数学软件 Mathematica

主要内容

- □ 符号计算系统
- Mathematica 基本用法
- ■基本运算
- 符号计算
- ■图形功能
- 程序设计(略)

符号计算系统

■ 符号计算系统

- 也称为计算机代数
- 以推理为主,是一个表示数学知识和数学工具的系统
- 与代数计算、算法设计、机器学习、自动推理等紧密联系
- 一般由系统内核、符号计算语言和若干软件包组成
- 通常包括符号计算、数值计算、图形演示和程序设计

借助计算机速度快的特点,帮助人们完成在短时间内无法完成的公式推导计算。

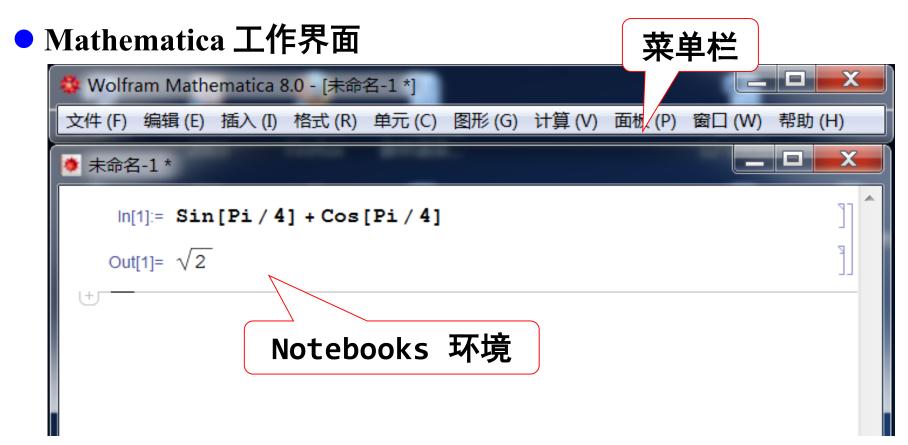
符号计算系统

- ■常见的符号计算软件
 - 商业软件
 Mathematica, Maple, MuPAD, MathCad
 - 免费软件 Axiom, CoCoA, Derive, Euler, GAP, Maxima, ...

更多符号计算软件参见课程主页相关网络链接。

• 符号计算软件的两种运行方式: 交互方式和程序方式

Mathematica 介绍


- Mathematica 由美国 Wolfram Research 公司于 1988 年推出, 目前的最新版本为 Mathematica 8.04
- Mathematica 很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统以及与其他应用程序的高级连接,是目前使用最广泛的数学软件之一,也是世界上符号计算系统中最强大的两个系统之一。
 - Mathematica 有简体中文版:中文界面和中文帮助
 - 可在官方网站上下载试用版

Mathematica 欢迎界面

Mathematica 工作界面

● Mathematica 的工作平台:自带的 Notebooks 环境

在 Notebooks 环境下输入命令,系统执行后返回结果

最好最完整的学习材料:系统自带的使用帮助和实例演示

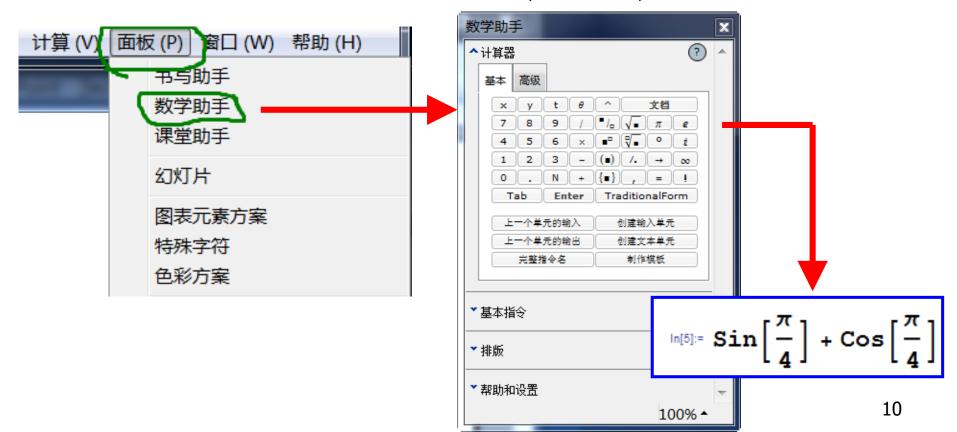
Mathematica 使用

■ Mathematica 语言规则

- ① 所有命令和内置函数都是以大写字母开始
- ② 函数的参数是在方括号中给出
- ③ 乘法运算符可以用空格代替(不建议这么做)
- ④ 内置的函数名通常都很长,使用函数的名字的全拼

