can be regarded as certain equivalence classes
of W,, where W, is the affine Weyl group of type 4,,_, identified with the set of alcoves
of E via its action on E. The sign types play an important role in the study of the affine
Weyl groups [3). We described sign types of E and showed that the number of sign
types of E is (n+1)*"1in (3]).

I am very grateful to Professor R. W. Carter who told me that the formula
(n+1)""*can be rewritten (A + 1)}, where / = n— 1 is the rank of @ and 4 is the Coxeter
number of ®. He then conjectured that this result can be generalized to the case when
®@ is an indecomposable root system of any other type.

In the present paper, I shall generalize all the results of [3] on sign types to the
case when @ is an indecomposable root system of an arbitrary type. The main results
are Theorems 2.1 and 8.1. We start with the definition of an admissible sign type in
terms of a ®-tuple over Z. Then §§3-5 are reserved for the proof of Theorem 2.1.
Theorem 2.1 asserts that the set &(®) of admissible sign types can be identified with
the set of certain equivalence classes of W,. We also deduce in §6 that &(®) can be
identified with the set of connected components of the complement of a certain set
of hyperplanes in E. Finally, we prove Theorem 8.1 in §§7-8 and thus verify the above
conjecture of Carter.

1. Preliminary

Let ® be an indecomposable reduced root system. Choose a simple root system
I ={a,...,04} of ®. Let ®*,®~ be the corresponding positive and negative root
systems of @. Let E be the Euclidean space spanned by @ with positive definite inner
product ¢ , ) such that |«f? = {(a,a) = 1 for any short root a of ®. For any ae®,
aV = 2a/{a,a) is called the coroot of a. The set @V = {aV |ae @} of coroots is again
a root system such that the set {&),..., "} affords a choice of simple root system
in it. Let —o be the highest short root of ®. Then (—o)" is the highest (co)root
of ®V. Let h be the Coxeter number of ®. Then 4 is also the Coxeter number of ®V.

Let W be the Weyl group of @ generated by the reflections s, on E for ae @, where
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54 sends x to x —{x,a" ) a. Let Q denote the root lattice Z®. Let N denote the group
consisting of all translations T, operating on E for Ae Q, where T} sends x to x+4.
We denote by W, the group of affine transformations of E generated by N and W.
It is well known that W, is the semidirect extension of W by the normal subgroup
N on which the action of W is known. Any we W, has a unique decomposition
w = wT, with we W and A€ Q.

For linear and affine transformations, we shall denote the operation on the right
and compose them accordingly. With this convention, we define s, = 55, T, §; = Sq,
1 i< It is known that W, (respectively W) is a Coxeter group on generators
Sgs S15 -+, 5 (respectively sy, ..., s;). We denote A = {s,,s,, ..., 5;}. The group W, will be
called an affine Weyl group.

We define the length /(w) of an element we W, to be the smallest number r such
that there exists an expression w = s(1)s(2) ... s(r) with s({)e A. An expression of w

is called a reduced form if it is a product of /(w) generators.
' The symbol < denotes the Bruhat order on W, (defined, for example, in [5]). For
any we W, we associate two subsets of A as follows:

Lw)={seA|sw < w},
R(w) = {seA|ws < w}.
Given any two sets S, R, we call x = (x;),c g an R-tuple over S if x,€ S for all
i€ R. Sometimes we simply call x an R-tuple when there is no danger of confusion.

Two R-tuples x = (x;);c g and y = (y));¢ g are said to be equal if x; = y; for all ie R.
For any ae®*, ke Z and a positive real number m, we define a hyperplane

Hy y={veE|{v,a¥) =k}
and a stripe
Hp,=H™. _,={veElk <{v,aV) <k+mj.
We call any non-empty connected simplex of

E-J H,.;
aed
keZ

an alcove of E. Each alcove of E has the form (), . o+ H%. k, for a ®*-tuple (ky),c 0+
over Z. The following results are well known.

