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ABSTRACT

In this paper, I study the alcoves of a Euclidean space E corresponding to an affine Weyl group Wa.
I give the coordinate form of an alcove of £ and establish an explicit correspondence between the elements
of Wa and the alcoves of E. In particular, I characterize an alcove by a <D-tuple over Z subject to certain
conditions, where <D is the root system determined by Wa.

In [3], I gave the coordinate form of alcoves in the Euclidean space E spanned
by a root system O of type An_x; these alcoves are in 1-1 correspondence with the
elements of the affine Weyl group Wa of type An_v The coordinate form of an alcove
of E is a O-tuple over Z subject to certain conditions. I gave necessary and sufficient
conditions for a O-tuple over Z to be the coordinate form of some alcove of E.

In the present paper, I shall generalize the above results on O from type A to an
arbitrary type, provided that O is indecomposable. Our main results are Theorems
3.3 and 5.2.

1. The alcoves of E

Let <J> be an indecomposable reduced root system. Let E be the Euclidean space
spanned by O with positive definite inner product < , > such that |a|2 = <a, a> = 1 for
any short root a of O. Choose a simple root system II = {ax,..., af} of O. Then O + ,
O~ are the corresponding positive and negative root systems of O. Define the
fundamental weights klt ..., kt by <Ai5 a/ > = dti (the Kronecker delta), where for any
a e O , av = 2a/<a, a> is called the coroot of a. Let — a,, be the highest short root
of <D. Then the set {(%, al9..., a,} has the property that (o^, a /> consists of non-
positive integers for all pairs of distinct i,j in {0, 1,..., /}. The set <I>V = {av

 IOCEO}

of coroots is again a root system such that the set {a^,. . . , a,v} affords a choice
of a simple root system in it. The root ( — a,,)7 is the highest (co)root of O v . Let h
be the Coxeter number of O. Then h is also the Coxeter number of <D v .

Let Wbe the Weyl group of O generated by the reflections^ on £ for a e O , where
sa sends x to x — <x, av > a. Let Q denote the root lattice ZO. Let N denote the group
consisting of all translations Tx operating on E for X EQ, where 7) sends x to x + L
We denote by Wa the group NW of affine transformations of E generated by iV and
W. It is well known that Wa is the semidirect extension of W by the normal subgroup
N on which the action of W is known.

For linear and affine transformations, we shall denote the operation on the right
and compose them accordingly. With this convention, we define s0 = sXo 71ao, st = sX{,
1 < / ^ /. It is known that Wa (respectively W) is a Coxeter group on generators
s0, slt ...,st (respectively sx, ..., st). We write A = {s0, sv ..., st}. The group Wa will be
called an affine Weyl group [1, 4]."
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Any wsWa can be written (being not necessarily unique) as a product of these
generators. We define the length l(w) of w to be the smallest number r such that there
exists an expression w = stisiz ...sir with st eA. An expression of w is called a
reduced form if it is a product of l(w) generators.

The Bruhat order ^ on Wa is a partial order of Wa which is defined as follows.
Say y ^ w in Wa\{ there are two reduced forms w = stlsi2... sir and y = shsh ... sit

such thatyi5y2, ...,jt is a subsequence of/1} i2, ...,ir [4].
Given any two sets S, R, we call x = (^) i 6 f i an /?-tuple over S if xt e S for all i e /?.

Sometimes we simply call x an itouple when there is no danger of confusion. Two
.K-tuples x = (x^ieR and y = (yj)jeR are said to be equal if xt = yt for all ieR.

For any a e O + , keZ and a positive real number m, we define a hyperplane

and a stripe
H™k = H™a._k = {veE\k < <v, a v > < k + m}.

We call any non-empty connected simplex of

E~ U H*,*
keZ

an alcove of E. Each alcove of £" has the form P)ae<D+^a;fca f° r a ^+- tuple (ka)aeO+
over Z. Since / / L a _fc = H\. _k , sometimes it is more convenient to denote the
alcove | ]ae<i)+^a;fcaby f ]a6(i>#i;fca with the convention that k_a = —A;aforaGO+.