Mathematica 使用

■ Mathematica 命令的执行(简称执行键)


```
Shift + Enter
```

- 可以运行单个命令或语句
- 也可以运行多个语句:输入全部语句后再按执行键
- 命令(语句)分隔符:回车或分号
- 如果不需要显示运行结果: 在语句后面加分号
- 输入和输出标识符: In[n]: 和 Out[n]

```
In[1]:= Sin[Pi/4]+Cos[Pi/4]
Out[1]= \sqrt{2}
```

数学公式的输入

- ■数学公式的输入
 - 直接输入 In[1]:= Sin[Pi/4]+Cos[Pi/4]
 - 借助 Mathematica 提供的面板 (Palettes)

一些常用符号

	
()	运算的结合
f[x]	函数取值
{}	列表
[[k]]	分量
%	最后一次的计算结果
% %	倒数第二次的计算结果
%%%(k)	倒数第 k 次的计算结果
%k	第 k 次计算结果,即 Out[k] 的值
?name	显示系统变量、命令或函数的简短介绍
??name	显示系统变量、命令或函数的全部信息
(*comments*)	注解
Ctrl+K	命令补全功能
	11

内部常数

- Mathematica 中的数: 普通数字和内部常数
- 整数,有理数,实数(任意精度和机器精度),复数
- 常用内部常数

Degree	角度到弧度的转换系数, Pi/180
E	自然对数的底, 2.71828
EulerGamma	Euler 常数: $\lim_{n\to\infty} (1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n)=0.577215\cdots$
GoldenRatio	黄金分割数: $\frac{1}{2}(1+\sqrt{5})$
I	虚部单位
Infinity	无穷大
Pi	圆周率

基本运算符

■基本运算:

• 算术运算

+	-	*	/	加减乘除
٨				幂
!				阶乘(运算级别比加减乘除和幂运算高)

• 比较运算与逻辑运算

==	>	<	>=	<=	!=		
&&	Ш	!	Xor				

变量与表达式

■变量

- 通常字母开头,后面可以跟字母与数字
- 长度不限
- 区分大小写
- 可以包含希腊字母或中文,如 "数学"
- 用户自定义变量建议都用小写,避免与系统自带函数冲突
- 变量赋值: 变量名=表达式

■ 表达式

- Mathematica 中一切皆为表达式
- 算术表达式,关系表达式,逻辑表达式,复合表达式

变量操作相关函数

x=y=a	给多个变量赋相同的值
Unset[x] 或 x=.	清除变量的值
Clear[x1,x2,]	清除变量
Print[x1,x2,]	打印变量的值
expr/.{x->a,y->b,]	变量替换(变量本身没有被赋值)

例: 已知 f(x,y)=2x+y, 计算 f(2,3)

```
In[1]:= Clear[x,y];
In[2]:= f=2*x+y;
In[3]:= f./{x->2,y->3} (* f(2,3) 的值 *)
In[3]:= f./{2->5} (*把 2 替换成 5*)
```

数的基本运算

● Mathematica 中的实数分精确数和双精度数

N[x,n]	x 的带 n 位有效数字的近似值		
N[x]	× 的双精度近似值		
<pre>IntegerPart[x]</pre>	整数部分		
FractionalPart[x]	小数部分		
Floor[x]	取整:不大于 x 的最大整数		
Round[x]	取整: 四舍五入		
Ceil[x]	取整:不小于 x 的最小整数		
Precision[expr]	显示计算精度		
· · · · · · · · · · · · · · · · · · ·			

在 Mathematica 中,当输入的式子中所有数字都为整数时,输出的结果是精确的;但若式子中含有小数点,则通常以近似方式输出运算结果。

数字进制的转换

b^^xxxxx	输入一个 b 进制数 (2<=b<=36)
BaseForm[x,b]	十进制数 x 的 b 进制形式
<pre>IntegerString[x,b]</pre>	同上,但写成字符串形式
FromDigits[str]	从字符串构造整数
FromDigits[list,b]	从 b 进制数字列表中构造整数
<pre>IntegerDigits[x,b]</pre>	十进制数 x 的 b 进制数字列表