LEMMA 1.1 [4, Lemma 1.1). Let A, = (\yco+ Hi.o- Then A, is an alcove of E
which can also be expressed in the form ((\\, e HY%) 0 Hy, . o, Where the c, satisfy the
equation

(—a)¥ = T cpa’.
aechl

THEOREM 1.2 [4, Theorem 5.2]. Let Ay = (Vyeo* Hy;x, With ky€Z. Then A, is
an alcove of E if and only if for any a, fe @+ with a+ e D+, the inequality

lod® by + | B kp+ 1 < o+ B (kg g+ 1) < l0l® ko +1BI1P kgt |+ B + o+ B — |
holds.
It is well known that the right action of W, on E induces a bijective map

wi(A)w = 4, from the set of elements of W, to the set A of alcoves of E. Thus
any alcove of E has the form A4,, A, = (Naco* Hy. k. @) OF 4w = (Naco Hi: ko, o
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with the convention that k(w, —a) = —k(w, ) for any ae ®*. We shall identify W,
with U as a set under the correspondence w+ 4,,. Later the integers k(w, &) indexed

by we W, and a e ® always stand for the coordinates of the alcove 4,,. The following
result is known.

ProPOsITION 1.3 [4, Proposition 4.2]. Let w' = ws; with we W, and s;e A. Then
for any ae®, we have k(w’, @) = k(w, (0) ) +k(s;, ).

2. Admissible sign types

A ®-tuple X = (X ), o Over the set {+, —, O} is called a sign type of type ® if
the set {X,, X_,} is either {O, O} or {+, —} for any ae®. We see that a sign type
(Xa)xzc o is entirely determined by the ®*-tuple (X,),co+- SO sometimes we can
identify (X ), c o+ With (X,),c o and call (X ), o+ a sign type.

Let Z = P(®) be the set of all sign types of type ®. Let

Q={+ + + O - + + O
++°+0  +-"+-"+-" 0+ 00’ OO’
o - 4+ O - O - —}
O-"0-" -+ -+’ -4 -0"-0" —-)°
Let
o o o - - - + 0
®={OO,+O,+0,00,—O,—O,+0,0—,
o O + O O - + O
O o + + - + + +
O_’+—) ——,O—,+—,——a——,+—,+—,
- o - - o - - - +

- - 0 - - - %
o+,o+,—+,++,++,—+,—+,++y

o + O + + + - +
Let
o0 o0 O- - -—-——- -=  ++
GB={O O’O —,O —,O s = s = Y + +a
oo OO0 OO0 00 00 -0 +O0

++ ++ O+ 00 00 00 0]@)
+ Os + Os + O! + Oa + ) O Os o O,
+0O 0]0) 00O ole) 00 O- --

00 -0 -- -- 0O+ O+ O+
- Os - O’ - Os - —',O 070 O: - O:
-—— —— = -—- 0o- -- o0
-0 —-- 0O+ 0O+ O+ -+ ++
- +a - +, + OaO +, — +’ - +a + Oa
++ ++ ++ ++ ++ O- —-
O +, — +, + +’ + +, + +,O —so ]

-- -- 0- -=  +- 0O+ O+
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-- -- 00 O0- -- -- 00
- . -, + ) + _9O s = -, + >
o+ -+ O+ O+ ++ ++ ++
o- -- +0 +- 4+ ++ ++
+ -+ =+ -, + =, + O, + -, + +}
++ ++ ++  ++  ++ ++ ++

Given an indecomposable positive subsystem @'+ of @ of rank 2, we say that a
sign type (X,).c o+ is admissible if one of the following conditions is satisfied:

(1) @’'* has type A4,, say @'+ = {a, §, ¢+ f}. Then

(2) @'+ has type B,, say ®'*+ = {a, B, x+f, 2a+ f}. Then i €G

(3) @'+ has type G,, say @'t = {a, §,a+f, 2a+ B, 3o+ B, 30+ 26}. Then

<Xm+ﬂ X, )eG,
\Xaa+;§ —XO/

We say that a sign type (X,),c ¢ is admissible if for any indecomposable positive
subsystem @'+ of @ of rank 2, the sign type (X, )yc o + is admissible.
Let & = &(®) be the set of all admissible sign types of &.

Define a map oW 7
* a

2

by sending 4,, = ﬂaeq,H}(; k(w, x) 10 Xy = (X(w, @), ¢ o such that for any ae®,
k(w,0) > 0> X(w, ) = +,
k(w,0) = 0 X(w, ) = O,
k(w,a) < 0= X(w, ) = —.

By Theorem 1.2, one can check that {(W,) = &. Thus { induces a map from W, to
& which we still denote by (. In particular, one can check directly that {(W,) = &
when ® has rank 2. In the following sections we shall go further and show the
following.

THEOREM 2.1. {(W,) = & (D) for any indecomposable root system ®.