Let (-Oo)v = S f _ 1 q a f
v . Then cf, 1 ^ / ^ /, are all positive integers satisfying

h = £f _ x c( + 1 . The following lemma gives an example of an alcove of E which can
be shown directly by definition.

LEMMA 1.1. Let A1 = P)ae<D+#a;o-

(i) Ax is an alcove of E,

(ii) Al can also be expressed as the form (Qf - i ^a^o ) C\ Hl_ao.o,

(iii) {(\/ct)Xt: 1 ^ i ^ /;0} is the set of vertices of the closure ofAx in E,

(iv) {H^.y. 1 ^ i ^ l',H_(XQ.1} is the set of facets of Ax of codimension 1 in E.

One should note that not every O+-tuple (fca)ae<D+ giy e s rise to an alcove of £ as
above. The following lemma gives a necessary condition on a O+-tuple (fca)a6<D+ over
Z such that P)ae<D+ #a;fca ^

 a n alcove. Later, we shall show that this is also a sufficient
condition.

LEMMA 1.2. Suppose that Ak = f^
<x,0€<S>+ with a + j ? e O + , we have

^ |a+m*«+j+l)

is an alcove of E. Then for any

and

Proof Let veAk. Then ka < <v, a v > < ka+ 1, kp < (v, y?v> < fy+1 and
( ? f c a + ^ + l . Hence

y, a> < M ^ - H

«+fi <2<v, <x
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This imples that

WK + \P\*kp < 2(v, cC) + 2(vJ} = 2(v, a
p

and
I « + £ | 2 W < 2<v, a+y?> = 2(v, a

So our conclusion follows immediately.

LEMMA 1.3. Let Ak = f^a6O+H\.ka be an alcove of E satisfying ka ^ 0 for all
a e H Then

(i) ka^Oforall(xeQ>+.

(ii) If there exists some y e O + w*7/i ky > 0 //ie« &_ao > 0.

/Voo/. Takeany ye/4k. For any/?e<I> + , kp ̂  0 if and only if (v, /?v> > 0. Given
any a e O + , we can write av = S l . i ^ a ^ with each af a non-negative integer, not
all zero. By our condition, we have (v, av > = £ i_ i a* (v, at

v > > 0. So fca ̂  0 and (i)
follows. Forany/?e<D+,A:)j> 0 if and only if <u, ^ v > > 1. Thus we have <u, yv> > 1.
Since ( — a,,)7 is the highest coroot of O v , we can write ( —a,,)7 = yv +Ef_1a ia i

v with
the ^ non-negative integers. By our condition, we get <u, ( — Oo)v> ^ (v, yv> > 1.
This implies that fc_ao > 0.

COROLLARY 1.4. Let Ak = P)ae<D+^a;fca ^e a / i fl'coi;e ° / ^ with kp < Ofor some
+ . Then there exists some y e l l satisfying ky < 0.

Proof. This follows immediately from Lemma 1.3 (i).

EXAMPLES 1.5. The alcoves corresponding to the root systems O of types A2, B2

and G2 are as in the following diagrams, where each small triangle in these diagrams
represents an alcove. We label each alcove by its coordinate form. That is, let A be
an alcove f]ae<t>+ H\.kix. Then when d> has type A2, say O + = {a, 0, a+fi), we put

K kp

into this triangle. When O has type B2, say <D+ = {a, p, <x+p, 2a+p}, we put

h
k<x+a K

into this triangle. When <D has type G2, say <D+ = {a, /?, cn+fi, 2<x+P, 3a+y9, 3a+2/?},
we put

k2(X+p

into this triangle.
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-2-1/-2V2 0/-1X-2 1/ \-2 2

FIG. 1. Type/l2

FIG. 2. Type B2

2. Some properties of root systems

We shall study some properties of root systems which will be used later.
We say that a subset of O + is a positive subsystem of O if it has the form O+ n O'

for some subsystem O' of O. We denote such a subset by <I>' + . We say that O ' + is
indecomposable if $ ' is, and has type X if O' does so.

LEMMA 2.2. Assume that a, fie® + withoL+fie<l>+. Then one of the following cases
must occur:

(i) a, fi, a+fi have the same length and they span a subsystem of<t> of type A2;
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FIG. 3. Type G2

(ii) a and $ are short roots but a+/? w a /o«^ owe. They span a subsystem o /O
oftypeB2orG2;

(iii) a a«f/ )9 have different lengths and they form a simple root system of the
subsystem o /O spanned by a, /?. In that case, a+/? is always a short one.

