线性方程组 迭代方法与预处理

潘建瑜

华东师范大学 数学科学学院

https://math.ecnu.edu.cn/~jypan/Teaching/IMP/

线性方程组 • 迭代方法与预处理

第二讲 非负矩阵与 M-矩阵

2.1 非负矩阵

2.2 不可约非负矩阵

2.3 M-矩阵和单调矩阵

参考资料

关于非负矩阵的相关参考资料

- Berman & Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994.
- Horn & Johnson, Matrix Analysis, 1985.
- ▶ 张谋成, 黎稳, 非负矩阵论, 广东高教出版社, 广州, 1995.

如非特别指出,本讲中涉及的矩阵都是指实数矩阵.

2-1 非负矩阵

元素都是非负实数的矩阵称为非负矩阵, 元素都是正实数的矩阵称为正矩阵

2.1 非负矩阵

- 2.1.1 非负矩阵基本性质
- 2.1.2 正矩阵及其性质
- 2.1.3 非负矩阵更多性质

记号说明

设
$$A = [a_{ij}] \in \mathbb{R}^{m \times n}, B = [b_{ij}] \in \mathbb{R}^{m \times n},$$
则

- ♦ $A \ge B$ 表示 $a_{ij} \ge b_{ij}, 1 \le i \le m, 1 \le j \le n$
- **◊** A > B 表示 $a_{ij} > b_{ij}, 1 \le i \le m, 1 \le j \le n$
- $A \geq B$ 表示 $A \geq B$ 且 $A \neq B$
- ▶ 相类似地, 我们可以定义记号 "≤", "<" 和 "≤"
- $lackbox{1}{\bullet}$ A 的绝对值定义为 $|A| = [|a_{ij}|]$

简单性质

定理 设矩阵 $A, B \in \mathbb{C}^{n \times n}$, 向量 $x \in \mathbb{C}^n$, 则

- $(1) |Ax| \le |A||x|;$
- (2) $|AB| \le |A| |B|$;
- (3) $|A^k| \le |A|^k$, k = 1, 2, ...;
- (4) $||A||_1 = |||A|||_1$, $||A||_{\infty} = |||A|||_{\infty}$, $||A||_F = |||A|||_F$;
- (5) $|A| \le |B| \Longrightarrow ||A||_1 \le ||B||_1, ||A||_{\infty} \le ||B||_{\infty}, ||A||_F \le ||B||_F.$

(留作课外自习)

■ 思考: 结论 (4) 和 (5) 对 2-范数是否成立?

2-1-1 非负矩阵基本性质

引理 设矩阵 $A, B, C, D \in \mathbb{R}^{n \times n}$, 向量 $x \in \mathbb{R}^n$.

- (1) \rightleftarrows 0 ≤ A ≤ B, 0 ≤ C ≤ D, \bowtie 0 ≤ AC ≤ BD.
- (2) 若 $0 \le A \le B$, 则 $0 \le A^k \le B^k$, k = 1, 2, ...
- (3) 若 A > 0 且 $x \ge 0$, 则 Ax > 0.
- (4) 若 $A \ge 0, x > 0$ 且 Ax = 0, 则 A = 0.

(留作课外自习)

基本性质

定理 (基本性质) 设
$$A \in \mathbb{C}^{n \times n}$$
, $B \in \mathbb{R}^{n \times n}$. 如果 $|A| \leq B$, 则 $\rho(A) \leq \rho(|A|) \leq \rho(B)$. $($ 板书, 利用性质: $\rho(A) = \lim_{k \to \infty} \|A^k\|_F^{1/k})$

推论 设 $A, B \in \mathbb{R}^{n \times n}$, 若 0 < A < B, 则 $\rho(A) < \rho(B)$.

推论 设
$$A = [a_{ij}] \in \mathbb{R}^{n \times n}$$
 非负, A_k 是 A 的 k 阶主子矩阵, 其中 $1 \le k \le n$, 则

$$\rho(A_k) \le \rho(A).$$

特别地, 我们有

$$\max_{1 \le i \le n} a_{ii} \le \rho(A).$$

非负矩阵的谱半径与矩阵行和及列和之间的关系

特殊情形

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负.

- (1) 如果 A 的行和是常数 (即所有行和都相等), 则 $\rho(A) = ||A||_{\infty}$.
- (2) 如果 A 的列和是常数 (即所有列和都相等), 则 $\rho(A) = ||A||_1$.

非负矩阵的谱半径与矩阵行和及列和之间的关系 (Cont.)

一般情形

定理 设 $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ 非负, 则

$$\min_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} \le \rho(A) \le \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij}$$

EL

$$\min_{1 \le j \le n} \sum_{i=1}^n a_{ij} \le \rho(A) \le \max_{1 \le j \le n} \sum_{i=1}^n a_{ij}.$$

两个推论

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负. 如果 A 的某一行或某一列的元素都是正的, 则 $\rho(A) > 0$. 特别 地, 如果 A > 0, 则 $\rho(A) > 0$.