We denote ITU {—a,} by IT.
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3. Some results on Xy, pell

Sections 3 and 4 will be reserved mainly for the proof of Theorem 2.1. We assume
that rank @ > 2 in these two sections.
For any X = (X)), c 0 € %, we define my, = #Haecdt|X, = —}.

LEMMA 3.1. Assume that X = (X )g o€ and my > 0. Then there exists some
Bell satisfying Xp= —.

Proof. It is enough to show that if X, e{+, O} for all aeIl then m, = 0, that
is, for any fe®*, we have Xpe{+,O}. Now we assume that X,e{+, O} for all
aeIT. We apply induction on ht (f) > 1, the height of fe ®*. The result is obviously
true when ht(f) = 1, by our assumption. Now assume that ht(f) > 1. Then we can
write § = y+6 for some y,6e®*. By the inductive hypothesis, X, Xse{+, O}. By
symmetry, we need only to consider the following cases.

(i) {y,d,p} forms a positive subsystem of @ of type 4,. By the hypothesis that
Xe¥ and X, X;e{+, O}, we have

e{++++O}
++4+’ +0° O+’ OO0’ 00O’

that is, Xze{+, O}.
(1) {y,9,B,0+ B} forms a positive subsystem of @ of type B,. Then by the same
reasoning as in (i), we have

o o O + @) + oy
I e{+0, +0, +O,++,++,OO},

o + + + + O
that is, Xze{+, O}
(iii) {0—7,7,9d, B} forms a positive subsystem of ® of type B,. Then by the same
reasoning as above, we have

<4B> O O O + O +
eoo,+o,+o,+o,++,++}
o O O + + + +

that is, Xge{+, O}.
Therefore, our result follows by induction.

Call a sign type X = (X )y ¢ € ¥ dominant if my = 0.
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LEMMA 3.2. Assume that X = (X)), co € is dominant. Assume that not all X,
ae®, are equal to O. Then X_, = +.

Proof. One can check the result directly when rank ® = 2. Now assume that
rank @ > 2. By our condition, there exists some ae®* with X, = +.

(i) First assume that a is a short root of @ (including the case when the roots in
® all have the same length). Then o < —a,. By a well-known result, there exists a

sequence of roots
ﬂo =a, ﬂls ""Br =—0

in ®* such that for every i, 1 <i<r, f;_, < f; and f; = (B;_,)5,, with some y;eIl.
Clearly, all §;, 0 < j < r, are short roots. Now it is enough to show that if Xz = +
for some i, 1 <i<r, then Xg = +. Our conditions on B;_,, §; clearly imply that
{Bi-1,7) > =—1 and hence B, = f;_,+7;. If y; is short then {f;_,,7,,B;} forms a
positive subsystem of @ of type 4,. Then by the assumption that Xe &, X3 = +
and X, e{+, O}, we have

which implies that X = +. If y; is long then {B;_,, w, B;, f;—, +B;} forms a positive
subsystem of @ of type B,. Then by the assumption that §,_, = +, y,e{+, O} and
Xe¥, we have

which also implies that X, 5=+ As i runs over 1,2, ...,r in turn, we can show that
X_q, = + from X, by repeatedly using the above argument.

(i) Now assume that the roots in ® have two different lengths and that a is a long
root. Let § be the highest (long) root of ®. Then there exists a sequence of long roots

ﬂo = a’ﬂn '“’ﬂr =ﬂ

in @+ such that forevery i, | <i<r, f;_, < B, and g, = (B;_)) 5,, with some y; eIl.
By a similar argument to that in (i), we can show that Xz = + from X, = +.

We see that ® has type B, C, or F, according to our assumption. In any of these
cases, { — 20— f, &y + B, — oy, B} forms a positive subsystem of @ of type B,. So by the
hypothesis that Xe &, Xg = + and X_,, _g, Xy, 1 X _o,€{+, O}, we have

O + O +
e{+O, +0, ++, ++
+ o+ o+ 4+

which implies that X_, = +.
Putting (i) and (ii) together we conclude that X_, = +.



62 JIAN-YI SHI

4. The sign types X' and X" for Xe &

Here we shall give three key lemmas for the proof of Theorem 2.1. We assume
that rank @ > 2 in this section.

LEMMA 4.1.  Assume that X = (X)), . o € & is dominant and assume that not all X,,
ae®, are zero. Then we have X_, = + by Lemma 3.2. Let X' = (X,)yco be in ¥
satisfying Xy = X(gy5, for any ae®*. Let X" = (Xp)yco be obtained from X' by
replacing Xy, =€ by Xp, = O, 6= +. Then (X', X'} N &L # .

