
A rapidly convergent descent method for minimization

By R. Fletcher and M. J. D. Powell

A powerful iterative descent method for finding a local minimum of a function of several variables
is described. A number of theorems are proved to show that it always converges and that it
converges rapidly. Numerical tests on a variety of functions confirm these theorems. The
method has been used to solve a system of one hundred non-linear simultaneous equations.

1. Introduction

We are concerned in this paper with the general problem
of finding an unrestricted local minimum of a function
J[xu x2 • • •, xn) of several variables xx, x2, • •., xn. We
suppose that the function of interest can be calculated
at all points. It is convenient to group functions into
two main classes according to whether the gradient
vector g, = Wbx, is defined analytically at each point
or must be estimated from the differences of values of/.
The method described in this paper is applicable to the
case of a defined gradient. For the other case a useful
method and general discussion are given by Rosenbrock
(1960).

Methods using the gradient include the classical
method of steepest descents (Courant, 1943; Curry,
1944; and Householder, 1953), Levenberg's modification
of damped steepest descents (1944), a somewhat similar
variation due to Booth (1957), the conjugate gradient
method of Hestenes and Stiefel (1952), similar methods
of Martin and Tee (1961), the "Partan" method of Shah,
Buehler and Kempthorne (1961), and a method due to
Powell (1962). In this paper we describe a powerful
method with rapid convergence which is based upon a
procedure described by Davidon (1959). Davidon's
work has been little publicized, but in our opinion con-
stitutes a considerable advance over current alternatives.
We have made both a simplification by which certain
orthogonality conditions which are important to the
rate of attaining the solution are preserved, and also an
improvement in the criterion of convergence.

Because, near the minimum, the second-order terms
in the Taylor series expansion dominate, the only
methods which will converge quickly for a general
function are those which will guarantee to find the
minimum of a general quadratic speedily. Only the
latter four methods of the last paragraph do this, and
the procedures of Hestenes and Stiefel and of Martin
and Tee are not applicable to a general function. Of
course the generalized Newton-Raphson method (House-
holder, 1953) has fast convergence eventually, but it
requires second derivatives of the function to be
evaluated, and frequently fails to converge from a poor
approximation to the minimum. The method described
has quadratic convergence and is superior to "Partan"
and to Powell's method, both in that it makes use of
information determined by previous iterations and also
in that each iteration is quick and simple to carry out.

Furthermore, it yields the curvature of the function at
the minimum, so excellent tests for convergence and
estimates of variance can be made.

The method is given an elegant theoretical basis, and
proofs of stability and of the rate of convergence are
included. The results of numerical tests with a variety
of functions are also given. These confirm that the
method is probably the most powerful general procedure
for finding a local minimum which is known at the
present time.

2. Notation
It is convenient to describe the method in terms of the

Dirac bra-ket notation (Dirac, 1958) applied to real
vectors. In this notation the column vector (xu x2 •. •, xn)
is written as |x>. The row vector with these same ele-
ments is denoted by <x|. The scalar product of <x|
and |j> is written (x\y} and we may note that

<x\y~) s= 2x,-y, = £j ,x ; s= <j/|x>.
/ i

The construction |.x><j>|, however, denotes a linear
operator with matrix elements Di} = x,y>j so that
|.x><j>| # |.F><*|. A general linear operator or matrix
will be denoted by a capital letter in bold type. It then
follows that say H\xy is a column vector, (x\H is a row
vector and (x\H\yy is a scalar.

We reserve / to denote the function of interest, |x>
to denote its arguments and |g> to denote its gradient.

Hence the standard quadratic form in n dimensions

/ = /o + £ a,x,
i= 1

becomes in this notation

i = I j= 1

and also
\g> = G\x>.