Proof. This can be reduced to the case when O has rank 2, and the results checked
directly.

LEMMA 2.3. Suppose that both a and (a) sao are in<t>+. Then a = (&)sao.

Proof. Without loss of generality we may assume that O is spanned by a, — a,,
over Z. We can then check the result case by case.

LEMMA 2.4. Assume that a, /?e<D+ with a+/?e<D+ and - a ^ f a , /?, a+/?}.

oe<D- am/ |a+0|2 = 2|a|2 = ^

Proo/. Obviously, (<x+ft)sao = (a)5ao + (^)5aoe^)-. To show the rest, we may
assume without loss of generality that O is spanned by a, /?, — a,, over Z. The condition
that (a)sao, (fi)saoe<J>- implies that

with y the highest root of O. Then — 0̂  # a + ^ implies that <X> has two different lengths
of roots and that a+fi must be a long root. On the other hand, by Lemma 2.2, a and
ft are either both short or both long roots. If they are both long, <<x, ( — Oo)v> ^ 2,
</?, ( — a0)v > ^ 2 and so (oc+/?)sao ^ y — 4( — oto). But there is no root <5 of $ satisfying
S ^ y - 4 ( - a 0 ) . Thus both a and /? must be short roots. Since - a ^ f a , /?, a+^} , it
follows that O cannot have type G2. Thus |a+^|2 = 2|a|2 =
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LEMMA 2.5. Assume that a, /?eO+ with a + / ? e O + . Assume that (<x)saoe<t>+ and
(/?)jaoe<D~. Then (a+f})saoe<!>~ and ft, a+/? have the same length.

Proof. Suppose that (<x+fi)saoe<&+. Then by Lemma 2.3,

That is, (/3)sao = /?eO+ which contradicts our condition. Thus (a
Since (a)jao = a, we have <a, ( — ao)v> = 0. Thus

since (/?)-saoeG>-. This implies that /?, a+/? have the same length.

3. The correspondence between the alcoves of E and the affine Weyl group Wa

In this section, we shall establish the correspondence between the alcoves of E
and the elements of the affine Weyl group Wa. The main results of this section are
Theorem 3.3 and Proposition 3.4.

It is well known that the right action of Wa on E gives rise to the permutations
of the set

{Ha.k\«e<t>+,keZ}.

So it induces the permutations of the set 31 of alcoves of E. It is well known that 31
is simply transitive under Wa[2]. Denote Aw = (AJ w for any we Wa. Thus any alcove
of 3T has the form Aw, written

Aw — \ ) H\;k(w,a) o r Aw = [ ) ffatk(w,ix)
oce<D+

with the convention that k(w, — a) = — k(w, a) for any ae<D + . We shall identify Wa

with 31 as a set under the correspondence w\-+Aw. The integers k(w, a) labelled by
we Wa and a e O always stand for the coordinates of the alcove Aw = f^ae^^a-.kiw^y

As Wa = WxN, any we Wa has a unique decomposition w = wTk with we W^and
XeQ. We shall describe the integers k(w, a), a e O + in terms of w and A.

LEMMA 3.1. For any weW and any a e O + , we have

Proof Let veAx and ae<D+. Then {v)weAw. It is well known that

If (a )w- 1 eO + then 0 < <y, ((a)w"1)v> < 1 and hence 0 < <(y)w, a v > < 1. Thus
k(w, a) = 0. If (<x)w-le<&- then -(a)vt>-1e<D+. So 0 < <y, ( - ( ^ w " 1 ) 7 ) < 1 and
hence - 1 < <u, ((a) w"1)v > < 0. That is, - 1 < <(u) w, a v > < 0. Then A:(w, a) = - 1.