推论 设 $A=[a_{ij}]\in\mathbb{R}^{n\times n}$ 非负. 则对任意正向量 $x=[x_1,x_2,\ldots,x_n]^\intercal\in\mathbb{R}^n$, 都有

$$\min_{1 \le i \le n} \frac{1}{x_i} \sum_{i=1}^n a_{ij} x_j \le \rho(A) \le \max_{1 \le i \le n} \frac{1}{x_i} \sum_{i=1}^n a_{ij} x_j$$

和

$$\min_{1 \le j \le n} x_j \sum_{i=1}^n \frac{a_{ij}}{x_i} \le \rho(A) \le \max_{1 \le j \le n} x_j \sum_{i=1}^n \frac{a_{ij}}{x_i}.$$

(考虑 $X^{-1}AX$ 即可, 其中 $X = diag(x_1, x_2, ..., x_n)$ 非奇异)

非负矩阵谱半径的一个估计

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负, $x \in \mathbb{R}^n$ 为正向量.

- (1) 如果 $\alpha x \leq Ax \leq \beta x$, 则 $\alpha \leq \rho(A) \leq \beta$.
- (2) 如果 $\alpha x < Ax < \beta x$, 则 $\alpha < \rho(A) < \beta$.

(板书

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负. 如果 A 有正特征向量, 则其对应的特征值一定是 $\rho(A)$, 即若 $A \geq 0, x > 0$ 且 $Ax = \lambda x$, 则 $\lambda = \rho(A)$.

2-1-2 正矩阵及其性质

正矩阵除了具有非负矩阵的性质外, 还具有一些更好的性质

引理 设 $A \in \mathbb{R}^{n \times n}$ 是正矩阵, 如果存在非零向量 $x \in \mathbb{C}^n$ 使得 $Ax = \lambda x$ 且 $|\lambda| = \rho(A)$, 则 $A|x| = \rho(A)|x|$ 且 |x| > 0.

正矩阵的模最大特征值

根据前面的引理, 我们可以立即得到下面的结论.

定理 设 A 是正矩阵, 则 $\rho(A)$ 是 A 的特征值, 且存在正向量 $x \in \mathbb{R}^n$ 使得 $Ax = \rho(A)x$.

定理 设 A 是正矩阵, 则存在正向量 $y \in \mathbb{R}^n$ 使得 $A^{\mathsf{T}}y = \rho(A)y$, 即 $y^{\mathsf{T}}A = \rho(A)y^{\mathsf{T}}$.

(将前面的结论作用到 AT 上即可)

结论: 正矩阵的谱半径是特征值, 且存在正的左、右特征向量.

最大特征值的几何重数

引理 设 A 是正矩阵. 如果存在非零向量 $x \in \mathbb{C}^n$ 满足 $Ax = \lambda x$ 且 $|\lambda| = \rho(A)$, 则存在一 个实数 $\theta \in \mathbb{R}$ 使得 $e^{-i\theta}x = |x| > 0$. (板书)

推论 设 A 是正矩阵. 如果 λ 是 A 的特征值, 且 $\lambda \neq \rho(A)$, 则 $|\lambda| < \rho(A)$, 也就是说, 如 果 λ 是 A 的特征值, 且 $|\lambda| = \rho(A)$, 则 $\lambda = \rho(A)$. (板书)

推论 设 A 是正矩阵, 则 $\rho(A)$ 的几何重数为 1.

(板书

结论: 正矩阵的谱半径是 唯一模最大 特征值.

Perron 向量

由前面的结论可知, 若 $A \in \mathbb{R}^{n \times n}$ 是正矩阵, 则存在唯一的正向量 $x \in \mathbb{R}^n$ 使得

$$Ax = \rho(A)x \quad \text{II.} \quad \sum_{i=1}^{n} x_i = 1.$$

该向量就称为 A 的 Perron 向量.

模最大特征值的代数重数

引理 设 $A \in \mathbb{R}^{n \times n}$ 是正矩阵, $x, y \in \mathbb{R}^n$ 分别为 $\rho(A)$ 的左, 右正特征向量, 且 $x^{\mathsf{T}}y = 1$, 即

$$Ax = \rho(A)x, \quad A^{\mathsf{T}}y = \rho(A)y, \quad x^{\mathsf{T}}y = 1.$$

定义矩阵 $L \triangleq xy^{\mathsf{T}}$, 则 L > 0 且

- (1) $(A \rho(A) L)^k = A^k (\rho(A))^k L, k = 1, 2, ...$
- (2) $A \rho(A)L$ 的所有非零特征值均为 A 的特征值;
- (3) $\rho(A \rho(A) L) < \rho(A)$;
- (4) $\lim_{k \to \infty} \left(\frac{1}{o(A)} A \right)^k = xy^{\mathsf{T}}.$

模最大特征值的代数重数 (Cont.)