内置函数

- Mathematica 具有超过 3000 个内置函数,具体见
 "帮助" → "参考资料中心" 的左下角处的 "函数索引"
- Mathematica 函数命名规则
 - ① 第一个字母大写,后面跟小写字母,如 Sin[x], Log[x]
 - ② 大多数函数名与数学中的名称相同
 - ③ 当函数名分为几段时,每一段的头一个字母大写,后面的用小写字母,如: ArcSin[x]
- 寻求帮助: ??函数名

In[1]:= ??Sin

常用初等函数

Abs[x]	绝对值
Sign[x]	符号函数
Power[x,y]	幂函数 <i>x ^y</i>
Sqrt[x]	平方根
Exp[x]	以e为底的指数函数
Log[x], Log[b,x]	以e和b为底的对数函数
Factorial[n]	n!
Factorial2[n]	n!!
GCD[n1,n2,]	最大公约数
GCD[list]	列表中所有数的最大公约数
LCM[n1,n2,], LCM[list]	最小公倍数
<pre>Max[x1,x2,], Max[list]</pre>	求最大值
<pre>Min[x1,x2,], Min[list]</pre>	求最小值

常用初等函数

提取实部和虚部
取共轭
辐角
m 除以 n 的余数
m 除以 n 的整数商
三角函数
反三角函数
双曲函数
反双曲函数
第 k 个素数
判断 n 是否为素数
二项式系数 C_n^m

随机函数

Random[]	生成 [0,1] 内的一个随机实数
Random[Real, a]	生成 [0,a] 内的一个随机实数
Random[Real, {a,b}]	生成 [a,b] 内的一个随机实数
Random[Integer]	随机给出整数 0 或 1
<pre>Random[Integer, {a,b}]</pre>	生成 [a,b] 内的一个随机整数
Random[Complex]	生成一个 [0,1]X[0,1] 内的一个随机复数

```
In[1]:= Random[Real,10]
```

In[2]:= Random[Integer,{1,100}]

打印函数

```
Print[x,y,...] 在屏幕输出变量的值
```

```
In[1]:= x=5; Print["x=",x]
```

函数调用方式

● 标准方式: 函数名[变量列表]

```
In[1]:= x=Pi/4; Sin[x]
```

• 其它方式

```
In[2]:= x=Pi/4; x//Sin (* 后缀形式 *)
```

```
In[3]:= x=Pi/4; Sin@x (* 前缀形式 *)
```

```
In[4]:= 5~Mod~3 (* 中缀形式,等价于 Mod[5,3] *)
```

自定义函数

● Mathematica 允许用户自定义函数,一般格式为

函数名[自变量名1_, 自变量名2_, ...]:= 表达式

- 这里函数名与变量名的规定相同
- 方括号中的每个自变量名后都要有一个下划线 "_"
- 中间的 ":=" 为定义号
- 注意符号表达式与函数的区别

f[x_]:=2*x-3	定义一个一元函数
f[x_,y_]:=Log[x/y]-Power[x,y]	定义一个二元函数
Clear[f]	清除自定义的函数

自定义函数前,最好先清除自变量的值,否则可能会 出现意想不到的错误

自定义函数

```
In[1]:= f=2*x+y (* 符号表达式 *)
```

字符串

- 字符串: 用双引号括起来的字符序列
 - 字符串相关函数

Characters[str]	转化为字符列表
StringJoin[s1,s2,]	字符串合并
s1<>s2<>	字符串合并
StringLength[str]	字符串长度
StringSplit[str]	按空白字符分割字符串
ToExpression[str]	转化为表达式
ToString[expr]	将表达式转化为字符串

● 更多字符串相关函数参见 "参考资料中心"

列表

■列表

- 是 Mathematica 的基本对象,可用来表示集合,数组等
- 分为标准列表和稀疏列表
 - 标准列表:用大括号括起来的有限个元素,元素之间用逗号分隔

```
In[1]:= x={1,2,"hello",{1,0}};
```

- 列表中的元素可以是不同类型的任意 Mathematica 对象
- 列表可以嵌套,如 矩阵
- 稀疏列表: 通常由 SparseArray 来定义

Mathematica 提供了上千个列表操作函数,参见 "参考资料中心"