Sketch of the proof. We must show either that (X7),.q+ are admissible
for all indecomposable positive subsystems &'+ of ® of rank 2, or that (X}), e+
are admissible for all these subsystems @+ of ®. To do this, we need only show that
if @'+, @+ are two indecomposable positive subsystems of ® of rank 2 then either
(Xgea* OF (X3)yc -+ must be admissible. If —a, ¢ @'+ n®“+ then either

(X(;)az et = (Xa)ae(®'+)so'

(X;)a edrt = (Xa)ae(®”+)so

with —a,¢®"*. So our result follows by the assumption that Xe&. If
—o,e®’* n ©”* then we have one of the following cases.

with —o ¢ @'+ or

(a) @'+ = ®”* and both have type 4, or B,.
(b) @'t # ®”* and they are both in some indecomposable positive subsystem of
® of type A4,, B, or C,.

We can verify our result case by case. For example, in case (a) with @'+ of type
A,, we assume that (X}), o ¢ L (). Say &'+ = {a, f, a+f}. Then —a, = a+f. Since
Xe ¥ is dominant and X_, = +, we have

e{'+ + + +}
++’ +0° O+’ 00J)°

Thus
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But then

is admissible.

LEMMA 4.2, Assume that X = (X )yc0€S and Xg= — for some Bell. Let
X = (Xgeo be such that Xy = X, for all a€®. Let X" = (X;), o be obtained
Jrom X" by replacing X;p = ¢ by X;p= O, ¢ = +. Then either X’ or X" (or both) must
be in &.

The strategy of the proof for this lemma is similar to that for Lemma 4.1 but is
more complicated. We omit the detail.

LemMA 4.3.  Assume that X = (Xp)yc0 €S and my = 1. Then by Lemma 3.1, we
have Xz = — for some BeIl. Let X' = (Xp), ¢ o be a sign type of F satisfying

X, ifa#p
X;={ @8 ’
O ifoa=p,
for any ae®*. Then X" e &.

Proof. Let @'+ be any positive subsystem of @ of rank 2. We must show that
(X)) ca+ 1s admissible.

If f¢d’'* then (Xp)cot = (Xge@ys, Since (®'*)5; is also a positive
subsystem of @ of rank 2, the admissibility ofﬂ XDy e+ follows from Xe&.

Now assume that fe®’+. We know that @'+ either has type A, or B,. First
suppose that @'+ has type 4, with @'+ = {f, y, +y}. By the assumption that Xe &,
my =1and Xz = —, we have

-0 —+7 =4}

Thus

E{O + +}
00’ OO’ O+

which is admissible. Next suppose that @'+ has type B, with @'+ = {8, y, 8+, B+ 2y}.
By the same reasoning as above, we have

i %O0,0+,O+,++.
o o + +
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So

O O O O
{00, +0, +0O, ++
O O + +

which is admissible also. Finally, suppose that ®'* has type B, with
o't = {ﬂa }’,ﬂ+)’,2ﬂ+)’} We have

So

O O O +
€{00, +0, +0, +0
O O + +

vhich is again admissible.
Therefore we have X" e &.

5. The proof of Theorem 2.1

It is known that the result is true when @ has rank 2. So we may assume that
rank @ > 2. It is also known that the inclusion {(W,) € & holds in general. Now we
define ny = Hae®*| X, # O} and my = Hac®+|X, = —} for any Xe Z.

Assume that we are given a sign type X = (X, ), c ¢ in &. We must find an element
w of W, such that {(w) = X. We apply induction on n, = 0. It is clear that {(1) = X
in the case when ny = 0. Now assume that n, > 0.

(@) If my = 1 then by Lemma 3.1 there exists some SeIT such that Xz = —. Let
X" = (XQ)g o€ P be defined by

. X(a)sﬁ 1fot¢ﬁ’,
X;‘{o ifa=4,

for any ae ®*. Then by Lemma 4.3 we have X" € & with ny. < ny. By the inductive
hypothesis, there exists some w’e{~1(X"). Let w = w’sg. Then {(w) = X by Propo-
sition 1.3.