定理 设 $A\in\mathbb{R}^{n\times n}$ 是正矩阵, 则特征值 $\rho(A)$ 的代数重数为 1, 即 $\lambda=\rho(A)$ 是 A 的单重特征值.

Perron 定理

定理 (Perron 定理) 设 $A \in \mathbb{R}^{n \times n}$ 是正矩阵, 则

- (1) $\rho(A) > 0$;
- (2) $\rho(A)$ 是 A 的单重特征值:
- (3) A 的所有其它特征值的模都小于 $\rho(A)$;
- (4) 存在正向量 $x \in \mathbb{R}^n$, 使得 $Ax = \rho(A)x$, 同时, 如果 $y \in \mathbb{R}^n$ 是 $\rho(A)$ 对应的特征向量, 则 |y| > 0;
- (5) $\lim_{k \to \infty} \left(\frac{1}{o(A)} A \right)^k = xy^{\mathsf{T}} > 0$ 其中 x, y 是正向量, 满足:

$$Ax = \rho(A)x$$
, $A^{\mathsf{T}}y = \rho(A)y$, $x^{\mathsf{T}}y = 1$.

2-1-3 非负矩阵的更多性质

正矩阵的一些性质可以推广到非负矩阵情形.

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负, 则

- (1) $\rho(A)$ 是 A 的特征值;
- (2) 存在向量 $x \ge 0$ 和 $y \ge 0$, 使得

$$Ax = \rho(A)x, \quad A^{\mathsf{T}}y = \rho(A)y.$$

(板书)

▲ 需要指出的是, 正矩阵的谱半径一定是正的, 但非负矩阵可能为 0, 如零矩阵

谱半径的性质

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负. 如果存在实数 $\alpha \in \mathbb{R}$ 和向量 $x \in \mathbb{R}^n$, 使得 $x \ge 0$ 且 $Ax \ge \alpha x$, 则 $\rho(A) \geq \alpha$.

(板书)

△ 注意该结论与之前非负矩阵性质的区别: 前面要求 x > 0, 而此处只要求 $x \ge 0$.

愛 思考: 设 A 非负, 存在 $\beta > 0$ 和向量 $x \ge 0$, 使得 $Ax \le \beta x$, 则是否有 $\rho(A) \le \beta$?

谱半径的性质 (Cont.)

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负,则

$$\rho(A) = \max_{x \in \mathbb{R}^n, \ x \ge 0} \ \min_{1 \le i \le n, \ x_i \ne 0} \ \frac{1}{x_i} \sum_{i=1}^n a_{ij} x_j.$$

谱半径的性质 (Cont.)

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负且存在正的左特征向量. 如果存在向量 $x \ge 0$ 满足 $Ax \ge \rho(A) x$ 或 $Ax \le \rho(A) x$, 则 $Ax = \rho(A) x$.

- △ 需要指出的是,非负矩阵不一定存在正特征向量,如 $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.
- 如果 $A \ge 0$, 则 $\rho(A)$ 是 A 的特征值, 但不一定是单重的, 例如 A = I. 因此, 对于一般的非负矩阵, 无法定义 "Perron 向量".

$\rho(A)$ 是单重特征值的一个充分条件

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负. 如果存在正整数 k 使得 $A^k > 0$, 则 $\rho(A)$ 是 A 的单重特征值.

2-2 不可约非负矩阵

2.2 不可约非负矩阵

- 2.2.1 非负矩阵的不可约性
- 2.2.2 不可约非负矩阵的性质
- 2.2.3 本原矩阵
- 2.2.4 随机矩阵

2-2-1 可约与不可约

定义 设 $A \in \mathbb{R}^{n \times n}$, $n \ge 2$. 如果存在一个置换矩阵 P 使得

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad A_{11} \in \mathbb{R}^{r \times r}, \quad A_{22} \in \mathbb{R}^{(n-r) \times (n-r)}$$

其中1 < r < n,则称 A 是可约的,否则就称 A 为 不可约的.

- △ 正矩阵一定不可约.
- \triangle 若 A 可约, 则 A 的特征值为 A_{11} 和 A_{22} 特征值的并.
- 本 若 A 可约,则方程组 Ax = b 等价于下面两个子方程

$$A_{22}y_2 = f_2$$
, $A_{11}y_1 = f_1 - A_{12}y_2$, 其中 $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = Px$, $\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = Pb$.

可约矩阵基本性质

$$PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \implies PA^k P^{\mathsf{T}} = (PAP^{\mathsf{T}})^k = \begin{bmatrix} A_{11}^k & \tilde{A}_{12}^{(k)} \\ 0 & A_{22}^k \end{bmatrix}$$

引理 设 $A \in \mathbb{C}^{n \times n}$. 若 A 可约, 则 A^k 也可约. 反之, 若存在一个正整数 k, 使得 A^k 是不可约的, 则 A 也不可约.

