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Abstract. Employing Gasper and Rahman’s quadratic summation, the method of “cre-
ative microscoping” developed by the first author and Zudilin, and the Chinese remain-
der theorem for coprime polynomials, we prove some new q-supercongruences modulo the
third and fourth powers of a cyclotomic polynomial. As a conclusion, we obtain some
new supercongruences, such as: for primes p > 13 with p ≡ 1 (mod 4),

(3p+1)/4∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k

(k + 1)!k!34k
≡ 0 (mod p4),

where (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k > 1.
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1 Introduction

In 1914, Ramanujan [16] discovered some series for 1/π (see also [1, p. 352]), such as

∞∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
=

4

π
, (1.1)

where (a)k = a(a+1) · · · (a+k−1) is the Pochhammer symbol. The formula (1.1) was first
proved by J.M. Borwein and P.B. Borwein in their monograph [2, pp. 177–187]. In 1997,
Van Hamme [17] proposed 13 p-adic analogues of Ramanujan-type series. For example,
he conjectured that the following supercongruence holds for primes p > 3:

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)(p−1)/2p (mod p4),

*Corresponding author.
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which was later confirmed by Long [14]. In 2017, He [10] gave the following two similar
supercongruences: for any odd prime p,

p−1∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)k

k!44k
≡

{
(−1)(p+3)/4pΓp(

1
2
)Γp(

1
4
)2 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),

(1.2)

where Γp(x) is Morita’s p-adic Gamma function [15], and conjectured that (1.2) also holds
modulo p4 for p ≡ 3 (mod 4). Liu and Wang [13] observed that the supercongruence
(1.2) modulo p3 is a consequence of the following q-supercongruence: for any positive odd
integer n, modulo [n]Φn(q)2,

(n−1)/2∑

k=0

[6k + 1]
(q; q2)3

k(q; q
4)kq

k2+k

(q2; q2)k(q4; q4)3
k

≡




(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

[n]q(1−n)/4 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

which is just the (a, b) = (1, q) case of [8, Theorem 4.5]. Applying the “creative microscop-
ing” method introduced by the first author and Zudilin [8], Wei [18] extended the above
q-supercongruence to the modulus [n]Φn(q)3, thus confirming He’s conjecture. Here and
in what follows, for all complex numbers x, q and nonnegative integers n, the q-shifted
factorials are defined as

(x; q)∞ =
∞∏

k=1

(1− xqk), and (x; q)n =
(x; q)∞

(xqn; q)∞
.

For simplicity, we shall also adopt the compact notation (x1, . . . , xm; q)n = (x1; q)n · · · (xm; q)n

for n = 0, 1, 2, . . . , or n = ∞. Moreover, let [n] = (1 − qn)/(1 − q) be the q-integer, and
let Φn(q) denote the n-th cyclotomic polynomial, which can be written as

Φn(q) =
∏

1≤k≤n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
Inspired by the aforementioned work, we shall establish the following q-supercongruence.

Theorem 1.1. Let n be an integer with n ≡ 1 (mod 4) and n > 9. Then

(3n+1)/4∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q2)k(q4; q4)3
k

qk2+3k ≡ 0 (mod [n]Φn(q)3). (1.3)

Note that the q-supercongruence (1.3) modulo [n]Φn(q)2 follows from the (a, b) =
(1, q−1) case of [8, Theorem 4.5]. For n prime, letting q → 1 in (1.3), we arrive at the
following result: for any prime p > 13 with p ≡ 1 (mod 4),

(3p+1)/4∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k

(k + 1)!k!34k
≡ 0 (mod p4).

We shall also give a variation of Theorem 1.1 as follows.
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Theorem 1.2. Let n be an integer with n ≡ 1 (mod 4) and n > 5. Then, modulo
[n]Φn(q)3,

n−1∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q2)k(q4; q4)3
k

qk2+3k ≡ − [n]3[3n](1 + q)

[2n]
q(9n2−5n)/4+1. (1.4)

Similarly as before, we can deduce the following conclusion from (1.4): for any prime
p ≡ 1 (mod 4),

p−1∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k

(k + 1)!k!34k
≡ −3p3 (mod p4). (1.5)

We have the following q-supercongruence, which is a companion of (1.3).