列表生成

- 枚举法:利用大括号,直接输入
- 利用 Array, Range, Table 等函数

Array[f,n]	生成一维列表 {f[1],f[2],,f[n]}
Array[f,{n1,n2,}]	生成多维列表(嵌套),这里的 f 为函数
Range[a,b,h]	生成等差数列列表: a 为首项, h 为公差, 最后一项不超过 b; a 和 h 的缺省值为 1
<pre>Table[expr,{n}]</pre>	生成 n 元列表 {expr,expr,,expr}
<pre>Table[expr,{i,a,b,h}]</pre>	{expr i 在 Range[a,b,h]中变化}
<pre>Table[expr,{i,list}]</pre>	{expr i 在列表 list 中变化}

● Table 中的 expr 一般给的是通项公式

<pre>RandomInteger[range,n]</pre>	生成 n 个伪随机整数,	range 表示取值范围
RandomReal[range,n]	生成 n 个伪随机实数,	n 缺省值为 1

列表生成举例

```
In[1]:= x=Array[Sin,3]
Out[1]= {Sin[1], Sin[2], Sin[3]}
```

```
In[2]:= y=Table[Sin[k],{k,3}]
Out[2]= {Sin[1], Sin[2], Sin[3]}
```

```
In[3]:= f=RandomReal[{1,5},2]
Out[3]= {4.68541, 2.86979}
```

生成二维列表

```
In[4]:= z=Table[i*j,{i,3,5},{j,2,4,2}]
Out[4]= {{6, 12}, {8, 16}, {10, 20}}
```

列表分量

list[[k]]	第 k 个分量
list[[-k]]	倒数第 k 个分量
list[[i]][[j]]	第i个分量的第j个分量
list[[i,j]]	第i个分量的第j个分量
list[[{i,j,}]]	{list[[i]],list[[j]], }
First[list]	第一个分量
Last[list]	最后一个分量
Take[list,k]	前 k 个分量
Take[list,-k]	最后 k 个分量
<pre>Take[list,{i}]</pre>	{list[[i]]}
<pre>Take[list,{i,j}]</pre>	{list[[i]],list[[i+1]],, list[j]}
list[[i;;j]]	同上
<pre>Take[list,{i,j,h}]</pre>	{list[[i]],list[[i+h]], }
list[[i;;j;;h]]	同上
	30

列表修改

<pre>Drop[list,{k}]</pre>	删除第 k 个分量
<pre>Drop[list,k]</pre>	删除前 k 个分量
<pre>Drop[list,-k]</pre>	删除最后 k 个分量
<pre>Drop[list,{i,j,h}]</pre>	删除 list[[i]],list[[i+h]],
Rest[list]	删除第一个分量
Most[list]	删除最后一个分量
Delete[list,k]	删除第 k 个分量
Delete[list,-k]	删除倒数第 k 个分量
<pre>Delete[list,{i,j,}]</pre>	删除 list[[i,j,]]
<pre>Insert[list,x,k]</pre>	在第 k 个位置插入 x
Prepend[list,x]	将 x 插入到 list 的最前面
PrependTo[list,x]	将 x 插入到 list 的最前面,并将结果赋给 list
Append[list,x]	将 x 插入到 list 的最后面
AppendTo[list,x]	将 x 插入到 list 的最前面,并将结果赋给 list
<pre>Delete[list,{i,j,}] Insert[list,x,k] Prepend[list,x] PrependTo[list,x] Append[list,x]</pre>	删除 list[[i,j,]] 在第 k 个位置插入 x 将 x 插入到 list 的最前面 将 x 插入到 list 的最前面,并将结果赋给 list 将 x 插入到 list 的最后面

列表运算

Sort[list]	从小到大排序
Reverse[list]	将列表中的元素顺序倒过来
Apply[Plus,list]	求列表中所有元素之和
Apply[Times,list]	求列表中所有元素之积
Total[list]	求列表中所有元素之和
Length[list]	列表元素的个数

● 当函数作用在列表上时,表示作用在每个分量上

```
In[1]:= x=Range[0,Pi,Pi/4];
In[2]:= y=Sin[x]
```

● 利用列表可以同时给多个变量赋值

```
In[3]:= \{x,y\}=\{2,3\}
```

矩阵定义

● 矩阵是列表的一种,可用 Array, Table 等函数创建

Array[函数名,取值范围]

Array[f,n]	生成向量 {f[1],f[2],,f[n]}
<pre>Array[f,{m,n}]</pre>	生成 m 行 n 列的矩阵 f[i,j]

```
In[1]:= Clear[i,j]; f[i_,j_]:=1/(i+j-1);
In[2]:= A=Array[f,{3,3}]
```

矩阵定义

Table[通项公式,{循环范围},{循环范围},...]