(1)

(2)

3. The method

If we consider the quadratic form (1) then, given the
matrix Gu = 'b2fl'bx('bxj, we can calculate the displace-
ment between the point \x} and the minimum \xoy as

|xo>-|x>=-G-'|g>. (3)

In this method the matrix G~' is not evaluated directly;
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instead a matrix H is used which may initially be chosen
to be any positive definite symmetric matrix. This
matrix is modified after the ith iteration using the
information gained by moving down the direction

\sfy = - J5TV> (4)

in accordance with (3). The modification is such that
| y, the step to the minimum down the line

is effectively an eigenvector of the matrix Hi+lG. This
ensures that as the procedure converges H tends to G~l

evaluated at the minimum.
It is convenient to take the unit matrix initially for H

so that the first direction is down the line of steepest
descent.

Let the current point be |x'> with gradient |g'> and
matrix H'. The iteration can then be stated as follows.

Set |s<> = - H^g'y.

Obtain a.' such that f(\x'} + a'|s'>) is a minimum
with respect to A along \x'} + A|s'> and a' > 0. We
will prove that a' can always be chosen to be positive.

Set |a(> = a-y>.

Set |x' + '> = |x'

Evaluate / ( | x / + I » and |
orthogonal to | a'y, that is

Set

Set

where

and

noting that

(5)

> is

(6)

(7)

iy\H'\yy
Set / = i + 1 and repeat.

There are two obvious and very useful ways of ter-
minating the procedure, and they arise because |̂ '>
tends to the correction to \x*y. One is to stop when the
predicted absolute distance from the minimum (s^1)*
is less than a prescribed amount, and the other is to
finish when every component of |s'> is less than a
prescribed accuracy. Two additional safeguards have
been found necessary in automatic computer pro-
grams. The first is to work through at least n (the
number of variables) iterations, and the second is to
apply the tests to |CT'> as well as to \s'y.

The method of obtaining the minimum along a line
is not central to the theory. The suggested procedure
given in the Appendix, which uses cubic interpolation,
is based on that given by Davidon, and has been found
satisfactory.

We shall now show that the process is stable, and
demonstrate that if /( |x» is the quadratic form (1) then

the procedure terminates in n iterations. We shall also
explain the theoretical justification for the manner in
which the matrix H is modified.

4. Stability
It is usual for descent methods to be stable because

one ensures that the function to be minimized is
decreased by each step. It will be shown in this Section
that the direction of search \s'}, defined by equation (4),
is downhill, so «' can always be chosen to be positive.
Because |g'> is the direction of steepest ascent, the
direction \s'} will be downhill if and only if

is positive. We wish the direction of search to be down-
hill for all possible \g'y so we must prove that H' is
positive definite. Because H° has been chosen to be
positive definite an inductive argument will be used.

In the proof it is assumed that Hl is positive definite
and consequently that a' is positive. It is proved
that, for any |x>, (x\Hi+x\xy > 0. We may define
\py = (H''Y\xy and |?>= (#')*|/> as the square root
of a positive definite matrix exists.

From (7)

<y\H'\yy

on account of Schwartz's inequality.

But <a'|/> = <a'|g'+1>
from (6)
from (4) and (5)

Hence <x|^l+l|x> > 0 for all non-trivial |x>. There-
fore Hi+i is positive definite and the procedure is stable.

5. Quadratic convergence
In this Section it is assumed that / is the quadratic

form (1) and that / ha s a well defined minimum. It is
proved that in this case the method finds the minimum
in n iterations. The method of proof is to show that
|o-°>, |CT'>, . . ., |o*> are linearly independent eigen-|
vectors of Hk + >G with eigenvalue unity.
will follow that H"G is the unit matrix.

By definition

Therefore it

from (2)
= G\a>y. (8)
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Also from (8)

- H'\y'> by using (7)= //'|y> +
= k>. (9)

The equations

<oi\G\o>> = 0 0<i<j<k (10)

and HkG\a>> = |a'> 0 < / < k (11)

will now be considered. It is clear from (9) that they
are true if k — 1. It will be proved that if they are true
for k they are true for k + 1.

