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Abstract. Employing Gasper and Rahman’s quadratic summation, the method of “cre-
ative microscoping” developed by the first author and Zudilin, and the Chinese remain-
der theorem for coprime polynomials, we prove some new g-supercongruences modulo the
third and fourth powers of a cyclotomic polynomial. As a conclusion, we obtain some
new supercongruences, such as: for primes p > 13 with p = 1 (mod 4),
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where (a)g =1 and (a)y =ala+1)---(a+k—1) for k > 1.
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1 Introduction

In 1914, Ramanujan [16] discovered some series for 1/7 (see also [1, p. 352]), such as

36k + 1) 2 % (1.1)

k!34F
k=0

where (a), = a(a+1)--- (a+k—1) is the Pochhammer symbol. The formula (1.1) was first
proved by J.M. Borwein and P.B. Borwein in their monograph [2, pp. 177-187]. In 1997,
Van Hamme [17] proposed 13 p-adic analogues of Ramanujan-type series. For example,
he conjectured that the following supercongruence holds for primes p > 3:

(p—l)/Q (1)3
> (6k+1) 5 = (=12 (mod p),
k=0 ’
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which was later confirmed by Long [14]. In 2017, He [10] gave the following two similar
supercongruences: for any odd prime p,

- ( B _ [N ()T(5)? (mod p?), ifp=1 (mod 4),
kzg 6]€ + |44k {O (mod pZ)’ lfp —3 (mod 4)7
(1.2)

where I',(z) is Morita’s p-adic Gamma function [15], and conjectured that (1.2) also holds
modulo p* for p = 3 (mod 4). Liu and Wang [13] observed that the supercongruence
(1.2) modulo p? is a consequence of the following g-supercongruence: for any positive odd

integer n, modulo [n]®,(q)?,

(n=1)/2 2 (@5 ") n—1)/4 . e
S [6k+ 1] (¢ *)igs qY)wd" m[n]q(l M ifp=1 (mod 4),
. 4. ,4\3 - ) n—
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which is just the (a,b) = (1, ¢) case of [8, Theorem 4.5]. Applying the “creative microscop-
ing” method introduced by the first author and Zudilin [8], Wei [18] extended the above
g-supercongruence to the modulus [n]®,(q)3, thus confirming He’s conjecture. Here and
in what follows, for all complex numbers x, ¢ and nonnegative integers n, the g-shifted
factorials are defined as

o0

(73 @)oo
kHl (4™ @)oo
For simplicity, we shall also adopt the compact notation (1, ..., Zm;@)n = (€1, ¢)n -+ (Tm; On

for n =0,1,2,..., or n = co. Moreover, let [n] = (1 —¢")/(1 — q) be the g-integer, and
let ®,,(q) denote the n-th cyclotomic polynomial, which can be written as

Oug)= [[ (@—¢)

1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity.
Inspired by the aforementioned work, we shall establish the following g-supercongruence.

Theorem 1.1. Let n be an integer withn =1 (mod 4) and n > 9. Then

(3n+1)/4

> [6I<:+1](<’42>j§

k=0 4q

q 5q 2
( )qu =0 (mod [n]®,(q)?). (1.3)
k(g ')

Note that the g-supercongruence (1.3) modulo [n]®,(¢)* follows from the (a,b) =
(1,q71) case of [8, Theorem 4.5]. For n prime, letting ¢ — 1 in (1.3), we arrive at the
following result: for any prime p > 13 with p =1 (mod 4),

(3p+1)/4 (1)3(_1) A
kz:; (6k + 1)m =0 (mod p).

We shall also give a variation of Theorem 1.1 as follows.

2



Theorem 1.2. Let n be an integer with n = 1 (mod 4) and n > 5. Then, modulo
[n]@n(q)°,

(6 R0k oo _[PBANO+0) o smyas
k0[6k’—|—1] (¢% )i (g 4) 34 = 201 q . (1.4)

Similarly as before, we can deduce the following conclusion from (1.4): for any prime
p=1 (mod 4),

S 6k + 1)% =—3p° (mod pY). (1.5)
k=0

We have the following g-supercongruence, which is a companion of (1.3).