● 循环范围表示方法

{i,a,b,h}	i 从 a 到 b, 步长为 h, 最后一项不超过 b
{i,a,b}	缺省步长为 1
{i,b}	缺省首项为 1
{k}	重复 k 次

<pre>Table[expr,{i,a,b,h}]</pre>	向量
Table[expr,{i,a1,b1,h1},{j,a2,b2,h2}]	矩阵

矩阵举例

```
In[3]:= A=Table[1/(i+j-1),{i,3},{j,3}]
In[4]:= B=Table[x+y,{x,2,6,2},{y,3,12,3}]
```

```
In[5]:= P=Table[Binomial[i,j],{i,0,4},{j,0,i}];
In[6]:= TableForm[P] (* 杨辉三角形 *)
```

矩阵分量

MatrixForm[A]	按矩阵方式显示
TableForm[A]	按表格方式显示(没有括号)
Dimensions[A]	矩阵的维数(行数和列数)
Dimensions[A,k]	矩阵的前 k 重维数

A[[i,j]]	矩阵分量 a_{ij}
A[[All,j]]	矩阵第 <i>j</i> 列
Take[A,{i1,i2,},{j1,j2,}]	子矩阵

In[1]:= Take[A,{1,2},{2,3}]//MatrixForm

特殊矩阵

<pre>IdentityMatrix[n]</pre>	n 阶单位矩阵
<pre>ConstantArray[c,{m,n}]</pre>	生成m行n列的常数矩阵,元素都为c
DiagonalMatrix[list]	以列表 list 中的元素为对角线的对角矩阵
HilbertMatrix[n]	n 阶的 Hilbert 矩阵
RandomInteger[range,{m,r	m 行 n 列的伪随机整数矩阵 range 表示元素取值范围
<pre>RandomReal[range,{m,n}]</pre>	m行n列的伪随机实数矩阵

```
In[4]:= A=RandomReal[{0,1},{3,4}]
In[5]:= Dimensions[A,1] (* 矩阵的行数 *)
```

矩阵运算

设 A, B 是矩阵, a 是标量, b 是向量

A+B, A-B, A+a, A-a	矩阵加减
A.B	普通矩阵乘积
A*B, A/B	对于分量相乘或相除
Det[A], Inverse[A]	行列式与矩阵的逆
Transpose[A]	转置 (不取共轭)
ConjugateTranspose[A]	共轭转置
MatrixRank[A]	矩阵的秩
Eigenvalues[A]	特征值
Eigenvectors[A]	特征向量
Eigensystem[A]	特征值和特征向量
LinearSolve[A,b]	解线性方程组 Ax=b
· · · · · · · · · · · · · · · · · · ·	

符号计算

- 多项式运算(略)
- ■解代数方程(略)
- ■解微分方程(略)
- ■计算极限
- ■计算导数
- ■计算积分

计算极限

Limit[f,x->a]	x 趋向于 a 时 f 的极限
Limit[f,x->a,Direction->1]	左极限
<pre>Limit[f,x->a,Direction->-1]</pre>	右极限

例: 计算
$$\lim_{x\to 0} \frac{\sin x}{x}$$
 和 $\lim_{x\to 0^-} \frac{1}{x}$

计算导数

D[f,x]	计算 f 关于 x 的导数
D[f,x,y]	二重偏导数
D[f,x,y,]	多重偏导数
D[f,{x,n}]	n 重导数

例: 计算
$$\frac{d^2}{dx^2}(\sin x \tan x)$$
 和 $\frac{\partial}{\partial x} \frac{\partial}{\partial y} \sin(x^2 y^3)$

$$In[2] := D[Sin[x*x*y^3], x, y]$$

计算积分

<pre>Integrate[f,x]</pre>	计算 f 关于 x 的不定积分(省略积分常数)
<pre>Integrate[f,x,y]</pre>	二重积分(积分顺序自右向左)
<pre>Integrate[f,{x,a,b}]</pre>	定积分,积分区间为 [a,b]
<pre>NIntegrate[f,{x,a,b}]</pre>	数值积分