Theorem 1.3. Let n be a positive integer with n ≡ 3 (mod 4). Then

(n−1)/2∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q2)k(q4; q4)3
k

qk2+3k

≡ −[n]q(n+5)/4 (q−2; q4)(n+1)/4

(q4; q4)(n+1)/4


1− [n]2

(n+1)/4∑
j=1

q4j

[4j]2


 (mod [n]Φn(q)3). (1.6)

For n prime, letting q → 1 in (1.6), we get the following conclusion: for any prime
p ≡ 3 (mod 4),

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k

(k + 1)!k!34k
≡ −p

(−1
2
)(p+1)/4

(1)(p+1)/4


1− p2

16

(p+1)/4∑
j=1

1

j2


 (mod p4). (1.7)

It seems that the following generalization of (1.5) modulo p3 is true.

Conjecture 1.4. Let p ≡ 1 (mod 4) be a prime and r > 1. Then

pr−1∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k

(k + 1)!k!34k
≡ 0 (mod p3r). (1.8)

The supercongruence (1.8) may be regarded as a reduced Dwork-type supercongruence
(see [3]). A number of Dwork-type supercongruences are proved in [5, 9] by an upgraded
version of the creative microscoping method. Perhaps the method therein can be utilized
to tackle the above conjecture.

He [10] also proved the following supercongruence:

p−1∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)2
k

k!5
≡

{−pΓp(
1
4
)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.9)

3



and conjectured that it is also true modulo p3 for p ≡ 3 (mod 4). Liu [12] confirmed this
conjecture of He. Wei [18] further generalized He’s supercongruence (1.9) to the modulus
p5 case by establishing a q-analogue of it.

Motivated by Wei’s work, we shall build the following q-supercongruences.

Theorem 1.5. Let n be an integer with n ≡ 1 (mod 4) and n > 9. Then

(3n+1)/4∑

k=0

[6k + 1]
(q; q2)3

k(q
−1, q; q4)k

(q4, q2, q−1; q2)k(q4; q4)2
k

q2k ≡ 0 (mod [n]Φn(q)2). (1.10)

Likewise, we may derive the following supercongruence from (1.10): for any prime
p > 13 with p ≡ 1 (mod 4),

(3p+1)/4∑

k=0

(6k + 1)
(1

2
)3
k(−1

4
)k(

1
4
)k

(k + 1)!k!3(−1
2
)k

≡ 0 (mod p3).

We believe that the following extension of Theorem 1.5 should be true.

Conjecture 1.6. Let n be an integer with n ≡ 1 (mod 4) and n > 9. Then, modulo
[n]Φn(q)3,

(3n+1)/4∑

k=0

[6k + 1]
(q; q2)3

k(q
−1, q; q4)k

(q4, q2, q−1; q2)k(q4; q4)2
k

q2k ≡ 0, (1.11)

n−1∑

k=0

[6k + 1]
(q; q2)3

k(q
−1, q; q4)k

(q4, q2, q−1; q2)k(q4; q4)2
k

q2k ≡ − [n]3[3n](1 + q)

[2n]
q(n2−n)/2+1. (1.12)

Furthermore, can we generalize the q-supercongruences (1.11) and (1.12) to the mod-
ulus [n]Φn(q)4 case? Note that there exists a q-supercongruence modulo [n]Φn(q)4 in [18],
which is also deduced from Gasper and Rahman’s summation (1.13).

Recall that a quadratic summation of Gasper and Rahman (see [4, eq. (3.8.12)]) can
be stated as follows:

∞∑

k=0

1− aq3k

1− a

(a, b, q/b; q)k(d, f, a2q/df ; q2)kq
k

(aq/d, aq/f, df/a; q)k(q2, aq2/b, abq; q2)k

+
(aq, f/a, b, q/b; q)∞(d, a2q/df, fq2/d, df2q/a2; q2)∞

(a/f, fq/a, aq/d, df/a; q)∞(aq2/b, abq, fq/ab, bf/a; q2)∞

×
∞∑

k=0

(f, bf/a, fq/ab; q2)kq
2k

(q2, fq2/d, df2q/a2; q2)k

=
(aq, f/a; q)∞(aq2/bd, abq/d, bdf/a, dfq/ab; q2)∞
(aq/d, df/a; q)∞(aq2/b, abq, bf/a, fq/ab; q2)∞

. (1.13)

Gasper and Rahman’s summation (1.13) is very important in the investigate of q-congruences.
See [7, 11, 18]. We shall prove Theorem 1.1–1.5 by applying Gasper and Rahman’s sum-
mation (1.13) in Sections 2–5.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we first give the following lemma.