From (2)

= \a>

Therefore from (10) and (6)

Hence from (11)

= 0 0 < i < k.

> = 0

(12)

so from (4) and (5)

-a'<a'|G|a*> = 0.

Therefore

(13)

Also from (8), (11) and (13)

= 0 0 < i < k.

Therefore using the above result and equations (7), (11)
and (13)

y = HkG\aly

0<i<k. (14)

Equations (9), (13) and (14) prove the induction. Equa-
tion (10) proves that the vectors |a°>, ICT1), . . . , |<r"~'>
are linearly independent and therefore H" = G~l.

That the minimum is found by n iterations is proved
by equation (12). |g"> must be orthogonal to
|CT°>, |CT'>, . . . , | O " - ' > which is only possible if |g"> is
identically zero.

6. Improving the matrix H

The matrix H' is modified by adding to it two terms
A' and B'. A' is the factor which makes H tend to G~l

in the sense that for a quadratic

G-< =
n - I

A1. (15)
/=o

This result can be proved from the orthogonality con-
ditions (10) because these imply that S'GS = A, where S
is the matrix of vectors |<x'>, and A is a diagonal matrix
with elements <a'|(?|<7'>.

Hence by definition G =

Therefore G-i=SA1S/

and as A is a diagonal matrix this reduces to

Therefore from the definition of A' and equation (8),
equation (15) is proved.

The form of the term B' can be deduced because equa-
tion (9) must be valid. For a quadratic we must have

Therefore as A'G\&y = |a'> the equation

B'G\aly = - H'G|a'> = - / / ' | / >

must be satisfied.
This implies that the simplest form for B> is

. = _ H'\yy <z\

and as B' is to be symmetric this gives

. = _
<y\H'\y'y'

Although Davidon's method involves these relations,
some of the other ideas used by him can cause H not
to tend to G~' even in the quadratic case. The effect
in the non-quadratic case would depend upon the
function in question but might well lead to slower
convergence.

7. Numerical results—comparison with other procedures
As a comparison with other methods we use the

function given by Rosenbrock

ftxy, x2) = 100(x2 - x])2 + (1 - x,)2

starting at (—1-2, 1-0). This function is difficult to
minimize on account of its having a steep sided valley
following the curve x\ = x2. Eighteen iterations were
required to reach the minimum, each one requiring the
minimum to be calculated in only one direction. Table 1
shows how this procedure compares with the classical
steepest descent method and Powell's method, one of
the procedures with quadratic convergence. The table
takes into account that the latter method requires minima
to be found in three directions for each iteration. It
will be seen that this method is considerably more effi-
cient than that of Powell, both of these being far more
efficient than steepest descents.
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Table 1

A comparison in two dimensions

EQUIVALENT

n

0
3
6
9

12
15
18
21
24
27
30
33

STEEPEST
DESCENTS
/(*!. X2)

24-200
3-704
3-339
3-077 '
2-869
2-689
2-529
2-383
2-247
2118
1-994
1-873

POWELL'S
METHOD

fixu x2)

24-200
3-643
2-898
2-195
1-412
0-831
0-432
0-182
0-052
0 004

5 x 10-5

8 x lO"9

OUR METHOD

f{x\,x2)

24-200
3-687
1-605
0-745
0196
0012

1 x 10-8

—

Table 2

A quadratic function

ITERATION

X

f

H

\°>

A

- 4

+40

+ 1
0

+2-31

+0 069
- 0 092

0

+2

0
+ 1

3.