LEMMA 3.2. Assume that Ak = f]aeQ>^a;ka " an alcove of E. Let XeQ. Then
Ak' = (Ak) T} is also an alcove of E, say Ak> = f^^e^ H^.k>. Hence for any
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Proof. We know that there exists some weWa with AU) = Ak. Since TxeWa

Ak- = AwTx is clearly an alcove of E. For any a e O + and veAk, we have
ka < (v, av> < ka+\. Since

we get

But (v)TxeAk>. This implies that k'a = &a + <A, av>. For a e O ~ ,

and the result is proved.

From Lemmas 3.1 and 3.2, we get the following result immediately.

THEOREM 3.3. For any WeWand XeQ, let w = wTx. Then the equation

holds for any

By Lemma 3.1 and Theorem 3.3, one can easily show that for any j , 0
and ae*D,

•0

k(sp a) = ' 1 ^

— 1 if a = Oj.

We can deduce the following result from Theorem 3.3.

PROPOSITION 3.4 Let we Wa. Then for any a e O ,

k(w~l, a) = k(w, -(a)vv).

Proof. Write w = wTx with We W and XeQ. Then w~l = ^~xT{_k)w-i. By
Theorem 3.3, we have

(3.3.1)

k(w, -(<x)w) = (X, (-

k(w~\ a) = ((-X)w-\ (xv)>+k(w-\ a)

for any oceO. To show that ^(w"1, a) = k(w, — (a)iv) is equivalent to showing
that k{w~l, a) = k(w, -(a)vv). It is enough to show that ^(flr1, a) = k(w, -(<x)w)
for ae<D+. If - (a)we<P + then ( a ) ^ " 1 ) - 1 = (a)^€<D" and so k(w~l, <x) = - 1 .
Also (-(oOfiOwr1 = -ae<D" implies that A:(vP, - (a) vt?) = - 1. Thus
k(w~\ a) = k(w, -(a)iv) in this case. If -(a) we®' then (aH^r1)"1 = (a)^ed>+,
which implies that k(fr\ a) = 0. Also, fc(M?,-(a)vP) = -A;(R7, (a)vP). But
((OOMOMT1 = a€<D+ implies that k(w, (a)R?) = 0 and hence that k(w, -(<x)w) = 0.
Also we have k(w~1, a) = k(w, — (<x)w). This implies that we always have

1, a) = k(w, — (a)vi>) and the result follows.

EXAMPLES 3.5. Recall that in Examples 1.5 we drew the diagrams for the alcoves
of E when 0 has type A2, B2 or G2. We labelled each alcove by the corresponding
O+-tuple there. Now we shall label them by the corresponding elements of Wa instead
of O + -tuples. We assume that sx = sa and s2 = Sp and denote st by i for short.
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FIG. 5. Type

4. The actions of Wa on the alcoves of E

Let w' = SjW with weWa and 0 <y ^ /. We wish to express the k(w', a) in terms
of the k(w, p).

Write w = wTk with w e W and X e Q. First assume that 1 ̂  7 < /. Then w' = Sj WTX

with s} We W. By Theorem 3.3,

and
k(w', a) = k(w, a

, a)

, a)-k(w, a)
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for any a e O + . When ((x)W~l ^±ap we have ( ^ w ^ O " 1 " if and only if
(a) w~1sje.Q> + . So k(w, a) = k{Sj W, a) and thus k(w, a) = A;(w', a) in this case. When

= aj we have (a)w1e<l>+ and ( a ) r ^ e O " . Thus k(Sj w, a) = - 1 and
, a) = 0 by Lemma 3.1. This implies that k(w', a) = k(w, a)— 1.
Next assume that./ = 0. Then w' = sao wTx+^^w. By Theorem 3.3, we have, for

anyae<D+,

k(w\ a) = k(w, a) + < - Oo, ((a) w~l)v >+fc(.yao w, a) - k(w, a).

When < -oto, ((a) or1) v > = 0, we have (a) wr1 e<D+ if and only if (a) «r1j f l t 06O+. Thus
A:(̂ ao W, a) = A:(vP, a). So in this case, A;(w', a) = k(w, a). When <-a,,, ((a)iv"1)v> > 0
and (a) w1 # ± a,, we have ( a ) r 1 €<D + and < - a,,, ((a) firx)v > = 1 since -a , , is
the highest short root of <D. We also have ( o f l f l r ^ e O " . Thus k{w', a) = A:(vv, a).
When < - OQ, ((a) vF"1)v > < 0 and (a) w~x ^ ± a,,, we have (a) w 1 e 0> - and
<-Oo, ((a)W"1)v> = - 1 . We also have ( « ) r 1 j a c 6 O + . Thus fc(w', a) = A:(vv, a).
When (a) w~1 = -(x0, we get (a) W1 e <D + , (a) v^"1^ e <D" and < - a0, ((a) vF"1)v > = 2.
Thus A:(w', a) = k(w, a) + 1 .