Lemma 2.1. Let n > 1 be an odd integer. Then

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b3; q4)kq
(k2+3k)b3k

(q4, q4/a, aq4; q4)k(b3q4; q2)k

≡ 0 (mod Φn(q)). (2.1)

Proof. Putting d = q−2n and then taking n →∞ in (1.13), we obtain

∞∑

k=0

1− aq3k

1− a

(a, b, q/b; q)k(f ; q2)kq
(k2+k)/2

(q2, aq2/b, abq; q2)k(aq/f ; q)k

(
a

f

)k

=
(aq, aq2, aq2/bf, abq/f ; q2)∞
(aq/f, aq2/f, aq2/b, abq; q2)∞

, (2.2)

which was already noticed by [18, eq. (2.2)]. Letting q 7→ q2, a = q1−n, b = aq, and
f = q−1/b3 in (2.2), we find that

(n−1)/2∑

k=0

1− q6k+1−n

1− q1−n

(q1−n, aq, q/a; q2)k(q
−1/b3; q4)kq

(k2+k)

(q4, q4−n/a, aq4−n; q4)k(b3q4−n; q2)k

(b3q2−n)k

=
(q3−n, q5−n, b3q5−n/a, ab3q5−n; q4)∞
(aq4−n, q4−n/a, b3q4−n, b3q6−n; q4)∞

= 0

because of the factor (q3−n, q5−n; q4)∞ = 0 in the numerator. The proof then follows from
the fact qn ≡ 1 (mod Φn(q)). 2

Lemma 2.2. Let n > 1 be an odd integer. Then

M∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q4)3
k(q

4; q2)k

qk2+3k ≡ 0 (mod [n]), (2.3)

where M = (3n + 1)/4 if n ≡ 1 (mod 4), and M = (n− 1)/2 if n ≡ 3 (mod 4).

Proof. For n ≡ 1 (mod 4), let cq(k) be the k-th term on the left-hand side of (2.1) with
a = b = 1, i.e.,

cq(k) = [6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q4)3
k(q

4; q2)k

qk2+3k.

Let ζ 6= 1 be an n-th root of unity. Namely, ζ is a primitive root of unity of degree m | n.
The a = b = 1 case of q-congruence (2.1) with n = m indicates that: if m ≡ 1 (mod 4),
then

m−1∑

k=0

cζ(k) =

(3m+1)/4∑

k=0

cζ(k) = 0.
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In terms of the relation

cζ(jm + k)

cζ(jm)
= lim

q→ζ

cq(jm + k)

cq(jm)
= cζ(k),

we have

(3n+1)/4∑

k=0

cζ(k) =

(3n/m−7)/4∑
j=0

cζ(jm)
m−1∑

k=0

cζ(k) +

(3m+1)/4∑

k=0

cζ(k + 3(n−m)/4) = 0. (2.4)

If m ≡ 3 (mod 4), then
m−1∑

k=0

cζ(k) =

(m+1)/4∑

k=0

cζ(k) = 0,

and so

(3n+1)/4∑

k=0

cζ(k) =

(3n/m−5)/4∑
j=0

cζ(jm)
m−1∑

k=0

cζ(k) +

(m+1)/4∑

k=0

cζ(k + (3n−m)/4) = 0. (2.5)

The identities (2.4) and (2.5) imply that
∑(3n+1)/4

k=0 cq(k) is divisible by the cyclotomic
polynomials Φm(q). Since this is true for all divisors m > 1 of n, we conclude that it is
divisible by

∏
m|n,m>1 Φm(q) = [n]. This proves (2.3) for the first case.

Similarly we can prove (2.3) for the second case. 2

We now present a parametric extension of Theorem 1.1.