- 0 -
+0-

08

092
123

— 1-69

+1-54

+0-781
+0-361

+ 1-69

+0-931
+0-592

l

- 1 0 8

+0-361
+0-411

+ 1-08

+0-592
+0-377

:

0

I

0

io-'5

1
i

i
i

A similar comparison was made with the function
given by Powell:

,, x2, x3, x4) = (x, + 10x2)
2 + 5(x3 — x4)2

(x2 - 10(x, - x4)<

starting at (3, —1, 0,. 1). In six iterations the method
reduced / f rom 215 to 2-5 x 10~8. Powell's method
took the equivalent of seven iterations to reach 9 x 10~3,
whereas steepest descents only reached 6-36 in seven
iterations. The method also brought out the singularity
of G at the minimum of/, the elements of H becoming
increasingly large.

To compare this variation of Davidon's method with
his original method the simple quadratic

/(*1, *2> = A~ 2*1*2 + 2x1

was used. The complete progress of the method described
is given in Table 2, showing that it does terminate in two
iterations and that H does converge to G~{ which for
this function is

It will be noticed also, as proved, that C""1 = "LA!.
i

In Davidon's method, although a value of/of similar
order of magnitude had been reached in two iterations,
Hhad only reached

/0-95 0-47\
\0-47 0-48A

This was due to one of the alternatives allowed by
Davidon. Also his procedure for terminating the
process was unsatisfactory, and the computation had to
be stopped manually.

A non-quadratic test in three dimensions was also

made, by using a function with a steep sided helical
valley. This function

/(x,, x2, x3) = 100{[x3 - lO0(x,, x2)]
2

+ [r(x{, x2) - I]2} + x\

where 2TT6(XU X2) = arctan (x2/x,), xt > 0

= 77 + arctan (x2/xi), xt < 0

and /•(*!, x2) = (x2 + x2)*
has a helical valley in the x3 direction with pitch 10 and
radius 1. It is only considered for

— TT/2 < 2 T T 0 < 3 77/2

that is — 2 - 5 < x 3 < 7 - 5 .

It has a minimum at the point (1, 0, 0).
Both methods were started from (—1, 0, 0) and H°

set to the unit matrix. The method given in this paper
converged in eighteen iterations, whereas Davidon's
method required only ten. However, on account of the
more complicated nature of Davidon's iterations, the
minimum often being sought along more than one
direction in a single iteration, the time taken by the two
procedures was almost identical. The progress of this
method on the function is given in Table 3.

8. Numerical results—functions of a large number of
variables
Tests were also made to find out whether the method

is suitable for finding the minimum of a function of a
large number of variables. In these tests the Stretch
computer was used to solve non-linear simultaneous
equations in up to a hundred variables.

The equations were
n

S Ajj sin ocj + Bjj cos a,- = E, i = 1, 2 , . . ., n
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Table 3

A function with a steep-sided helical valley

Table 4

Application to a function of many variables

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

* i

—1-000
- 1 0 0 0
-0-023
-0-856
-0-372
-0-499
-0-314

0-059
0 146
0-774
0-746
0-894
0-994
0-994
1017
0-997
1-002
1000
1000

0000
2-278
2-004
1-559
1-127
0-908
0-900
1069
1086
0-725
0-706
0-496
0-298
0-191
0-085
0 070
0 009
0-002
io-5

Xi

0000
1-431
2-649
3-429
3-319
3-285
3 075
2-408
2-261
1-218
1-242
0-772
0-441
0-317
0133
0110
0014
0 040
io-5

/

2-5 x IO4

5-2 x 103

1-1 X 103

74-080
24-190
10-942
9-841
6-304
6-093
1-889
1-752
0-762
0-382
0-141
0-058
0013

8 x IO-4

3 x IO-6

7 x IO-8

so that the function to be minimized was

/ = £ {E, - £ {Alt sin ccj + B,j cos a,)}2.
i= i j — i

The matrix elements of A and B were generated as
random integers between —100 and +100, and the
values of the variables <xh i = 1, 2,. . ., n were generated
randomly between —n and -n. For these values the
right-hand sides of the equations, Eh were worked out.
The method of this paper was applied to find optimum
values of «,- starting from (a, -fO-lS,) where the 8,'s
were also generated as random numbers between — IT
and 7T. In each run the criterion for convergence was
that every a should be found to accuracy 0 0001.