引理 设 $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ 不可约,则 $B \triangleq A - \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$ 也不可约. 即主对角线元素是否为零并不影响矩阵的可约性.

非负矩阵的不可约性

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负,则 A 不可约的充要条件是

$$(I+A)^{n-1} > 0.$$

(板书)

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负, 且对角线元素全为正, 则 A 不可约的充要条件是 $A^{n-1} > 0$.

非负矩阵的不可约性 (Cont.)

引理 设 $A \in \mathbb{C}^{n \times n}$. 如果 $\rho(A) < 1$, 则 I - A 非奇异且

$$(I-A)^{-1} = I + A + A^2 + \cdots$$

反之, 如果上式右端的级数收敛, 则 $\rho(A) < 1$.

(板书)

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负. 如果 $\rho(A) < 1$, 则 A 不可约的充要条件是 $(I - A)^{-1} > 0$.

(板书)

对上面的结论做进一步推广.

推论 设 A 非负, $\alpha > \rho(A)$, 则 A 不可约的充要条件是 $(\alpha I - A)^{-1} > 0$.

(留作练习)

2-2-2 不可约非负矩阵的性质

Perron-Frobenius 定理

定理 (Perron-Frobenius) 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约, 则

- (1) $\rho(A) > 0$;
- (2) $\rho(A)$ 是 A 的单重特征值;
- (3) 存在唯一的正向量 x, 满足 $||x||_1 = 1$, 使得 $Ax = \rho(A) x$;
- (4) 存在唯一的正向量 y, 满足 $y^{\mathsf{T}}x=1$, 使得 $A^{\mathsf{T}}y=\rho(A)y$.
- (5) A 的所有非负特征向量都对应于特征值 $\lambda = \rho(A)$.

(板书

定理中的正向量 x 和 y 分别称为 A 的右 Perron 向量和左 Perron 向量

非负矩阵谱半径为 0 的充要条件

由 P-F 定理可知, 若 $A \ge 0$ 的谱半径为 0, 则 A 一定可约: $P_1AP_1^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$.

如果 A_{11} 或 A_{22} 可约, 则可以继续下去, 最后可得: $PAP^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1p} \\ & \ddots & \ddots & \vdots \\ & & \ddots & A_{p-1,p} \\ & & & A_{nn} \end{bmatrix}$

其中对角块 $A_{ii} \in \mathbb{R}^{n_i \times n_i}$ 不可约或者是零.

若 $\rho(A) = 0$ 则所有 $\rho(A_{ii}) = 0$, 此时 A_{ii} 只能是零, 故 PAP^{T} 是严格上三角矩阵.

非负不可约矩阵的谱半径

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约, 向量 $x \ge 0$. 则下面的结论成立:

- (1) 如果 $Ax \ge \rho(A) x$ 或 $Ax \le \rho(A) x$, 则 $Ax = \rho(A) x$;
- (2) 如果 $Ax \ge \alpha x$, 则 $\rho(A) \ge \alpha$, 进一步, 若 $Ax \ne \alpha x$, 则 $\rho(A) > \alpha$;
- (3) 如果 $Ax \leq \beta x$, 则 $\rho(A) \leq \beta$ 且 x > 0, 进一步, 若 $Ax \neq \beta x$, 则 $\rho(A) < \beta$.

非负不可约矩阵的谱半径 (Cont.)

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约, α 是正实数, 则下面的结论等价:

- (1) $\rho(A) > \alpha$;
- (2) 存在一个正向量 $x \in \mathbb{R}^n$ 使得 $Ax > \alpha x$;
- (3) 存在向量 $x \in \mathbb{R}^n$ 满足 $x \ge 0$, 使得 $Ax > \alpha x$.

(留作练习)

△ 定理中的 "<" 改为 "≤", ">" 或 "≥" 后, 结论仍成立.

非负不可约矩阵谱半径的性质

引理 设 $A\in\mathbb{R}^{n\times n}$ 非负, 矩阵 $B\in\mathbb{C}^{n\times n}$ 满足 |B|=A. 如果存在一个正向量 $x\in\mathbb{R}^n$ 使得 Bx=Ax, 则 B=A.

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约,矩阵 $B \in \mathbb{C}^{n \times n}$ 满足 $|B| \leq A$. 如果 $\rho(B) = \rho(A)$ 且 $\lambda = e^{\mathbf{i}\phi}\rho(B)$ 是 B 的一个特征值,则存在 $\theta_1, \theta_2, \ldots, \theta_n \in \mathbb{R}$ 使得 $B = e^{\mathbf{i}\phi}DAD^{-1}$,其中 $D = \mathrm{diag}(e^{\mathbf{i}\,\theta_1}, e^{\mathbf{i}\,\theta_2}, \ldots, e^{\mathbf{i}\,\theta_n})$.