Theorem 2.3. Let n > 1 be an integer with n ≡ 1 (mod 4). Then modulo Φn(q)(1 −
aqn)(a− qn)(b− qn),

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b3; q4)k

(q4, q4/a, aq4; q4)k(b3q4; q2)k

qk2+3kb3k

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)

(q5, b−3; q4)(n−1)/4(b
3q)(n−1)/4

(b3q6, q; q4)(n−1)/4

+
(1− aqn)(a− qn)

(a− b)(1− ab)

(q5, q3; q4)(3n+1)/4

(aq4, q4/a; q4)(3n+1)/4

. (2.6)

Proof. For a = qn or a = q−n, the left-hand side of (2.6) can be written as

(3n+1)/4∑

k=0

[6k + 1]
(q, q1−n, q1+n; q2)k(q

−1/b3; q4)k

(q4, q4+n, q4−n; q4)k(b3q4; q2)k

qk2+3kb3k, (2.7)
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where we used (q1−n; q2)k = 0 for k > (n − 1)/2. Letting q 7→ q2, and taking a = q,
b = q1−n, f = q−1/b3 in (2.2), the expression (2.7) is equal to

(q3, q5, b3q5+n, b3q5−n; q4)∞
(b3q4, b3q6, q4+n, q4−n; q4)∞

=
(b3q5−n; q4)(n−1)/4(q

5; q4)(n−1)/4

(q4−n; q4)(n−1)/4(b3q6; q4)(n−1)/4

=
(q5, b−3; q4)(n−1)/4(b

3q)(n−1)/4

(b3q6, q; q4)(n−1)/4

.

Since 1−aqn and a−qn are coprime polynomials, we deduce that, modulo (1−aqn)(a−qn),

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b3; q4)k

(q4, q4/a, aq4; q4)k(b3q4; q2)k

qk2+3kb3k ≡ (q5, b−3; q4)(n−1)/4(b
3q)(n−1)/4

(b3q6, q; q4)(n−1)/4

.

(2.8)

For b = qn, the left-hand side of (2.6) can be written as

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1−3n; q4)kq
k2+3k+3nk

(q4, aq4, q4/a; q4)k(q4+3n; q2)k

. (2.9)

Putting q 7→ q2, a = q, b = aq, and f = q−1−3n in (2.2), the summation (2.9) is equal to

(q3, q5, q5+3n/a, aq5+3n; q4)∞
(q4+3n, q6+3n, q4/a, aq4; q4)∞

=
(q5, q3; q4)(3n+1)/4

(aq4, q4/a; q4)(3n+1)/4

.

This establishes the q-congruence: modulo b− qn,

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b3; q4)k

(q4, q4/a, aq4; q4)k(b3q4; q2)k

qk2+3kb3k ≡ (q5, q3; q4)(3n+1)/4

(aq4, q4/a; q4)(3n+1)/4

. (2.10)

It is clear that Φn(q)(1− aqn)(a− qn) is coprime with b− qn . Noting the relations

(b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)
≡ 1 (mod (1− aqn)(a− qn)), (2.11)

(1− aqn)(a− qn)

(a− b)(1− ab)
≡ 1 (mod (b− qn)), (2.12)

and employing the Chinese reminder theorem for coprime polynomials, we obtain (2.6)
from (2.1), (2.8) and (2.10). 2

Proof of Theorem 1.1. The b = 1 case of (2.6) produces the q-congruence: modulo Φn(q)2(1−
aqn)(a− qn),

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1; q4)k

(q4, q4/a, aq4; q4)k(q4; q2)k

qk2+3k

≡ −(1− aqn)(a− qn)

(1− a)2

(q5, q3; q4)(3n+1)/4

(aq4, q4/a; q4)(3n+1)/4

. (2.13)
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Clearly, the q-shifted factorial (q3, q5; q4)(3n+1)/4 contains the factor (1− q3n)(1− qn). The
right-hand side of (2.13) vanishes modulo Φn(q)2(1− aqn)(a− qn).

Letting a → 1 in (2.13), we see that (1.3) holds modulo Φn(q)4. By (2.3), the q-
congruence (1.3) also holds modulo [n]. Thus, the proof follows from the fact that the
least common multiple of Φn(q)4 and [n] is [n]Φn(q)3. 2

3 Proof of Theorem 1.2

It is easy to check that Theorem 1.2 is true for n = 5. We now assume that n > 9.
Consider the summation

n−2∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q2)k(q4; q4)3
k

qk2+3k. (3.1)

For (3n + 1)/4 < k 6 n−2, the numerator (q; q2)3
k(q

−1; q4)k has the factor (1−qn)3(1−q3n),
and the denominator (q4; q2)k(q

4; q4)3
k is coprime with Φn(q). It follows that

n−2∑

k=(3n+5)/4

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q2)k(q4; q4)3
k

qk2+3k ≡ 0 (mod Φn(q)4).