To sum up, we get the following result, by using (3.3.1).

PROPOSITION 4.1. Let w' = Sj w with weWa and 0 ^ ] ' ^ / . Then for any a e <D+,
we /wye /c(w', a) = k(w, a)+k(sp (a) vv"1).

Now assume that, w' = WSJ instead of w' = Sj w in the above. We shall find the
relations between the k(w, a) and the k{w', fj).

First assume that 1 ̂ 7 ̂  /. Then w' = WSJ = wTxSj = WSJ r( / l ) s . By Theorem 3.3,
k(w, a) = (X, av>+fc(w, a) and k(w', a) = (X, ( ( a )^ ) v >+fc (^ , a) for any P +

This implies that

k(w', (0L)sf) = k(w, <x) + k(wsp (<x)Sj)-k(w, a).
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When a ^ f y , we have (a)^G<D+. We also have (a)w~1e<S>+ if and only if
(a)sisiw~1e<l>+. So k(wsp (a)^) = k(w, a) and hence k(w', (a) Sj) = k(w, a) in that
case. When a = 09, we have (09)^ = — a^eO". Thus

k(w', dtj) = -k(w, (x^+kiw, oc^+kiwsp 09).

Since (09) w~1 G O + if and only if (09) ̂  fir1 G <D ~, we get k(w, 09) + fc(vify, 09) = - 1 and
so k(w', OLJ) = —k(w, (Xj)-1.

Next assume tha t ; = 0. Then w' = vttf0 = wTksao T_Xo = wsXo Ta, a = (fys^-o^.
Hence

k(w', a) = <A, ((a)5ao)v> + <-Oo, av>+fc(v^o, a)

for any a c ^ ) + . When <-Oo, a v > = 0, we have (oi)sao = <x, and (a)w~1eQ>+ if
and only if (ct)saow~1e<t> + . In that case, k(w', a) = fc(w, a). When <-Oo, a v > # 0
and a ^ —a0, we have < — a0, a

v > = 1 and (a)jaoG<I>~ by Lemma 2.3. Thus

k(w', -(<x)sj =

Since (a)w~1ed>+ if and only if ( — (ot)sa^saow~1e^>~t we get

/c(vv, oc) + k(wsao, - ( a ) J.O) = - 1.

Thus /c(w', - (a)sa o) = -/c(w, a). When a = - a 0 , we have

fc(w\ -Oo) = -A:(w, -ao) + 2 + /c(w, - a 0 ) + k(wS(Xo, -

Since, ( - a o ) r 1 e < D + if and only if ( - a ^ s ^ f l ^ e O - , we have

k(w, -

and hence k(w', — a,,) = — A;(w, —1X0)+ 1.
To sum up, we get the following, by using (3.3.1).

PROPOSITION 4.2. Let w' = WSJ with weWa and j^eA. Then for any a G O, we have
k(w', a) = k(w, (otys^+kisp a).

For any w e Wa, we associate two subsets of A:

<£(w) = {s e AI sw < w},

M{w) — {s e AI ws < w}.

Now we can describe an element w of Wa in terms of the k(w, a).

PROPOSITION 4.3. Suppose that Aw = p | a e O + Hl.k{Wt<l)for we Wa.

(i) The length l(w) of w is equal to Z a e o + I Kw> a)l-

(ii) ^(w) = {S,GA|A:(W, â ) < 0}.

(iii) J?(w) = {sjeA\k(w,(<xj)w)>0}.

The proof of this result is the same as that in [3, Chapter 7].
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5. The map <f>: Wa -* Fo

In this section, we shall characterize any element of Wa in terms of a O-tuple
over Z.