(b) If my > 1 then there exists some (1) eIT with Xg,) = — by Lemma 3.1. Let
X = (Xp)geo0€Z be defined by X, = X 550 for any ae®. Let X" = (X)ye0€Z
be obtained from X' by replacing X5, =¢ by Xgp, =0, é=+t. Then by
Lemma 4.2, one of X’ and X” must be in &. We denote this sign type by X(1) (note that
when both X” and X” are in & we can freely choose one of them and call it X(1)). Clearly
My = my—1. If my,, is still greater than 1 then the same process can be carried



SIGN TYPES CORRESPONDING TO AN AFFINE WEYL GROUP 65

on and we get a sequence of sign types X(0) = X, X(1), ..., X(m) in & with m = my
such that for every i, 1 <i<m, X(i—1)g,; = — with some S(i)ell, and either
XDy = X(i— 1) 5500 for all ae® or X(i), = X(i— l)m)gﬂ(‘) for all ae ®—{f(i)} and
X(D)epy = O- In particular, X(m),g,m = O. Since myqy =my_,—1, we have
myq =mx—i and in particular my,,_,)=1. Hence such a sequence
X(0), X(1), ..., X(m) does exist in &. Clearly ny,, <ny. Thus by the inductive
hypothesis, there exists some x €{~*(X(m)). Let w = XSg(y) Sg(m—1) --- Sgzy- Then by
Proposition 1.3, we have {(w) = X.

(c) If my =0 then X is dominant. Since ny >0, we see by Lemma 3.2 that
X_4,= +. Let X' =(Xp)pco be in F satisfying X; = X4, for all ae® and let
X' =(Xp),.0€F be obtained from X' by replacing X, =¢ by X, = O. Then
Lemma 4.1 asserts that {X’, X"} N & # &. Denote one of {X’, X"} n & by X(1). Then
either ny ;) < ny, or n,,, = ny and my, > 0. So cither by the inductive hypothesis
or by (b) we can find some xe{~1(X(1)). Let w = xs,. Then by Proposition 1.3, we
get {(w) = X, again.

Therefore our result follows by induction.

6. The geometrical interpretation of admissible sign types

Let 7 ={H, |aoe®*,7=0,1}. Then the connected components of
E—\Jyes H are open simplices. We see that any alcove of E lies in some
connected component of E—| ) ¢+ H and that two alcoves correspond to the same
sign type if and only if they are in the same connected component of E—| ) 5 H.
So by Theorem 2.1, the map { induces a bijection between the set of connected
components of E—| ), . s+ H and the set &. Then we can identify these two sets.

ExXAMPLES 6.1. (1) When @ has type 4,, say ®* = {4, u, A+ u}, the number of
connected components of E—| 4 5 H is 16. Each of these components determines
a sign type

as in Figure 1.

3 LM 35
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(2) When @ has type B,, say @+ = {4, u, A+ p, A+2u}, then E— ), o & H has 25
connected components each of which determines a sign type

as in Figure 2.

FIG. 2

(3) Let @+ = {4, u, A+ pu,A+2u, A+3u,24+4 3} be the positive system of @ of
type G,. Then E—{J . 5 H has 49 connected components each of which determines

a sign type
X2/\+3/t m
X=é’m,, X, >

XA+3/4 Xp

as in Figure 3.
It is well known that any alcove of E has /+ 1 facets. In [4], we labelled any facet
of an alcove by an element se A such that the following result holds.

LEMMA 6.2 [4, Lemma 6.1).  If w,w’ e W, have the relation w' = s, w for some s,€ A
then the alcoves A, and A, share the common s,-facet. Conversely, if A,, and A, are
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FiG. 3

two alcoves of E which share a common facet then the labelling of this facet for A,, is
the same as for A,,, say s,-facet. We have w' = s, w.

The following result is due to the convexity of an admissible sign type.

PROPOSITION 6.3. For any Xe% and w,ye{~YX), there exists a sequence of
elements wy = w,w,,...,w, =y in W, such that for every h, j with 0 < h<r and
1 <j<r,w,el~(X) and w; = s;w;_, for some s;e A.

Proof. We see that each connected component of E—{ ), . s~ H is convex. Our
condition means that w, y are in the same connected component X of E—\ ), . s H.
So there exists a sequence of alcoves 4, = 4,,, 4,,...,4, = A, in X such that for
every j, 1 <j<r, A; and A4, , share a common wall. Hence our result follows by
Lemma 6.2.

Recall that Z(w) = {se A|ws < w} for any we W,. Now we need the following.

LeEMMA 6.4 [4, Proposition 4.3(ii)}.
R(w) = {s;€ Al k(w, o) < 0}.