Theorem 1.3. Let n be a positive integer with n = 3 (mod 4). Then

(mod [n]®,(q)%). (1.6)

+
(4% ¢ n41)/a
= _ [ ]q(n+5)/4

(¢4 q )(n+1)/4 ;

For n prime, letting ¢ — 1 in (1.6), we get the following conclusion: for any prime
p =3 (mod 4),

Y D _ Do (2T L
6k + 1 40 = _p 2P 1—=— — mod p*). (1.7
kzzo ( )(k DIRBEE =~ P M) graya 16 ; 7 (mod 7). {1.7)

It seems that the following generalization of (1.5) modulo p? is true.

Conjecture 1.4. Let p=1 (mod 4) be a prime and r > 1. Then

kz:%((ﬂs + 1)% =0 (mod p*"). (1.8)

The supercongruence (1.8) may be regarded as a reduced Dwork-type supercongruence
(see [3]). A number of Dwork-type supercongruences are proved in [5,9] by an upgraded
version of the creative microscoping method. Perhaps the method therein can be utilized
to tackle the above conjecture.

He [10] also proved the following supercongruence:

p—1 (%)3(_)% _ _pr(%l)4 (mod p?), ifp=1 (mod 4),
;(6k T ko {O (mod p?), if p=3 (mod 4), (19)



and conjectured that it is also true modulo p? for p = 3 (mod 4). Liu [12] confirmed this
conjecture of He. Wei [18] further generalized He’s supercongruence (1.9) to the modulus
p° case by establishing a g-analogue of it.

Motivated by Wei’s work, we shall build the following g-supercongruences.

Theorem 1.5. Let n be an integer with n =1 (mod 4) and n > 9. Then

(3n+1)/4

S 6k +1] (qqu;f q)kf_q;g)’quq&);)z =0 (mod [n]®,(g)?).  (1.10)

Likewise, we may derive the following supercongruence from (1.10): for any prime
p > 13 with p=1 (mod 4),

(3p+1)/4 1\3/_ 1y (1
S s D~ (),

We believe that the following extension of Theorem 1.5 should be true.

Conjecture 1.6. Let n be an integer with n = 1 (mod 4) and n > 9. Then, modulo
[n]@n(q),

(3n+1)/4

(GO G d)r o
Z [6k +1] (% 2 ¢ 1 ¢2)u(gh; q4)zq =0, (1.11)
k_:0 ) ) ) )
n—1 _
6k + 1] (GO G d)r o _ [n)[3n] (1 + q)q(ng—n)/2+1' (1.12)
prd (¢*, ¢ a7 "5 a*)n(a* ¢*)3 [2n]

Furthermore, can we generalize the g-supercongruences (1.11) and (1.12) to the mod-
ulus [n]®,,(q)* case? Note that there exists a g-supercongruence modulo [n]®,(q)* in [18],
which is also deduced from Gasper and Rahman’s summation (1.13).

Recall that a quadratic summation of Gasper and Rahman (see [4, eq. (3.8.12)]) can
be stated as follows:

i 1—ag®  (a,b,q/b;q)(d, f,a*q/df;¢*)id"
~ 1—a (ag/d aq/f,df|a;q)r(¢* aq®/b, abg; ¢*)x
(aq, f/a,b,q/b;9)se(d, a*q/df, f4*/d, df*q/a®; ¢*) s
(a/ [, fa/a,aq/d,df [a; q)e(ag? /b, abg, fq/ab,bf [a;q%) o
= (f,bf/a, fq/ab; ¢*)rg*
g % (¢, fa*/d. df?q/a* ¢*)i
(aq, f/a; q)sc(aq® /bd, abq/d, bdf [a, df q/ab; ¢°)

" (aq/d, df /a: q)ss(ag? /b, abq, bf Ja, fq]ab; q?)ss (1.13)

Gasper and Rahman’s summation (1.13) is very important in the investigate of g-congruences.
See [7,11,18]. We shall prove Theorem 1.1-1.5 by applying Gasper and Rahman’s sum-
mation (1.13) in Sections 2-5.