一个更强的结论: 如果 A 非负不可约且 $|B| \le A$, 则 $\rho(A) = \rho(B)$ 的充要条件是存在 $\phi, \theta_1, \dots, \theta_n \in \mathbb{R}$ 使得 $B = e^{\mathbf{i}\phi}DAD^{-1}$, 其中 $D = \operatorname{diag}(e^{\mathbf{i}\theta_1}, \dots, e^{\mathbf{i}\theta_n})$.

非负不可约矩阵谱半径的性质 (Cont.)

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约.

- (1) 若果 $B \in \mathbb{C}^{n \times n}$ 满足 $|B| \leq A$ 且 $|B| \neq A$, 则 $\rho(B) < \rho(A)$.
- (2) $\rho(A)$ 关于 A 的元素严格单调递增, 即当 A 的某个元素变大时, $\rho(A)$ 也随之增大.
- (3) 设 $A_k \in \mathbb{R}^{k \times k}$ $(1 \le k < n)$ 是 A 的 k 阶主子矩阵, 则 $\rho(A_k) < \rho(A)$.

推论 设 A 非负,则 A 可约的充要条件是 $\rho(A)$ 也是 A 的某个主子矩阵的谱半径.

(留作练习)

非负不可约矩阵的谱分布

定理 设 A 非负不可约. 如果 A 有 k 个模等于 $\rho(A)$ 的互异特征值, 则它们一定是

$$\lambda_p = \rho(A) e^{2\pi i p/k}, \quad p = 0, 1, \dots, k-1,$$

且它们都是单重特征值. 另外, 如果 λ 是 A 的特征值, 则 $\lambda e^{2\pi i\,p/k}$, $p=1,2,\ldots,k-1$ 也 是 A 的特征值.

- △ 非负不可约矩阵的模最大特征值不唯一.
- 者 A 非负不可约且有 k 个模为 $\rho(A)$ 的互异特征值, 则 k 一定能被 A 的非零特征值 个数整除. 特别地, 如果 A 非奇异, 则 k 一定是 n 的因子. 此时, 若 n 是素数, 则 A 要 么所有特征值的模都等于 $\rho(A)$, 要么除 $\rho(A)$ 外, 其他所有特征值的模都小于 $\rho(A)$.

多 思考: 设 $A \in \mathbb{R}^{3\times 3}$ 非负不可约且 $\rho(A) = 1$, 则 A 的特征值是否可能是 $1, \mathbf{i}, -\mathbf{i}$? 如 果只要求 A 非负呢?

设 $A \in \mathbb{R}^{n \times n}$ 非负不可约. 如果 A 有 k > 1 个模等于 $\rho(A)$ 的互异特征值, 则 A 的主 对角线元素都是 0. (留作练习)

该结论告诉我们, 如果非负不可约矩阵 A 的主对角线元素中至少有一个不等于零, 则 $\rho(A)$ 是其唯一的模最大特征值. 需要注意的是, 这是充分条件, 但不是必要条件, 比如矩阵

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

一个更强的结论

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约. 如果 A 有 k (k > 1) 个模等于 $\rho(A)$ 的互异特征值,则存在置换矩阵 $P \in \mathbb{R}^{n \times n}$ 使得

$$PAP^{\mathsf{T}} = \begin{bmatrix} 0 & A_{12} & 0 & \cdots & 0 \\ 0 & 0 & A_{23} & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{(k-1)k} \\ A_{k1} & 0 & 0 & \cdots & 0 \end{bmatrix}, \tag{2.1}$$

其中主对角的零子矩阵都是方阵.

非负不可约矩阵的谱半径估计

引理 设 $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ 非负不可约, 则有

$$\rho(A) = \sum_{j=1}^{n} a_{ij}, \quad 1 \le i \le n,$$

或

$$\min_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} < \rho(A) < \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij}.$$

(留作练习)

△ 注意与非负矩阵的区别.

非负不可约矩阵的谱半径估计 (Cont.)

 $\diamondsuit D_x = \operatorname{diag}(x_1, x_2, \dots, x_n) > 0, \ \ \ \ \ \rho(A) = \rho(D_x^{-1}AD_x).$

定理 设 $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ 非负不可约,则对任意正向量 $x = [x_1, x_2, \dots, x_n]^\mathsf{T}$,有

$$\rho(A) = \frac{1}{x_i} \sum_{i=1}^{n} a_{ij} x_j, \quad 1 \le i \le n,$$

或

$$\min_{1\leq i\leq n}\bigg\{\frac{1}{x_i}\sum_{i=1}^n a_{ij}x_j\bigg\}<\rho(A)<\max_{1\leq i\leq n}\bigg\{\frac{1}{x_i}\sum_{i=1}^n a_{ij}x_j\bigg\}.$$

2-2-3 本原矩阵*

除了谱半径 $\rho(A)$ 外, 正矩阵 A 的其他所有特征值的模都小于 $\rho(A)$. 非负矩阵和非负不可约矩阵一般不具有这个性质. 什么情况下具有这个性质?