32
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By the definition of the map { and Lemma 6.4, the function Z(w) on {~(X) for
any Xe is constant. So we can define Z(X) = #(w) for any we{~1(X). We see
from Lemma 6.4 that Z(X) = {s;eA| Xy =—}

7. The shortest elements of (~Y(X), Xe &

The shortest elements of {~}(X), X e &, have very nice properties. They will play
a crucial role in the calculation of the cardinality of &.

PROPOSITION 7.1. Let U be a set of sign types of & such that there exists
some Y € U which can be obtained from any Z e U by substituting some non-zero signs
by zero signs. Then there exists an element ye{~YY) such that
[k(y, )| = min {|k(x, &)| | xe{~YU)} for all xe ®+.

Proof. We apply induction on / = n,, > 0. The result is trivial in the case when
I=0.

(1) First assume that my > 0. Then by Lemma 3.1 there must exist some
l n(1)ell with Y; = —. Then we also have Z; = — for any ZeU. Let

= (Y)zeo = & be defined by Y, = Y s, for all ae®. Let Y" = (¥, wep€Z be
obtamed from Y’ by replacing Y, w1th 7=0,e= +. We define Z',Z"¢ & from
any Ze U in the same way as Y’, Y” from Y. Then by our assumption on U we see
that Y” can be obtained from Z” (respectively Z’) with Ze U by replacing some
non-zero signs by zero signs. We also see that Y’ can be obtained from Z’ with Ze U
by replacing some non-zero signs by zero signs. We can show that if Z” € & for some
Ze U then Y"e&. Thus by Lemma 4.2, we have either Y"e % or

{(Z,27|Z2eUinY ={Z'|Ze U}.
Let ! ={Z',Z"|ZeU}N& and let

Y’ ifY'e¥
Y(1) = ’
) {Y’ ifY¢&.

Then Y(1) can be obtained from any sign type of U by replacing some non-zero signs
by zero signs.

If my ) = my—1> 0 then the same process can be carried on by substituting

U' and Y(1) for U and Y. We get a sequence of subsets U° = U, U, ..., U™ in
&, a sequence of sign types Y(0) = Y, Y(1), ..., Y(m) in & and a sequence of simple
roots 7(1),7(2), ...,n(m) in IT with m = m,,. These roots are such that for every i,
1 €i<m,and for any X = (X,),c o€ U™?, the following conditions hold.

@) Xy = —

(b) Let X' = (Xa)aeq,ey be defined by X = X4 © for all xe® and let
= (Xp)zecp€F be obtained from X’ by replacing X,,; by X = O. Then
={X’, X’|XeUi"1} n & and Y(i)e U’ is defined to be Y(z—l)” if Y(i—-1) e&

or to be Y(i— 1)’ otherwise. Then by Lemma 4.2 and the above result we see that for
every i, 0 < i < m, Y(i) can be obtained from any X € U by substituting zero signs for
some non-zero signs. In particular, we see from Lemma 4.3 that Y(m) = Y(m—1)"
and 50 ny ) < ny.

Let A = {we W,|{(w)e U™} and % = {~'(U). Then by Proposition 1.3, the map
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G: W WS,y Syim—1) --- Sy Bives a bijection from # to % which satisfies
I(w)y+m = l(¢(w)) for any we #.

By the inductive hypothesis, there exists an element y of {~}(Y™) satisfying
|k(y, a)| = min {|k(x, a)||xe.#} for all ae®*. By the rule of the right action of
W, on U, we see that for any ae®, the difference |k(¢(w), a)| —|k(w, )| is a non-
negative constant on we 4. Thus we have

k($(y), 0)| = min {}k($(x), 0)| | x € A} = min{|k(x,®)| | xe ¥},
for all ae ®*. Clearly, ¢(y)e{~2(Y). So our result follows in this case.

(2) Next assume that m,, = 0. Then by Lemma 3.2, we have Y_,, = + and also
Z,, =+ forallZ=(Z,),c0eU.Let Y = (Yp),c 0 € ¥ bedefined by Y, = Y, ;, forall
aed. Let Y" = (Yy),c0 €< be obtained from Y’ by replacing Y, by Y, = O. We
define Z’,Z"e€ & from any Ze U in the same way as Y’, Y” were defined from Y.
Then Y” can be obtained from Z” (respectively Z) with Ze U by replacing some
non-zero signs by zero signs. Also, Y’ can be obtained from Z’ with Z e U by replacing
some non-zero signs by zero signs.