2 Proof of Theorem 1.1

To prove Theorem 1.1, we first give the following lemma.

Lemma 2.1. Let n > 1 be an odd integer. Then

(n—1)/2 ) ~1/13. k2-+3k) 3k
(9,09, /a;¢*)u(q ™" /0% " )pg® H3R0%
E [6k + 1] (4%, 4%/ a, agh (3% @) =0 (mod ®,(q))- (2.1)
k;:() ) ) ) )

Proof. Putting d = ¢?" and then taking n — oo in (1.13), we obtain

, (2.2)

i 1—ag™ (a,b,q/b;q)i(f; ¢?)rg® 072 <a>k _ (aq,aq?,aq®/bf,abq/ f; %)
0 1—a (g% aq?/b,abq; ¢®)i(aq/f; @)k (aq/ f,aq?/ f,aq?/b, abq; ¢*)o

which was already noticed by [18, eq. (2.2)]. Letting ¢ — ¢, a = ¢*™", b = aq, and
f=q'/b®in (2.2), we find that

(n—1)/2

1— g™ (¢ ag,q/a; )il /6% 4*)g ™Y (B3
—~ 1—g' (a7 a,aqt ) (B3 ¢
_ (qS—n’ (]5_”, b3q5—n/a, ab3q5—n; q4)oo 0
(ag*, ¢* " /a, b3 ™, 3¢5 ¢*)oo
because of the factor (¢>~", ¢°™; ¢*)s = 0 in the numerator. The proof then follows from
the fact ¢" =1 (mod ®,(q)). O
Lemma 2.2. Let n > 1 be an odd integer. Then
M
(q;qg)i(q s 4k k243K
6k + 1 ¢ " =0 (mod [n]), 2.3
2+ U " (23)

where M = (3n+1)/4 ifn=1 (mod 4), and M = (n—1)/2 if n =3 (mod 4).

Proof. For n =1 (mod 4), let ¢,(k) be the k-th term on the left-hand side of (2.1) with
a=b=1,1ie.,

co(k) = [6k + 1]( O30 ) o,
! (g% q*)i(a* ¢*)
Let ¢ # 1 be an n-th root of unity. Namely, ¢ is a primitive root of unity of degree m | n.

The a = b = 1 case of g-congruence (2.1) with n = m indicates that: if m =1 (mod 4),
then

(

m—1 (3m+1)/4
cc(k)y="Y_ cc(k)=0
k=0 k=0



In terms of the relation

ccim+k) _ oy, calgm+k) co(k),
ce(jm) a—C  cq(jm)
we have
(3n+1)/4 (B3n/m—"7)/4 m—1 (3m+1)/4
Yooelky= D> eclim)d celk)+ D ce(k+3(n—m)/4)=0. (24)
k=0 j=0 k=0 k=0

If m =3 (mod 4), then

m—1 (m+1)/4
k)= " (k) =0,
k=0 k=0
and so
(3n+1)/4 (3n/m—5)/4 m—1 (m+1)/4
k)= > celim)d clk)+ > cclk+(Bn—m)/4)=0. (25)
k=0 j=0 k=0 k=0

The identities (2.4) and (2.5) imply that Z,(:f(;r /4 cq(k) is divisible by the cyclotomic
polynomials ®,,(g). Since this is true for all divisors m > 1 of n, we conclude that it is
divisible by [] ®,,(¢) = [n]. This proves (2.3) for the first case.

mln,m>1 =M
Similarly we can prove (2.3) for the second case. O

We now present a parametric extension of Theorem 1.1.