本原矩阵

设 $A \in \mathbb{R}^{n \times n}$ 非负不可约, 并设模等于 $\rho(A)$ 的特征值个数为 k, 则 $k \ge 1$. 如果 k = 1, 则称 A 是本原矩阵 (primitive matrix), 否则称 A 为 cyclic 矩阵.

例 正矩阵为本原矩阵.

本原矩阵的判断

引理 设 $A \in \mathbb{R}^{n \times n}$ 非负不可约. 如果 A 的对角线都是正的, 则 $A^{n-1} > 0$. 由此可知, A 一定是本原矩阵.

引理 设 $A \in \mathbb{R}^{n \times n}$ 是本原矩阵, 则 A^k (k = 1, 2, ...) 也是本原矩阵.

本原矩阵的性质

引理 设 $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ 是本原矩阵, 则

$$\lim_{k \to \infty} \left(\frac{A}{\rho(A)} \right)^k = xy^{\mathsf{T}},$$

其中 x, y 分别是 A 的右 Perron 向量和左 Perron 向量.

由引理结论可知, 当 $k \to \infty$ 时, $(\rho(A)^{-1}A)^k$ 趋向于一个秩 1 矩阵.

推论 设 $A \in \mathbb{R}^{n \times n}$ 是本原矩阵, 则存在正整数 $k \ge 1$, 使得 A^k 的所有对角线元素为正.

非负矩阵是本原矩阵的一个充要条件

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负,则 A 是本原矩阵的充要条件是存在一个整数 $m \geq 1$ 使得 $A^m > 0$.

定理中的 m 不会超过 $(n-1)n^n$, 事实上, m 可以远远小于 $(n-1)n^n$.

定理 (Wielandt) 设 $A \in \mathbb{R}^{n \times n}$ 非负, A 是本原矩阵的充要条件是 $A^{n^2-2n+2} > 0$.

2-2-4 随机矩阵

定义 设 $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ 非负, 如果

$$\sum_{j=1}^{n} a_{ij} = 1, \quad i = 1, 2, \dots, n,$$

则称 A 为随机矩阵. 如果 A 还满足

$$\sum_{i=1}^{n} a_{ij} = 1, \quad j = 1, 2, \dots, n,$$

则称 A 为双随机矩阵.

随机矩阵在 Markov 链中有着非常重要的应用.

随机矩阵的性质

引理 随机矩阵的乘积仍然是随机矩阵.

(板书,直接验证即可)

显然, 若 A 是随机矩阵, 则 $\lambda = 1$ 是其特征值, 而且是模最大的特征值, 对应的特征向量为 $e = [1, 1, ..., 1]^{\mathsf{T}}$. 反之, 若 (1, e) 是 $A \ge 0$ 的特征对, 则 A 是随机矩阵.

随机矩阵的性质 (Cont.)

定理 非负矩阵 $A \in \mathbb{R}^{n \times n}$ 是随机矩阵的充要条件是 $e = [1,1,\ldots,1]^{\mathsf{T}}$ 是 A 对应于特征值 $\lambda = 1$ 的特征向量, 即 Ae = e.

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负, 且存在正向量 x 使得 $Ax = \rho(A)x$. 如果 $\rho(A) > 0$, 则存在对角 矩阵 D 使得 $\frac{1}{\rho(A)}D^{-1}AD$ 是随机矩阵.

随机矩阵的特征值

定理 设 $A \in \mathbb{R}^{n \times n}$ 是随机矩阵,则对应于 $\lambda = 1$ 的 Jordan 块都是 1×1 的,即 $\lambda = 1$ 的 代数重数与几何重数相等.

定理 设 $A \in \mathbb{R}^{n \times n}$ 是随机矩阵, 则 $\lim_{h \to \infty} A^k$ 存在当且仅当 $\lambda = 1$ 是 A 的唯一模最大特征 值.

关于双随机矩阵, 我们有下面的结论.

定理 非负矩阵 $A \in \mathbb{R}^{n \times n}$ 是双随机矩阵的充要条件是 Ae = e 且 $A^{\mathsf{T}}e = e$.

2-3 *M*-矩阵和单调矩阵

2.2 不可约非负矩阵

- 2.3.1 *M*-矩阵和 *H*-矩阵
- 2.3.2 *M*-矩阵的性质
- 2.3.3 单调矩阵

2-3-1 *M*-矩阵和 *H*-矩阵

定义 (M-矩阵) 设 $A \in \mathbb{R}^{n \times n}$ 具有如下形式:

$$A = sI - B$$

且 $s > \rho(B)$, $B \ge 0$, 则称为 A 为 (非奇异) M-矩阵.

由定义可知, M-矩阵的所有特征值都具有正实部.

 $\widehat{\mathbb{Q}}^{c}$ 有的文献中, 定义 M-矩阵只要求 $s \geq \rho(B)$, 此时 M-矩阵可能是奇异的.

