MATHEMATICAL SYMBOLS

Relational Symbols

```
= equal to
 identically equal to
:= equal to by definition
\lll m u c h ~ l e s s ~ t h a n ~
partial order relation
```

\approx approximately equal to
$<$ less than
$>$ greater than
\gg much greater than
\succ partial order relation
\leq less than or equal to
\geq greater than or equal to
\neq unequal to, different from
\triangleq corresponding to

Greek Alphabet

$A \alpha$	Alpha	$B \beta$	Beta	$\Gamma \gamma$	Gamma	$\Delta \delta$	Delta	$E \varepsilon$	Epsilon	$Z \zeta$	Zeta
$H \eta$	Eta	$\Theta \theta \vartheta$	Theta	$I \iota$	Iota	$K \kappa$	Kappa	$A \lambda$	Lambda	$M \mu$	Mu
$N \nu$	Nu	$\Xi \xi$	Xi	$O o$	Omicron	$\Pi \pi$	Pi	$P \rho$	Rho	$\Sigma \sigma$	Sigma
$T \tau$	Tau	γv	Xpsilon	$\Phi \varphi$	Phi	$X \chi$	Chi	$\Psi \psi$	Psi	$\Omega \omega$	Omega

Constants

const	constant amount (constant)	$C=0.57722 \ldots$	Euler constant
$\pi=3.14159 \ldots$	ratio of the perimeter of the circle to	$e=2.71828 \ldots$	base of the natural logarithms

Algebra
$A, B \quad$ propositions
$\neg A, \bar{A} \quad$ negation of the proposition A
$A \wedge B, \sqcap \quad$ conjunction, logical AND
$A \vee B, \sqcup \quad$ disjunction, logical OR
$A \Rightarrow B \quad$ implication, IF A THEN B
$A \Leftrightarrow B \quad$ equivalence, A IF AND ONLY IF B

A, B, C, .	sets	N	set of natural numbers
\bar{A}	closure of the set A or complement of	Z	set of the integers
	A with respect to a universal set	Q	set of the rational numbers
$A \subset B$	A is a proper subset of B	\mathbb{R}	set of the real numbers
$A \subseteq B$	A is a subset of B	\mathbb{R}_{+}	set of the positive real numbers
$A \backslash B$	difference of two sets	\mathbb{R}^{n}	n-dimensional Euclidean vector space
$A \triangle B$	symmetric difference	\mathbb{C}	set of the complex numbers
$A \times B$	Cartesian product	$R \circ S$	relation product
$x \in A$	x is an element of A	$x \notin A$	x is not an element of A
$\operatorname{card} A$	cardinal number of the set A	\emptyset	empty set, zero set
$A \cap B$	intersection of two sets	$\bigcap_{i=1}^{n} A_{i}$	intersection of n sets A_{i}
$A \cup B$	union of two sets	$\bigcup_{i=1}^{n} A_{i}$	union of n sets A_{i}
$\forall x$	for all elements x	$\exists x$	there exists an element x
$\{x \in X: p(x)\}$	subset of all x from X of the property $p(x)$	$\begin{aligned} & \{x: p(x)\} \\ & \{x \mid p(x)\} \end{aligned}$	set of all x with the property $p(x)$
$T: X \longrightarrow Y$	mapping T from the space X into the space Y	$\begin{aligned} & \cong \\ & \sim_{R} \end{aligned}$	isomorphy of groups equivalence relation
\oplus	residue class addition	\odot	residue class multiplication
$\begin{aligned} & H=H_{1} \oplus H_{2} \\ & \text { supp } \end{aligned}$	orthogonal decomposition of space H support	$\mathbf{A} \otimes \mathbf{B}$	Kronecker product
$\sup M$	supremum: least upper bound of the n	n-empty set	$M(M \subset \mathbb{R})$ bounded above
$\inf M$	infimum: greatest lower bound of the	--empty	$(M \subset \mathbf{R})$ bounded below

$[a, b]$	closed interval, i.e.,	$\{x \in \mathbf{R}: a \leq x \leq b\}$
$(a, b),] a, b[$	open interval, i.e.,	$\{x \in \mathbf{R}: a<x<b\}$
$(a, b],] a, b]$	interval open from left, i.e,	$\{x \in \mathbf{R}: a<x \leq b\}$
$[a, b),[a, b[$	interval open from right, i.e.,	$\{x \in \mathbf{R}: a \leq x<b\}$