The method was entirely successful. Table 4 shows
that the number of times/and its derivatives had to be
calculated was approximately linear in the number of
variables. The total time taken for all the runs was
fifteen minutes, ten minutes of which was spent on the
final case. That a different minimum was found on five
occasions was not surprising because if A = B it may be
shown that there are up to 2" real solutions to the
equations such that |a,| < n. This abundance of
minima emphasizes the power of the method because
in every case it converged to a reasonable solution.

The progress of these tests is interesting. For the
first n iterations the changes in the function were similar
to those experienced with the method of steepest descents,
that is a substantial change occurred initially due to
descending into a nearby valley, after which convergence
was slow. However, after n iterations had been completed

n

5
5

10
10
20
20
20
20
30
30
30
30
50
50

100

NO. OF TIMES
/EVALUATED

19
23
36
29
89
84
68

121
86
92

118
113
169
119
318

WHETHER EXPECTED
MINIMUM FOUND

Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
No
Yes
No
Yes
No
Yes
No

a good approximation to the final matrix H had been
accumulated, after which the function was decreased
substantially at each iteration. For example in the
hundred-variable trial the function to be minimized
was decreased from 293407 to 54165 in the first ten
iterations, and to 14686 after one hundred iterations.
After 120 iterations it was down to 1342, and after 140
to 147. The function was reduced to 0-44 by 160 itera-
tions, and the minimum was found on the 162nd. The
second fifty-variable trial was even more striking. Ten
iterations reduced the function from 205380 to 4264,
fifty iterations reduced it to 3526, and a further ten
iterations reduced it to 0 027.

The conclusion to be drawn from this behaviour is
that for many applications of the method a substantial
number of the iterations required will be spent on setting
up the inverse of the matrix of second derivatives.
Therefore, if a good positive definite approximation to
H can be calculated initially, as is the case when the
method is being applied to solving simultaneous equa-
tions, then this approximation should be chosen for H°.

9. Conclusion

The numerical examples show clearly that the type of
method given by Davidon is considerably superior to
other methods previously available. The simplifications
we have made enable programs to be written more easily,
and they do not seem to impair the speed of convergence.
It is obviously practicable to apply this method to find
a local minimum of a general function of a large number
of variables whose first derivatives can be evaluated
quickly, even if only poor initial approximations to a
solution are known.
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and z = ^ (fx - fy) + <gx\s>> + <g,| *•>.

A suitable choice of the point \y'y is given by
| / | ' \' h

Appendix

The minimum on a line

A simple algorithm is given for estimating the para-
meter a.'. A point |y> is chosen on \x1} + A|j'> with
A > 0. Let fx, \gxy,fy and \gyy denote the values of
the function and gradient at the points \x'} and |/>.
Then an estimate of a' can be formed by interpolating
cubically, using the function values fx and fy and the
components of the gradients along |5'>.

This is given by

( l ,

a'
"A
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= 1 -
<gyW> + W — Z

<gy\s'> - 2W
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Book Review (.continued from p. 143)

here. It seems entirely wrong that modern source languages
should be dominated by the sequential regimes of early
machine codes, and any move towards conventional mathe-
matical forms is to be welcomed. Again, the approach here
seems rather tentative and some major benefits are lost. I
think it is preferable to make sequential coding subordinate
to definitions rather than the other way round: here lies the
key to the very important problem of integrating the trans-
lator with a realistic operating system.

Amongst the other problems tackled are the handling of
complex variables,- recurrence relations, and direct transfer
of control to parts of'the program not similarly accessible in
ALGOL. It may be regarded as a tribute to ALGOL that
an attempt has been made to graft such a system onto the
same tree. At the same time it- must accept a measure of
responsibility for the fact that the above ideas were not more
fully developed and in use three years ago.

J. K. ILIFFE.
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