Z-矩阵与 H-矩阵

如果 A 的所有非对角元素都为非正, 则称 A 为 Z-矩阵:

$$\mathcal{Z}^{n \times n} = \{ A = [a_{ij}] \in \mathbb{R}^{n \times n} : a_{ij} \le 0, i \ne j, i, j = 1, 2, \dots, n \}.$$

矩阵 $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ 的 比较矩阵 定义为 $\langle A \rangle = [\langle a \rangle_{ij}] \in \mathbb{R}^{n \times n}$, 其中

$$\langle a \rangle_{ii} = |a_{ii}|, \quad \langle a \rangle_{ij} = -|a_{ij}|, \quad i \neq j, \quad i, j = 1, 2, \dots, n.$$

记 $D \triangleq \operatorname{diag}(A)$, 则 $\langle A \rangle = |D| - |B|$, 其中 B = D - A.

H-矩阵

设 $A \in \mathbb{C}^{n \times n}$, 如果 $\langle A \rangle$ 是 M-矩阵, 则称 A 为 H-矩阵.

非负矩阵的谱半径

定理 设 $A \in \mathbb{R}^{n \times n}$ 非负,则 $\rho(A) < \alpha$ 当且仅当 $\alpha I - A$ 非奇异且 $(\alpha I - A)^{-1} \ge 0$.

(板书)

作为特例, 我们有下面的结论.

推论 设 $A \in \mathbb{R}^{n \times n}$ 非负,则 $\rho(A) < 1$ 当且仅当 I - A 非奇异且 $(I - A)^{-1} \ge 0$.

如果 A 不可约,则我们可以得到更强的结论.

定理 设 $A\in\mathbb{R}^{n\times n}$ 非负,则 A 不可约且 $\rho(A)<\alpha$ 的充要条件是 $\alpha I-A$ 非奇异且 $(\alpha I-A)^{-1}>0.$

M-矩阵基本判别定理

定理 设 $A \in \mathbb{R}^{n \times n}$. 则 $A \in \mathbb{R}^{n \times n}$. 则 $A \in \mathbb{R}^{n \times n}$. 则 $A \in \mathbb{R}^{n \times n}$. 非奇异且 $A^{-1} \geq 0$.

(板书)

☀ 注记

在某些文献中, M-矩阵是通过该定理来定义的, 即: 如果 $A \in \mathcal{Z}^{n \times n}$ 非奇异且 $A^{-1} \geq 0$, 则称 $A \rightarrow M$ -矩阵.

2-3-2 *M*-矩阵的性质

首先, *M*-矩阵的对角线元素都是正的.

引理 设
$$A = [a_{ij}] \in \mathbb{R}^{n \times n}$$
 是 M -矩阵. 则 $a_{ii} > 0, i = 1, 2, \ldots, n$.

(板书)

由此可知, 我们讨论 *M*-矩阵时, 只需考虑 $A \in \mathbb{Z}^{n \times n}$, 且对角线元素为正

M-矩阵判别定理

设 $A \in \mathcal{Z}^{n \times n}$, 且对角线元素为正, 记

$$D = \operatorname{diag}(A), \quad B = D - A,$$

则 D 非奇异, B 非负, 且

$$A^{-1} = (I - D^{-1}B)^{-1}D^{-1}$$

非负当且仅当 $\rho(D^{-1}B) < 1$.

因此, M-矩阵基本判别定理可写为

定理 设 $A \in \mathbb{R}^{n \times n}$ 的对角线元素都是正的, 则 $A \in \mathbb{R}^{n \times n}$ 的对角线元素和是正的, 则 $A \in \mathbb{R}^{n \times n}$ 的对角线元素和是正的,则 $A \in \mathbb{R}^{n \times n}$ 的对角线元素和是正的,则 $A \in \mathbb{R}^{n \times n}$ 的对角线元素和是正的。 $\rho(I - D^{-1}A) < 1$, 其中 D = diag(A).

H-矩阵的性质

推论 设 $A \in \mathbb{R}^{n \times n}$ 是 H-矩阵, 记 $D = \operatorname{diag}(A)$, 则

- (1) D 非奇异;
- (2) A 非奇异, 且 $\langle A^{-1} \rangle \leq \langle A \rangle^{-1}$;
- (3) $\rho(I-|D|^{-1}|A|) \leq 1$.

(板书,以(1)(2)为例,(3)留作练习)

不可约 M-矩阵

如果 A 不可约,则我们有下面的结论.

定理 设 $A \in \mathbb{R}^{n \times n}$ 是 M-矩阵. 如果 A 不可约, 则 $A^{-1} > 0$.

(留作练习)

M-矩阵更多判别方法

定理 设 $A \in \mathbb{R}^{n \times n}$ 是 M-矩阵. 如果 $C \in \mathcal{Z}^{n \times n}$ 且 $C \geq A$, 则 C 也是 M-矩阵.