This, together with (1.3), implies that (3.1) is congruent to 0 modulo Φn(q)4, and therefore
the left-hand side of (1.4) is congruent to

[6n− 5]
(q; q2)3

n−1(q
−1; q4)n−1

(q4; q2)n−1(q4; q4)3
n−1

qn2+n−2 (mod Φn(q)4).

It is easy to see that

(q−1; q4)n−1 = (−1)(3n+1)/4q(3n−5)(3n+1)/8(q4−3n; q4)(3n+1)/4(1− q3n)(q3n+4; q4)(n−9)/4,

(q; q2)n−1 = (q; q2)(n−1)/2(1− qn)(qn+2; q2)(n−3)/2,

(q4; q4)n−1 = (q2; q2)(n−1)/2(q
n+1; q2)(n−1)/2(−q2; q2)n−1,

(q4; q2)n−1 = (q2; q2)n−1[n]q2 .

Thus, by making use of qn ≡ 1 (mod Φn(q)) and the following two q-congruences (see [6,
eq. (2.3)]):

(q; q)n−1 ≡ n (mod Φn(q)), and (−q; q)n−1 ≡ 1 (mod Φn(q)),

we have

[6n− 5]
(q; q2)3

n−1(q
−1; q4)n−1

(q4; q2)n−1(q4; q4)3
n−1

qn2+n−2 ≡ (1− qn)3(1− q3n)(1 + q)

(1− q−1)3(1− q2n)
q(9n2−5n)/4−2

≡ −[n]3[3n](1 + q)

[2n]
q(9n2−5n)/4+1 (mod Φn(q)4).

This proves that (1.4) is true modulo Φn(q)4. Similarly as before, we can prove it is true
modulo [n].
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4 Proof of Theorem 1.3

We first construct a parametric version of Theorem 1.3.

Theorem 4.1. Let n be a positive integer with n ≡ 3 (mod 4). Then modulo Φn(q)(1−
aqn)(a− qn)(b− qn),

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b; q4)k

(q4, q4/a, aq4; q4)k(bq4; q2)k

qk2+3kbk

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)

(q3, 1/bq2; q4)(n+1)/4(bq)
(n+1)/4

(bq4, q−1; q4)(n+1)/4

+
(1− aqn)(a− qn)

(a− b)(1− ab)

(q5, q3; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

. (4.1)

Proof. Letting q 7→ q2, and taking a = q, b = q1−n, and f = q−1/b in (2.2), we obtain the
following identity:

(n−1)/2∑

k=0

[6k + 1]
(q, q1−n, q1+n; q2)k(q

−1/b; q4)k

(q4, q4+n, q4−n; q4)k(bq4; q2)k

qk2+3kbk =
(q3, 1/bq2; q4)(n+1)/4

(bq4, q−1; q4)(n+1)/4

(bq)(n+1)/4.

This means that, modulo (1− aqn)(a− qn),

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1/b; q4)k

(q4, aq4, q4/a; q4)k(bq4; q2)k

qk2+3kbk ≡ (q3, 1/bq2; q4)(n+1)/4

(bq4, q−1; q4)(n+1)/4

(bq)(n+1)/4.

(4.2)

On the other hand, putting q 7→ q2, a = q, b = aq, and f = q−1−n in (2.2), we get

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1−n; q4)k

(q4, aq4, q4/a; q4)k(q4+n; q2)k

qk2+3k+nk =
(q3, q5; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

.