We claim that if Z”e & for some Ze U then Y”e ¥, since otherwise, this would
imply Y’ ¢ & which contradicts the fact that {Y’, Y} n & # . Thus we have either
Ye¥ or

(Z,2'|ZeUn ¥ ={Z'| Ze U}.
We define
Y—{Y” if Y e,
Ty otherwise.

Let U’ ={Z',Z"|Ze U} n &. Then ¥ can be obtained from any X € U’ by substituting
zero signs for some non-zero signs. We also have ny < ny.
If ¥ = Y” then ny < ny. By the inductive hypothesis, we have

lk(y, o) = min {lk(x, ®)| | xe{~}(U)}
for any ae ® and some ye{~}(¥). If ¥ = ¥’ then my > 0. By the case which we have
discussed with Y’ and U’ instead of Y and U, we also have

k(y, )| = min {|k(x, ®)| | xe{~}(U")}

for any ae® and some ye{~1(¥). Then in either case, ¢: w ws, gives a bijection
from {~}(U’) to {~1(U) which satisfies

. g
R e M e
for all we{~1(U"). So
k(¢(»), )| = min {|k((x), )| | xe{~1(U")}
= min {|k(x, ®)| | xe{~Y(U)}.
Clearly, ¢(y)isin {~1(Y). So our result is also true in this case. By induction, we reach
our goal.

The element ye{~(Y) in the above proposition is clearly the shortest element of
¢~}(U) which is unique. In particular, when U consists of a single sign type, we get
the following.
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PROPOSITION 7.2.  For any X € &, there exists a unique shortest element, say y, of
{~XX) which is characterized by the requirement that

lk(y, ®)| = min {[k(x, @] | xe{ (X))

Sfor all oe @, where the k(x, ) are as in Proposition 7.1.

Now we shall give another criterion for an element to be the shortest element of
{~YX) for any Xe &.

Let w', we W, and s;€A satisfy w’ =s;w and /(w’) = (w)—1. Then by the
definition of the left action of W, on the alcove set U we have k(w’, ) = k(w, o) for
all xe®* but one. Let the exceptional one be fe®*t. Then we have
lk(w’, B)| = lk(w, B)|—1 and k(w’, B) = k(w, )+ 1. Now assume that w is the shortest
element of {~!({(w)). Then by Proposition 7.2, we must have k(w,f) =+1 and
k(w’, B) = 0. In particular, w’ ¢ {=({(w)).

ProrosiTION 7.3. Let Xe% and we{~(X). Then w is the shortest element of
{~X(X) if and only if, for any s€ L(w), we have swé¢{~(X).

Proof. Let w be the shortest element of {~!(X). By the above discussion, it is
sufficient to show that if ye{~1(X) with y # w then there must exist some s€ #(y)
such that sye{~1(X). Now assume that ye{~1(X) with y # w. Then by Proposition
7.2, we have, for any ae®,

2 k(w,) >0 ifX, =+,
k(0 <k(w,0) <0 if X, = —,
{:k(w,cx)=0 if X,=0,

and the set D = {xe ®* | k(p, ®) # k(w,®)} is non-empty. Let
D*={xeD|X,= +} and D~ ={aeD|X, = —}.
Seta=k(y,a)+1—k(w,0) and b =2—a. Let

K, = ﬂ H::;lc(w, a)s K, = (l Hz;uw, a) K; = ﬂ_ Hg;lc(y. a)
aecdt =D aeD aeD

with the convention that K; = E if the set of indices for the corresponding intersection
isempty. Let K = K, n K, n K;. We have 4,,, 4, = K < X regarded as sets of vectors
of E. On the other hand, we see that for any alcove 4 €U, either A « KorANK = .
So K can be regarded as a set of all elements x of W, with 4, < K. Thus w (respectively
y) is the shortest (respectively longest) element in K. Since K is a convex set of E, which
contains more than one alcove of E, there must exist some alcove 4, in K with
x # y such that 4, and A, share a common facet. That is, x = sy for some se€ A by
Lemma 6.2. Clearly, we have se £(y) and xe{~1(X). Thus our result follows.

8. The cardinality of ¥ (®)

In this section, our aim is to prove Carter’s conjecture.

THEOREM 8.1 (Carter’s conjecture). |F(®)| = (h+1)!, where = rank @ and h
is the Coxeter number of ®.

To prove our result, we need an earlier result.
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ProrosITION 8.2 [4, Proposition 3.4]. Let weW,. Then for any aec®,
k(w™, ) = k(w, — (x) W).