Theorem 2.3. Let n > 1 be an integer with n = 1 (mod 4). Then modulo ®,(q)(1 —
aq”)(a —q")(b = "),
(3n+1)/4 -
S 6k 41 (9,09, 4/ )kl /0% )k gevgnp e
(¢*, q*/a, aq®; )r(b%¢"; ¢*)
(b—g")(ab—1—a®+aq") (¢°,07% ¢") ) a(bq) """
(a—b)(1 - ab) (6%¢%, 4 4*) (n-1)/

(1—ag")(a—q") (¢°, 4% q")sns1)/4

k=0

. 2.6
(= 0)(1—ab) (aa, 45 )isns 1y (26)
Proof. For a = ¢q" or a = ¢~ ", the left-hand side of (2.6) can be written as
3n+1)/4
( z:)/ 6k + 1] (04" a5 )kla /0% 0 )k v @27
— (g ¢ ™ ) (BPq*; ) ’



where we used (¢ ¢*)r, = 0 for k > (n — 1)/2. Letting ¢ — ¢*, and taking a = ¢,
b=q'™, f=q'/b®in (2.2), the expression (2.7) is equal to

(>, ¢, 0", 0P oo (0% 754" n1)/4(0° 4" (1) /4
(03*, 03¢, ¢* ™, * " qY) o (5 ¢ (n-1)/4 (0305 ¢F) (1) 4
_ (@07 ¢ (0P
(b3¢°, @5 ¢*) (n-1)/4 '

Since 1 —aqg"™ and a—¢™ are coprime polynomials, we deduce that, modulo (1—aq"™)(a—q"),

(3n+1)/4 3 B -
S [6k+1] (9,09, 4/@; 4*)k(a”" /O 4 ) poanpan _ (4050 32 4" 1y (D) D/
=0 (¢* ¢*/a, aq*; ¢*)1(Pq"; ¢*) (0345, 4 ¢*) (n-1)/4

(2.8)

For b = ¢, the left-hand side of (2.6) can be written as

(3n+1)/4 . o
S ok {000 UG Ola g T (2.9)
(¢* aq*, ¢*/a; ¢*)e (g3 ¢, :
k=0 Y Y ) N

Putting ¢ — ¢%, a = ¢, b=aq, and f = ¢ 173" in (2.2), the summation (2.9) is equal to

(@, @, " a,a”" Mo (0,050 31y

(g3, ¢53 g4 Ja, aq*; ¢Y)oo  (ag*, ¢*/a; q*) ns1y/a

This establishes the g-congruence: modulo b — ¢",

(3n+1)/4 ) —1/p3. g 5 3. 44
Z [6k+1] (Qaaan/avq )k(q / g )k k2+3kb3k — (q , 4754 )(3n+1)/4 ' (210)

(q*, a*/a, aq"; q*)u(b*q"; ¢°)i  (ag", ¢4/ a;¢*) 3n41) /4
It is clear that ®,,(q)(1 — ag¢™)(a — ¢") is coprime with b — ¢" . Noting the relations
(b—q")(ab—1—a?+ aq™)

k=0

=1 d(1—aq")(a—q" 2.11
oD (mod (1~ ag")(a — ")), (211)
(1 —ag")(a—q")
=1 d(b—q" 2.12
and employing the Chinese reminder theorem for coprime polynomials, we obtain (2.6)
from (2.1), (2.8) and (2.10). O

Proof of Theorem 1.1. The b = 1 case of (2.6) produces the g-congruence: modulo ®,,(q)?(1—
aq")(a —q"),
(3n+1)/4 .
S [k 41 (¢:09,9/a; P)i(a 5 a)r geian
(¢* q*/a, aq"; q*)e(q"; ¢*)x
_ (—ag")(a—¢") (@, ¢*q )1/
= - 3 T 1 . (2.13)
(1—-a) (aq", q*/a; ") 3n+1)/4

k=0




Clearly, the g-shifted factorial (¢*, ¢°; ¢*)(3n+1)/4 contains the factor (1 —¢**)(1 —¢"). The
right-hand side of (2.13) vanishes modulo ®,,(q)*(1 — ag¢")(a — ¢").