例: 计算 $\int 3ax^2 dx$ 和 $\iint 2x + y dx dy$

```
In[1]:= Integrate[3*a*x*x, x]
```

```
In[2]:= Integrate[2*x+y, x, y] (* 注意积分顺序 *)
```

例: 计算 $\int_0^{\pi} \sin \sin x \, dx$ 的精确值和近似值

```
In[3]:= Integrate[Sin[Sin[x]], {x,0,Pi}]
```

In[4]:= NIntegrate[Sin[Sin[x]], {x,0,Pi}]

作图

- ■二维曲线做图
- 函数作图
- 参数方程作图
- 极坐标作图
- 散点图
- ■三维做图
- 三维曲线作图
- 三维曲面函数作图
- 三维曲面参数方程作图

二维函数作图

■ 曲线方程: f = f(x), $x \in [a,b]$

Plot[f,{x,a,b}]	画 f 关于 x 的图像,绘图区间为 [a,b]
Plot[f,{x,a,b},options->val]	带绘图选项
Plot[{f1,f2,}, {x,a,b}]	在一个绘图区域做多个函数的图像

● 常用作图选项

AspectRatio	图形的高宽比,缺省为 0.618
AxesLabel	坐标轴标注,缺省为不加标注
AxesStyle	坐标轴的粗细
PlotLabel	标题,缺省为不加
PlotPoint	作图时计算的点数,缺省为25
BaseStyle	坐标轴属性: 颜色, 标注字体大小
PlotStyle	指定线型,颜色,粗细(最常用的选项)

作图选项

● BaseStyle 和 PlotStyle 取值

```
线型 Dashed, Dotted, DotDashed 粗细 Thin, Thick, Thickness[w] (w∈[0,1],通常小于 0.1)

Red, Blue, White, Green, Yellow, Black, ...

RGBColor[r,g,b]

字体大小 FontSize->大小
```

```
In[1]:= Plot[Sin[x^2]/(x+1), {x,0,2*Pi}]
```

作图选项

● 更多作图选项

Filling->Axis	填充曲线与 x 轴所围区域
Ticks->None	取消刻度
Axes->None	取消坐标轴
Frame->True	加边框
FrameLabel	边框标注

可输入命令 Options [Plot] 查看 Plot 的所有作图选项

参数方程作图

■ 曲线方程: x = x(t), y = y(t), $t \in [a,b]$

ParametricPlot[{x,y},{t,a,b}]

参数方程,绘图区域 t∈[a,b]

● 该函数也可以同时绘制多个图像

ParametricPlot[{{x1,y1},{x2,y2},...}, {t,a,b}]

参数方程作图

极坐标方程作图

■ 曲线极坐标方程: $r = r(\theta), \theta \in [\alpha, \beta]$

PolarPlot[$r, \{\theta, \alpha, \beta\}$]

极坐标方程作图,可带绘图选项

```
In[1]:= PolarPlot[2, {t,0,2*Pi}]
```

```
In[2]:= PolarPlot[t, {t,0,3*Pi}]
```

```
In[3]:= PolarPlot[{0.5,0.5+1/24*Sin[12*t]}, {t,0,2*Pi}]
```

散点图

■ 给的数据点: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

ListPlot[{{x1,y1},{x2,y2},}]	散点图
ListPlot[{y1,y2,}]	数据点: {(1, y ₁), (2, y ₂), }
ListPlot[list,Joined->True]	画过数据点的连线
ListLinePlot[list]	带连线的散点图
ListPolarPlot[list]	极坐标下的散点图

● 常用选项

PointSize[a]	点的大小,通过 PlotSytle 来设置
PlotMarkers->{g,size}	点的形状和大小(可通过面板 Palettes 输入)

散点图

```
In[1]:= list=Table[{x,Sin[x]},{x,-Pi,Pi,Pi/10}];
    ListPlot[list,BaseStyle->{FontSize->15},
        PlotStyle->{PointSize[0.03]}]
```

```
In[2]:= ListPlot[list,PlotMarkers->{"♠", 25}]
```