$\operatorname{sign} a \quad \operatorname{sign}$ of the number a, e.g., $\operatorname{sign}(\pm 3)= \pm 1, \operatorname{sign} 0=0$
$|a| \quad$ absolute value of the number a
$a^{m} \quad a$ to the power m, a to the m-th
$\sqrt{a} \quad$ square root of a
$\sqrt[n]{a} \quad n$-th root of a
$\log _{b} a \quad \operatorname{logarithm}$ of the number a to the base b, e.g., $\log _{2} 32=5$
$\log a \quad$ decimal \log arithm (base 10) of the number a, e.g., $\lg 100=2$
$\ln a \quad$ natural $\operatorname{logarithm}$ (base e) of the number a, e.g., $\ln e=1$

```
\(a \mid b\)
\(a \nmid b\)
\(a \equiv b \bmod m, a \equiv b(m)\)
g.c.d. \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
l.c.m. \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
\(\binom{n}{k}\)
\(\left(\frac{a}{b}\right)\)
\(n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n\)
\((2 n)!!=2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)=2^{n} \cdot n!\);
\((2 n+1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n+1)\)
```

a is a divisor of b, a devides b, the ratio of a to b
a is not a divisor of b
factorial, e.g., $6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720 ; \quad$ specially: $0!=1!=1$
in particular: $0!!=1!!=1$
$\mathbf{A}=\left(a_{i j}\right) \quad$ matrix A with elements $a_{i j}$
$\mathbf{A}^{\mathrm{T}} \quad$ transposed matrix
$\mathbf{A}^{-1} \quad$ inverse matrix
$\operatorname{det} \mathbf{A}, \mathrm{D} \quad$ determinant of the square matrix A
$\mathbf{E}=\left(\delta_{i j}\right) \quad$ unit matrix
0
$\delta_{i j}$
zero matrix
Kronecker symbol: $\delta_{i j}=0$ for $i \neq j$ and $\delta_{i j}=1$ for $i=j$
a column vector in \mathbf{R}^{n}
$\stackrel{\mathbf{a}^{0}}{\underline{a}}$
unit vector in the direction of (parallel to) a
|| $\underline{\mathbf{a}} \|$
$\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \quad$ vectors in \mathbf{R}^{3}
norm of \mathbf{a}
$\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}} \quad \overrightarrow{\mathbf{e}}_{x}, \overrightarrow{\mathbf{e}}_{y}, \overrightarrow{\mathbf{e}}_{z} \quad$ basis vectors (orthonormed) of the Cartesian coordinate system
$a_{x}, a_{y}, a_{z} \quad$ coordinates (components) of the vector $\overrightarrow{\mathbf{a}}$
$|\overrightarrow{\mathbf{a}}| \quad$ absolute value, length of the vector $\overrightarrow{\mathbf{a}}$
α a
multiplication of a vector by a scalar
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}},(\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}) \quad$ scalar product, dot product
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}},[\overrightarrow{\mathbf{a} \mathbf{b}}] \quad$ vector product, cross product
$\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \quad$ parallelepipedal product, mixed product (triple scalar product)
ㅇ, $\overrightarrow{0}$
zero vector
\boldsymbol{T} tensor
$G=(V, E) \quad$ graph with the set of vertices V and the set of edges E

Geometry

Complex Numbers

$\mathrm{i}($ sometimes j$)$	imaginary unit $\left(\mathrm{i}^{2}=-1\right)$	I	imaginary unit in computer algebra
$\operatorname{Re}(z)$	real part of the number z	$\operatorname{Im}(z)$	imaginary part of the number z
$\|z\|$	absolute value of z	$\arg z$	argument of the number z
\bar{z} or z^{*}	complex conjugate of z, e.g., $z=2+3 \mathrm{i}$,	$\operatorname{Ln} z$	logarithm (natural) of a complex num-
	$\bar{z}=2-3 \mathrm{i}$		ber z

Trigonometric Functions, Hyperbolic Functions

\sin	sine	\cos	cosine
\tan	tangent	cot	cotangent
sec	secant	cosec	cosecant
\arcsin	principal value of arc sine (sine inverse)	arccos	principal value of arc cosine (cosine inverse)
arctan	principal value of arc tangent (tangent inverse)	arccot	principal value of arc cotangent (cotangent inverse)
arcsec	principal value of arc secant (secant inverse)	$\operatorname{arccosec}$	principal value of arc cosecant (cosecant inverse)
sinh	hyperbolic sine	cosh	hyperbolic cosine
tanh	hyper bolic tangent	coth	hyperbolic cotangent
sech	hyperbolic secant	cosech	hyperbolic cosecant
Arsinh	area-hyperbolic sine	Arcosh	area-hyperbolic cosine
Artanh	area-hyperbolic tangent	Arcoth	area-hyperbolic cotangent
Arsech	area-hyperbolic secant	Arcosech	area-hyperbolic cosecant