Letting @ — 1 in (2.13), we see that (1.3) holds modulo ®,(¢)*. By (2.3), the ¢-
congruence (1.3) also holds modulo [n]. Thus, the proof follows from the fact that the
least common multiple of ®,(¢)* and [n] is [n]®,(¢)3. O

3 Proof of Theorem 1.2

It is easy to check that Theorem 1.2 is true for n = 5. We now assume that n > 9.
Consider the summation

n—2

(6@ 0k g2 pan
(6K + 1] =q" 8. (3.1)

kZ:O (a% ¢*)r(q" )3
For (3n +1)/4 < k < n—2, the numerator (¢; ¢*)3(¢~*; ¢*)x has the factor (1—¢")3(1—¢*"),
and the denominator (¢*; ¢*)r(¢*; ¢*)3 is coprime with ®,,(q). It follows that

— (@i g g 4
Z 6k + 1] 2¢" =0 (mod ®,(q)").
b (amr5)/ (a* ¢*)e(a*; a*)i

This, together with (1.3), implies that (3.1) is congruent to 0 modulo ®,,(¢)*, and therefore
the left-hand side of (1.4) is congruent to

(6:6*)3 (74 nm1 2i s )
o =) (@5 ) na(a5q) 7 (mod $(9)%).

It is easy to see that

(g5 q")nr = (1) AGEnREEIB (G750 ) ) a (1= 67 (@™ 6" n0)a,
(@:¢*)n1 = (@) n-1)/2(1 = K )(q”+2;q2)(n_3)/z,
(q4§q4)n71 = ( ) (n—1 /2( )(n—l)/2(—q2; q2)n71,
(C]4;C]2>n_1 = ( 2)71 1[n ]
Thus, by making use of ¢" =1 (mod ®,(¢)) and the following two g-congruences (see [6,
eq. (2.3)]):

(Q§ Q)n—l =n (mOd (I)n(Q))v and (_q;Q)n—l =1 (mOd (I)n(Q))7
we have

6n — 5] (:0%)5-1(g s q4)n_1qn2+n,2 _ A== @)L+ 9) (orsmy/as

(% @) n-1(g* )34 (1—q1)3(1 —¢*)
=" [?;A](l - Q)q(9"2‘5"’/ 1 (mod @, (q)").

This proves that (1.4) is true modulo ®,,(¢)*. Similarly as before, we can prove it is true
modulo [n].



4 Proof of Theorem 1.3

We first construct a parametric version of Theorem 1.3.

Theorem 4.1. Let n be a positive integer with n = 3 (mod 4). Then modulo ®,,(q)(1 —
aq")(a —q")(b—q"),

(n—1)/2
(¢, aq,q/a;¢*)k(a" /b; ") K243k
(q*, a*/a, aq"; q*)r(ba*; ¢*)i

(]

6k + 1]
(b—gq")(ab—1—a*+aq™) (¢*,1/bg% q ) nt1)/4(bg) DA
(CL - b)(l - ab) (bq47 q 7(] )(n+1)/

(1—ag")(a—q") (¢, ¢%q")m+1)/ (1)
(a—=0)(1—ab) (ag*,q¢*/a;q*)ms1)4

+

Proof. Letting q — ¢°, and taking a = ¢, b= ¢' ™", and f = ¢~'/b in (2.2), we obtain the
following identity:

(n=1)/2 _
Z [6k + 1] (q ql 2) ( 1/b q4)qu2+3kbk _ (q3, 1/bq2) q4)(n—|—1)/4 (bq)(n+1)/4
— (¢*, q4+" q4 ”,q Yr(bg*; ¢*)x (0g*, "5 q*) n1)/a