Let F be the set of O-tuples (fcJaeo satisfying ka = -k_a for any a e O . Let Fo

be the subset of F consisting of all (A:a)a6<D such that for any a, /?eO + with a+/?e<D + ,
the inequality

laP^-i-l^l2^-!-1 ^ ^ - ( -^^(^^^ .^ 0 ^ [oc|2^-I-1>9|2^H-|a|2H-1A|2-K |oc-l->ff|2 — 1

holds. Any O-tuple in FQ is called a special O-tuple.
Define a map <f>: Wa -> Fbe sending y4w = Qaed>#£;*<„,,«) to (fc(w> a))«e<D- Then

from Lemma 1.2, we see that the image of <f> is in Fo and hence ^ can be regarded
as a map from PKa to FQ. Now we shall show that ^ is bijective. It is obvious that <f> is
injective. So it is enough to show that (f> is also surjective.

Define a right action of Wa on Fas follows: fork = (k^^^e F, ste A and x, ye Wa,

(i) (k)st = {k'Xe* with k'a = k{a)St+ea,t, where

(ii)

One can easily check that this action of Wa on F is well defined. By noting that
k(st, a) = ea t for 0 < / ^ /and aeO, we see that the map ^: Wa -• Fis W^-equivariant
and so ^(W^) is a H^-orbit of F in Fo.

Now we are ready to show the following.

PROPOSITION 5.1. The map <f>:Wa^> Fo is bijective.

Proof. It is sufficient to show that Fo is a single W^-orbit. Call k = (ka)aeq>EF
a minimal element if, for any s e A,

J.I

where k' = (k) s = (&a)a6<D- It is clear that k is minimal if and only if kat ^ 0 for all
/, with 0 ^ t ^ /. It is not difficult to show that Fo contains a unique minimal element,
namely ^(Aj). So it suffices to show that if k' = (k)sr for some keF 0 and sreA then
k 'eF 0 ; that is, we must show that for any a, /?eO+ with a+/?eO + , the inequality

holds, or equivalently, the inequality

< |a|^(a),r + l^|2A:(/0,r + N 2
e a , r + | ^ | 2 ^ r + |a|2 + |)9|2 + | a + ^ 2 - l (1)

holds.



ALCOVES CORRESPONDING TO AN AFFINE WEYL GROUP 53

When r # 0 and <xr # a, /?, the result is obvious. When r # 0 and are{a, /?}, say
ar = a, (1) becomes

which holds since keF 0 and a, (P)sr, (P)sr-<xe<&+.
Now assume that r = 0. Then one of the following cases must occur:

(i) - a o = a+y9; (ii) - a ^ a , / ? } ; (iii) -

First assume that we are in case (i). Then ea 0 = ê  0 = 0, e a + ^ 0 = 1 a n d a + /? is
a short root. By Lemma 2.2, one of a, /?, say a, must be a short root. If /? is also a
short root then (1) becomes

which holds since keF0 and — (a) s0, —(f})s0, — o^eO*. If /? is a long root, (1)
becomes

4
which holds because keF0 and —(fi)s0 = a + ( — OQ).

Next assume that we are in case (ii), say <x = —(X0. Then ea 0 = 1, ê  0 = ea+^)0 = 0.
Let <D/+ be the positive subsystem of O spanned by a, /? over Z. Then <I>'+ is either
of type B2 or G2 and a is the highest short root of O ' + . By the condition that a+ft e O ' +

and by Lemma 2.2, ft is a positive short root of O' and <x+/? is a positive long root
of <!>'. If O ' + has type B2 then (1) becomes

This holds because ft, —<%—[}, — o^e<l>+ and keF0. If O ' + has type G2 then (1)
becomes

This holds because — a,,, —(f$)sQ, — (% — (/})soe<&+ and keF0. So (1) holds when one
of a, /? is equal to — a,,.

Finally assume that we are in case (iii). Then ea 0 = £^0 = £«+/?, o = 0 and one of
the following cases must occur:

(a) (a)so,(P)soe<t>+; (b) (a)J0,

(c) (a)5-06<D+,(y9)^-0e<D-; (d) (a)J0

One can verify (1) in case (a) by Lemma 2.3, in case (b) by Lemma 2.4 and in cases
(c), (d) by Lemma 2.5.