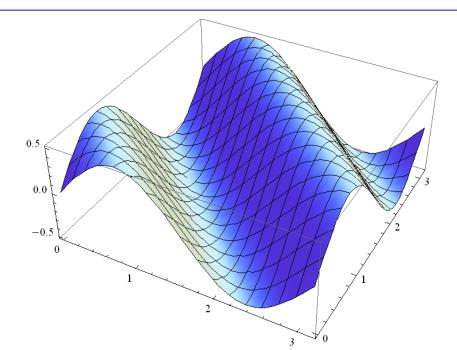
三维曲线作图

■ 三维曲线方程: x = x(t), y = y(t), z = z(t), $t \in [a,b]$

ParametricPlot3D[{x,y,z},{t,a,b},选项] 三

三维曲线绘图

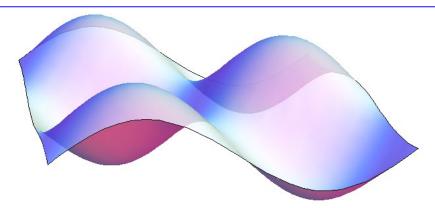
三维曲面作图


■ 曲面方程: $z = z(x,y), x \in [a,b], y \in [c,d]$

Plot3D[z,{x,a,b},{y,c,d}]

三维曲面绘图

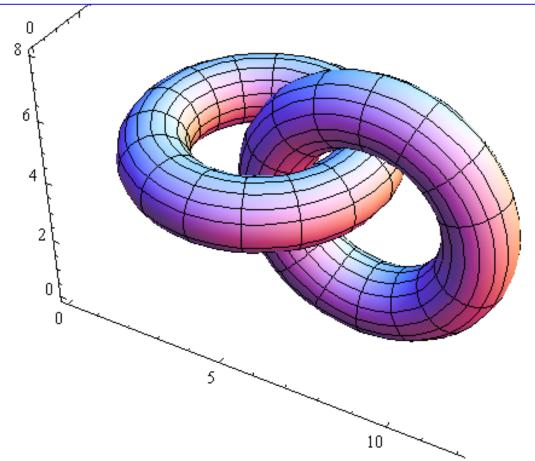
例: 画 $z(x,y) = \sin(x+y)\cos(x+y)$ 的立体图


 $In[1]:= Plot3D[Sin[x+y]*Cos[x+y],{x,0,Pi},{y,0,Pi}]$

三维曲面作图

● 常用选项

Boxed->False	去除立体方框
Mesh->None	去除网格
BoxRatios	立体方框的比例, 缺省为 {1,1,0.4}
Opacity[数字]	透明度,缺省不透明,通过 PlotSytle 来设置

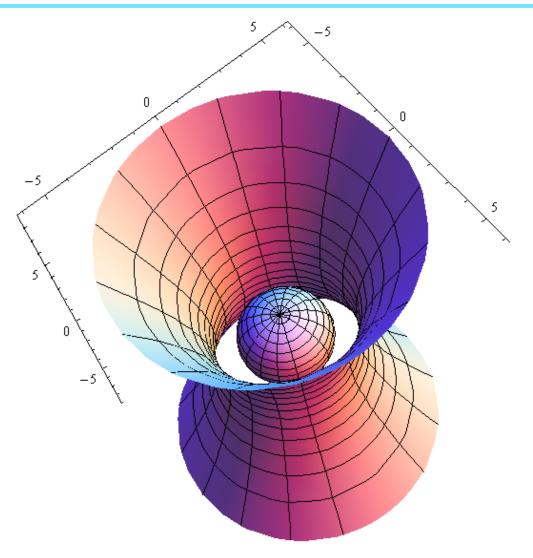

三维曲面参数方程作图

■三维曲面参数方程:

```
x = x(u,v), y = y(u,v), z = z(u,v), u \in [a,b], v \in [c,d]
```

```
ParametricPlot3D[{x,y,z},{u,a,b},{v,c,d},选项]
```

三维做图演示



图形组合

■ 图形组合:将多个图形放在一个绘图区域中

```
Show[pic]显示图形表达式Show[pic,options->values]按指定的选项显示图形表达式Show[pic1,pic2,...]将多个图形放在一个绘图区域中
```

图形组合

动画做图演示