Analysis

$\lim _{n \rightarrow \infty} x_{n}=A$
$\lim _{x \rightarrow a} f(x)=B$
$f=o(g)$ for $x \rightarrow a$
$f=O(g)$ for $x \rightarrow a$
$\sum_{i=1}^{n}, \sum_{i=1}^{n}$
$\prod_{i=1}^{n}, \prod_{i=1}^{n}$
$f(), \varphi()$
Δ
d
$\frac{d}{d x}, \frac{d^{2}}{d x^{2}}, \ldots, \frac{d^{n}}{d x^{n}}$
$\left.\begin{array}{l}f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), \\ f^{(4)}(x), \ldots, f^{(n)}(x) \\ \text { or } \\ \dot{y}, \ddot{y}, \ldots, y^{(n)}\end{array}\right\}$
A is the limit of the sequence $\left(x_{n}\right)$. We also write $x_{n} \rightarrow A$ as $n \rightarrow \infty$;
e.g., $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
B is the limit of the function $f(x)$ as x tends to a
Landau symbol "small o" means: $f(x) / g(x) \rightarrow 0$ as $x \rightarrow a$
Landau symbol "big O" means: $f(x) / g(x) \rightarrow C(C=$ const, $C \neq 0)$ as $x \rightarrow a$ sum of n terms for i equals 1 to n
product of n factors for i equals 1 to n
notation for a function, e.g., $y=f(x), u=\varphi(x, y, z)$
difference or increment, e.g., Δx (delta x)
differential, e.g., $d x$ (differential of x)
determination of the first, second, \ldots, n-th derivative with respect to x
first, second, ..., n-th derivative of the function $f(x)$ or of the function y
$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial^{2}}{\partial x^{2}}, \ldots$
$\frac{\partial^{2}}{\partial x \partial y}$
$f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}, \ldots$
D
grad
div
rot
$\nabla=\frac{\partial}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial}{\partial z} \overrightarrow{\mathbf{k}}$
$\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
$\frac{\partial \varphi}{\partial \overrightarrow{\mathbf{a}}}$
$\int_{a}^{b} f(x) d x$
$\int_{(C)} f(x, y, z) d s$

$$
\oint_{(C)} f(x, y, z) d s
$$

$$
\iint_{(S)} f(x, y) d S=\iint_{(S)} f(x, y) d x d y
$$

$$
\int_{(S)} f(x, y, z) d S=\iint_{(S)} f(x, y, z) d S
$$

$$
\int_{(V)} f(x, y, z) d V=\iiint_{(V)} f(x, y, z) d x d y d z
$$

$$
\left.\begin{array}{l}
\oint_{(S)} U(\overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{d} \mathbf{S}}=\oiint_{(S)} U(\overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{d S}} \\
\oint_{(S)} \overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}}) \cdot \overrightarrow{\mathbf{d S}}=\oiint_{(S)} \overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}}) \cdot \overrightarrow{\mathbf{d S}} \\
\oint_{(S)} \overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}}) \times \overrightarrow{\mathbf{d} \mathbf{S}}=\oiint_{(S)} \overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}}) \times \overrightarrow{\mathbf{d S}}
\end{array}\right\}
$$

$A=\max !$
$A=\max$
determination of the first, second, ..., n-th partial derivative
determination of the second partial derivative first with respect to x, then with respect to y
first, second, ... partial derivative of function $f(x, y)$
differential operator, e.g., $D y=y^{\prime}, D^{2} y=y^{\prime \prime}$
gradient of a scalar field $(\operatorname{grad} \varphi=\nabla \varphi)$
divergence of a vector field ($\operatorname{div} \overrightarrow{\mathbf{v}}=\nabla \cdot \overrightarrow{\mathbf{v}})$
rotation or curl of a vector field (rot $\overrightarrow{\mathbf{v}}=\nabla \times \overrightarrow{\mathbf{v}})$
nabla operator, here in Cartesian coordinates (also called the Hamiltonian differential operator, not to be confused with the Hamilton operator in quantum mechanics)

Laplace operator
directional derivative, i.e., derivative of a
scalar field φ into the direction $\overrightarrow{\mathbf{a}}: \frac{\partial \varphi}{\partial \overrightarrow{\mathbf{a}}}=\overrightarrow{\mathbf{a}} \cdot \operatorname{grad} \varphi$
definite integral of the function f between the limits a and b
line integral of the first kind with respect to the space curve C with arclength s
integral along a closed curve (circulatory integral)
double integral over a planar region S
surface integral of the first kind over a spatial surface S (see (8.152b), p. 482)
triple integral or volume integral over the volume V
surface integrals over a closed surface in vector analysis
expression A is to be maximized, similarly min!, extreme!
expression A is maximal, similarly min, extreme.