An immediate consequence of the above proposition is the following.



54 JIAN-YI SHI

THEOREM 5.2. Let Ak = Qa6a>+ H\. k with kaeZ. Then Ak is an alcove ofE if and
only if for any a, /?eO+ with a+/?eO + , the inequality

a | > | ^ l ^ l M ^ + . s ) l l a | > | ^ | | | > | - h
holds.

This theorem characterizes an alcove of £ by a special O-tuple.

6. The facets of an alcove

We know that each alcove of E has the form (Ax)w for some we Wa. So by
Lemma 1.1, any alcove of E has / + 1 facets. We know that the right action of Wa on
E induces a permutation on the set of facets of all alcoves of E. It is well known that
each W^-orbit of such facets intersects the closure of any alcove in a unique facet.
So we can label any facet of an alcove by an element s e A if it is in the FPa-orbit of
facets containing the common facet of A1 and As.

LEMMA 6.1. Ifw, w' e Wa have the relation w' = st wfor some steA then the alcoves
Aw and Aw> share the common st-facet. Conversely, if Aw and Aw> are two alcoves of
E which share a common facet then the labelling of this facet for Aw is the same as for
Aw>, say st-facet. We have w' = st w.

Proof. First assume that w' = st w. We have Aw = (Ax) w, Aw- = (As) w, and Al

and AS( share the common .srfacet, this implies that Aw and Aw> share the common
jt-facet.

Conversely, assume that Aw and Aw> share a common facet. Then by the definition,
the labelling of this facet for Aw and for Aw> must be the same, say 5t-facet. Let y = st w.
Then by the above argument, Ay and Aw share the common jrfacet. This forces
Ay = Aw> and hence w' = st w.

Now we can give another description of the length function l(w) on Wa which is
a direct consequence of Lemma 6.1.

COROLLARY 6.2. For any WE Wa, l(w) is the minimum number of facets of alcoves
ofE which separate the alcove A w from Ax. In other words, l(w) is the smallest number
r such that there exists a sequence of alcoves Ao = Aw, Ax, ..., Ar = Ax where any two
consecutive alcoves in this sequence share a common facet.

Recall that in § 1 we assumed that

H1_<x.k = H1
a._k = {veE\-k<(v,ay)< -k+l} forae<& + .

So H\.k (respectively H\_ak) is bounded by two parallel hyperplanes Ha.k and
Ha.k+1 (respectively Ha._k and Ha._k+1). We define H_ah by Hah+1 for any integer
h and any positive root <XE<1>+. Then Hl_a.k is also bounded by H_ak and H_a.k+1.
So we can say that for any integer k and any root ae<£>, H\.k is bounded by Hak

For any weWa and integer t, 0 ^ t ^ I, we denote kt = k(w, (oQ w~) in the
remainder of this section. Let Ht(w) be the hyperplane of E supporting the srfacet
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of the alcove Aw. Then we have Ht(w) = (Ht(\)) w = (H^.Q) W. SO Ht(w) has the form
H(<xt)w,k ^ some ke{kt, kt±\}.

Now we wish to decide Ht(w).
By Corollary 6.2 and Lemma 6.1, we see that steJ?(w) if and only if Aw and A1

are on different sides of Ht(w), where £P(x) = {s€ A \sx < x} for any xe Wa. On the
other hand, by Proposition 4.3 (iii), we see that st€SP(w) if and only if kt > 0, or
equivalently, st $ 5£(w) if and only if kt ^ 0.

First assume that st e if(vv). Then H{a) w.k and Ax are on different sides of Ht(w).
So Ht(w) = H{at)mkt by the fact that kt > 0. '

Next assume that st $ S£(yv). Then H{a) W;k and Ax are on the same side of Ht(w).
In that case we have kt ^ 0. If kt < 0 then Ht(w) = H^t)a;k. If kt = 0 then
Ht(w) = H^t)fB.tl.

So we can summarize the above results as follows.

PROPOSITION 6.3. For any we\Va and integer t, 0 < / < / , let Ht(w) be the
hyperplane of E supporting the st-facet of the alcove Aw. Let kt = k(w, (o )̂ W). Then

Ht(w)=

and so Aw= f^
w
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