(板书)

作为上述定理的一个应用, 我们可以得到一个构造 M-矩阵的方法.

推论 设 $A \in \mathbb{R}^{n \times n}$ 是 M-矩阵, 则 A 所有主子矩阵都是 M-矩阵.

M-矩阵的一些等价条件

定理 设 $A \in \mathcal{Z}^{n \times n}$, 则下面的结论等价:

- (1) A 是 M-矩阵.
- (2) A 的对角线元素都是正的, 且存在正对角矩阵 D 使得 AD 是严格对角占优的.
- (3) 存在正对角矩阵 D 使得 $AD + DA^{\mathsf{T}}$ 是正定的.
- (4) 存在对称正定矩阵 $W \in \mathbb{R}^{n \times n}$, 使得 $AW + WA^{\mathsf{T}}$ 也是对称正定的.
- (5) A 是正稳定的, 即 A 的所有特征值都具有正实部,
- (6) A 的所有实特征值都是正的.
- (7) 对任意 $x \neq 0$, 总存在一个非负对角矩阵 D 使得 $x^{\mathsf{T}}ADx > 0$.
- (8) 对任意非负对角矩阵 D, 矩阵 A+D 都非奇异.

(留作课外自习, 更多等价条件可参见 Berman-Plemmons '94)

一般矩阵是 M-矩阵的充要条件

定理 设 $A \in \mathbb{R}^{n \times n}$. 则 A 是 M-矩阵的充要条件是: 对任意非负对角矩阵 D, 矩阵 A + D 非奇异且 $(A + D)^{-1} \ge 0$.

(留作课外自习, 可参见 Berman-Plemmons '94)

需要指出的是, 上述定理的条件中没有要求 A 是 Z-矩阵.

对角占优矩阵与 M-矩阵

设 $A = [a_{ij}] \in \mathbb{Z}^{n \times n}$, D 为对角部分, 记 $\tilde{B} = D^{-1}(D - A) = I - D^{-1}A$.

- **②** 若 A 严格对角占优,则 $\sum_{i=1}^{n} |\tilde{b}_{ij}| < 1, i = 1, \ldots, n$,故 $|||\tilde{B}|||_{\infty} < 1$,则 $\rho(|\tilde{B}|) < 1$
- $oldsymbol{\delta}$ 若 A 不可约弱对角占优,则 $\sum_{i=1}^n |\tilde{b}_{ij}| \leq 1, \ i=1,\ldots,n$,至少有一个不等式严格成立.

构造非负矩阵 $\hat{B} = [\hat{b}_{ij}]$ 满足 $|\tilde{B}| \leq \hat{B}$ 且 $\sum_{i=1}^{n} |\hat{b}_{ij}| = 1$, i = 1, 2, ..., n. 于是 $\rho(|\tilde{B}|) < \rho(\hat{B}) = 1$.

定理 设 A 是 Z-矩阵, 且对角线均为正. 若 A 严格对角占优或不可约对角占优, 则 A 是 M-矩阵. (直接利用第 55 页的结论 ◆goto 55)

2-3-3 单调矩阵

设 $A \in \mathbb{R}^{n \times n}$ 是 M-矩阵, $y \in \mathbb{R}^n$ 非负, 则 $x = A^{-1}y \ge 0$.

如果 A 是 M-矩阵, 则由 $Ax \ge 0$ 可推出 $x \ge 0$.

具有这种性质的矩阵我们就称其为单调矩阵.

定义 设 $A \in \mathbb{R}^{n \times n}$. 如果对任意 $x \in \mathbb{R}^n$, 由 $Ax \ge 0$ 即可推出 $x \ge 0$, 则称 A 是 单调矩阵 (monotone matrix), 或称 A 是单调的.

△ 一个简单性质: 若 $A \in \mathbb{R}^{n \times n}$ 是单调矩阵且 $Ax \le Ay$, 则 $x \le y$.

单调矩阵的判断

引理 设 $A \in \mathbb{R}^{n \times n}$, 则 A 是单调矩阵的充要条件是 A 非奇异且 $A^{-1} \geq 0$.

(板书)

如果 $A \in \mathbb{R}^{n \times n}$ 是 \mathcal{Z} -矩阵, 则我们可以得到 M-矩阵与单调矩阵之间的关系.

定理 设 $A \in \mathbb{Z}^{n \times n}$, 则 A 是单调矩阵的充要条件是 A 是 M-矩阵.

对称正定与单调矩阵

另外, 如果一个 Z-矩阵是对称正定的, 则它必然也是单调的.

定理 设 $A \in \mathbb{Z}^{n \times n}$ 是对称正定的,则 A 是单调的.

(板书)

推论 设 $A \in \mathbb{Z}^{n \times n}$ 是对称正定的,则 $A \in \mathbb{Z}^{n \times n}$