Let E(S) = {we W, |w is the shortest element of {~1({(w))}.

Let E(S)™! = {w|w™'e E(S)}. For any we W,, we see from Propositions 8.2, 7.2 and
7.3 that we E(S)™! if and only if k(w,1) =—1 for any 5;€%(w) and this is the
case if and only if k(w,A)>—1 for any s;€A, where we assume that

Ay = ﬂanH(}r;k(w, a)
We define

Hy p ={veE|v,a¥) >k}, Hy ,={veE|{v,a¥) <k}

for any ae®* and keZ. Then regarded as a set of alcoves of E, E(S)~! is the set
of all alcoves of E contained in H = ((\yen Hy. ) N HZ 4. .

Define Z < W, to be a left connected set of W, if for any x, ye Z, there exists a
sequence of elements x, = x,x,,...,x, =y in Z such that for every i, 1 <i<r,
x;_, X1 € A. Then by the convexity of H we see that E(S)™! is a left connected set of
W,.

By the way, any admissible sign type, regarded as a set of elements of W,, is a
left connected set of W, by the convexity of the sign type in E.

ExAMPLES 8.3. When the rank of ® is 2, E(S)! is the set of all alcoves in the
fully shaded area of each of Figures 4, 5 and 6. From these figures, we see that

FI1G. 4. Type 4,

H=H;._,nH{ _,HZ, ., are all triangles (the fully shaded areas) similar to the
corresponding alcoves A4, (the alcoves labelled by 1). The scale of 4, to His 1:h+1
and so the area of H is (h+ 1)4™ £ times that of 4,, where A is the Coxeter number
of ®. Then H contains (h+ 1)dim £ alcoves altogether.

Recall from §1 that Hp: . = {ve E|k < {v,aV) < k+m} for any ac®*, keZ
and m> 0in R.
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LemMa 8.4. Let HM'= ((\,en H{Y )N HYL . Then H = H*', where
()Y =Zsenca’.

Proof. Since H{*W/e=c Hf _, for all aell, and H*}.,_, < HZ, ., the
inclusion H 2 H"*! is obvious.
Now let ve H. To prove that ve H**1, it is enough to show that

{v,aV)y < (h+1)/c,—1
for a eIl and that {(v,(—0)V) > 1 —h.
For aelIl, we have oV = ((—ag)Y —Z;xpencpB)/Cq- SO

v,V = ((v,(—%)v>—a¢2ﬂ‘.en g0, BY7)/ca < Q+h—1—C5)/cq

= (h+1)/cy—1.
We also have

0, (=) V) =<0, T a¥)= T ¢{n,a¥)>— % ¢, =1-h
aell aell aell
So H = H"*! and hence H = H"*,

Recall that IT = IT U {—a,}.

LEMMA 8.5. Let m > 0 be an integer and let the T1-tuple k = (k,), . fi over Z satisfy
the condition that k_, = X, cn1c, k,. Let

Hp = (ag Hplg=) 0 H™,,, P

Then HJ® contains exactly m3™ E glcoves of E.

Proof. We have 4, = H} by Lemma 1.1, where k, = (k,), 1, With k, = 0 for
all «, satisfies the condition k_,, = X, .1 ¢, k,. Then for any integer m > 0, Hf® is
similar to 4, in geometrical shape and the scale of 4, is one mth part of that of H[!.
So the volume of Hf! is m*™E times that of 4,. This implies that H[? contains
exactly mdim £ alcoves of E. Now we take any other fI-tuple k = (k )y With
k_y, = Lo e Caky Then there exists a unique vector ve E satisfying (v, 2V ) = k, for
all aeIl and <{v,(—a,)¥) = k_,,. Let T, be the translation on E which sends the
origin to v. Then T, also sends H{; to H{". Hence H[* also contains m®™ £ alcoves of
E by the condition that the k,, a€Il, are all integers.

COROLLARY 8.6. Let H"**! be defined as in Lemma 8.5. Then H**1 contains exactly
(h+ 1) alcoves of E, where h is the Coxeter number of ® and [ is the rank of ©.

Proof. Let k= (ky)yefi With k,=—1 for all aeIl and k_, = 1—h. Then
H"+' = H}*1, Since dim E = [, the result follows by Lemma 8.5.

Proof of Theorem 8.1. By Proposition 7.2, it is enough to show that
|E(S)| = (h+ 1) or, equivalently, to show that |E(S)™| = (h+1)". But this follows
by Lemma 8.5 and Corollary 8.6.
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