In other words, we have the q-congruence: modulo b− qn,

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1−n/b; q4)k

(q4, aq4, q4/a; q4)k(q4+n; q2)k

qk2+3kbk ≡ (q3, q5; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

. (4.3)

Applying (2.11), (2.12), and the Chinese reminder theorem for polynomials, we con-
clude (4.1) from (2.1), (4.2), and (4.3). 2
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Proof of Theorem 1.3. Letting b = 1 in (4.1), we obtain the q-congruence: modulo Φn(q)2(1−
aqn)(a− qn),

(n−1)/2∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q

−1; q4)k

(q4, aq4, q4/a; q4)k(q4; q2)k

qk2+3k

≡ −[n]q(n+5)/4 (q−2; q4)(n+1)/4

(q4; q4)(n+1)/4

+
(1− aqn)(a− qn)

(1− a)2

(
(q3, q−2; q4)(n+1)/4

(q4, q−1; q4)(n+1)/4

q(n+1)/4 − (q3, q5; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

)

≡ −[n]q(n+5)/4 (q−2; q4)(n+1)/4

(q4; q4)(n+1)/4

+
(1− aqn)(a− qn)

(1− a)2

(
(q3, q5; q4)(n+1)/4

(q4, q4; q4)(n+1)/4

− (q3, q5; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

)
. (4.4)

By the L’Hôpital rule, there holds

lim
a→1

(1− aqn)(a− qn)

(1− a)2

(
(q3, q5; q4)(n+1)/4

(q4, q4; q4)(n+1)/4

− (q3, q5; q4)(n+1)/4

(aq4, q4/a; q4)(n+1)/4

)

= −[n]2
(q3, q5; q4)(n+1)/4

(q4, q4; q4)(n+1)/4

(n+1)/4∑
j=1

q4j

[4j]2
.

Letting a → 1 in (4.4) and using the above limit, we obtain the q-congruence: modulo
Φn(q)4,

(n−1)/2∑

k=0

[6k + 1]
(q; q2)3

k(q
−1; q4)k

(q4; q4)3
k(q

4; q2)k

qk2+3k

≡ −[n]q(n+5)/4 (q−2; q4)(n+1)/4

(q4; q4)(n+1)/4

− [n]2
(q3, q5; q4)(n+1)/4

(q4, q4; q4)(n+1)/4

(n+1)/4∑
j=1

q4j

[4j]2

≡ −[n]q(n+5)/4 (q−2; q4)(n+1)/4

(q4; q4)(n+1)/4


1− [n]2

(n+1)/4∑
j=1

q4j

[4j]2


 .

In light of (2.3), we compete the proof the theorem. 2

5 Proof of Theorem 1.5

We have the following parametric version of Theorem 1.5.
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Theorem 5.1. Let n be a positive integer with n ≡ 1 (mod 4) and n > 9. Then modulo
Φn(q)(1− aqn)(a− qn),

(3n+1)/4∑

k=0

[6k + 1]
(q, aq, q/a; q2)k(q, q

−1; q4)k

(aq4, q4/a; q4)k(q4, q2, q−1; q2)k

q2k ≡ 0. (5.1)

Proof. Letting a = q1−n, b = aq, d = q, f = q−1, and q 7→ q2 in (1.13), we obtain

(3n+1)/4∑

k=0

1− q1+6k−n

1− q1−n

(q1−n, aq, q/a; q2)k(q
4−2n, q, q−1; q4)k

(aq4−n, q4−n/a, q4; q4)k(q4−n, q2−n, qn−1; q2)k

q2k

=
(q3−n, qn−2; q2)∞(q3−n/a, aq3−n, aqn, qn/a; q4)∞

(q2−n, qn−1; q2)∞(q4−n/a, aq4−n, aqn−1, qn−1/a; q4)∞
= 0,

where we have used the fact that (q3−n; q2)∞ = 0. Since qn ≡ 1 (mod Φn(q)), we conclude
that (5.1) is true modulo Φn(q). On the other hand, taking a = q, b = q1+n, d = q, f = q−1

and q 7→ q2 in (1.13), we have

(3n+1)/4∑

k=0

[6k + 1]
(q, q1+n, q1−n; q2)k(q, q

−1; q4)k

(q4+n, q4+n; q4)k(q4, q2, q−1; q2)k

q2k = 0.

This proves the truth of (5.1) modulo (1−aqn)(a−qn). Therefore, the q-congruence (5.1)
holds. 2

Proof of Theorem 1.5. Letting a = 1 in (5.1), we see that (1.10) holds modulo Φn(q)3.
Along the same lines of the proof of Lemma 2.2, we can prove that it also holds modulo
[n]. 2
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