This means that, modulo (1 — a¢™)(a — ¢"),

(n—1)/2 _

(209, a/a3¢*)i(a™ " /b10)k pepsnyp — (€ 1/00% @) w1/ ;s
Z 6k+1 4 4 4 4. 2 b" = 4 1. 4 (bg) :
p (¢, aq*, ¢*/a; q*)k(bq*; ¢*)x (0g*, a7 4" (nt1)/

(4.2)

On the other hand, putting ¢ — ¢, a = ¢, b =aq, and f = ¢ '™ in (2.2), we get

(n—1)/2 C1en ]
. (0,00, 0/a; ) ila™ ™ 0 e gepsiinn (@050 ) (i)

Z 6 +1 1 a2y 4 = q A4 :

— (¢4, aq*, q*/a; ¢")e(q" ™ ¢ (ag*, q*/a; ¢*) (n+1)/4

In other words, we have the g-congruence: modulo b — ¢",

(n—1)/2 —1-np. A 3 5. 4
b. ) Y n
S (6 + 1] q,aq,Q/a ela™ " /big )qu2+3kbk= (4%, °14") nr1)/4 (4.3)

(¢%, aq*, ¢*/a; ¢*)e(g*; 4%k -~ (agh, ¢/ a; ¢ ny1yya

k=0

Applying (2.11), (2.12), and the Chinese reminder theorem for polynomials, we con-
clude (4.1) from (2.1), (4.2), and (4.3). O



Proof of Theorem 1.3. Letting b = 1in (4.1), we obtain the g-congruence: modulo ®,,(¢)*(1—
aq")(a —q"),
(n—1)/2 _
(4,09,0/0;:6°)i(a " 0 )k gean
Z 6k+1 4 1.2
(¢* aq*, q*/a; ¢*)r(q*; ¢*)

k=0
= _[n]q(nt?)/4 (024" ns1)/4
(7% ¢*) (ns1) 4
(1 —ag")(a —q") ((qg, 54/ manys (054 ey )
)2

(1—a (* a5 4 (1) )4 (aq*, ¢*/a; q*) (ny1))4
= _[n]q(n+5)/4 (in; q4)(n+1)/4
(% q*) (nt1) /4
(1—ag™)(a—q") ( (@, 4% q")m+1)1 (@, @5 ¢*) (n41)/a "
* 1— T lad® dta- ol : (4.4)
( CL) (q 7q 14 )(n+1)/4 ((lq 4 /avq )(n+1)/4

By the L’Hopital rule, there holds

lim (1—aq")(a—q") <(q3,q5;q4)(n+1)/4 _ (q37q5;q4)(n+1)/4 )
a—1 (1—a)? (@ ¢ q)manya (agh, ¢4/ a; q*) ns1))a
(nt1)/d .
) (¢°, 4% q") nr1)/a > q”
(@ ¢5 4 mrna = 4P

Letting a — 1 in (4.4) and using the above limit, we obtain the g-congruence: modulo
C(q)",

(n—1)/2
6k + 1] ()i ae persn

p O HUE
(n+1)/4 45

(n+5) /4 (q_2; q4)(n+1)/4 B [n]2(q3>q5§q4)(n+1)/4 Z q
(Q4;q4)(n+1)/4 (q47q4;q4)(n+1)/4 = [4j]2

= —[nlq

(g% q4)(n+1)/4 9 q*
—[n]gm o/ 1 —[n]
(a% ¢*) (nt1)/a Z

In light of (2.3), we compete the proof the theorem. O

5 Proof of Theorem 1.5

We have the following parametric version of Theorem 1.5.
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Theorem 5.1. Let n be a positive integer with n = 1 (mod 4) and n > 9. Then modulo
©n(g)(1 = ag")(a = ¢"),

(3n+1)/4 _
Z Gk + 1] (q,aq,q/a;¢*)e(q, a7 5 ¢k 2 =0, (5.1)
prt (ag*, q*/a; q*)e(q* ¢ a5 P

Proof. Letting a =q¢'™ b=uaq,d=q, f =q !, and ¢ — ¢? in (1.13), we obtain

(3n+1)/4 _n n n
3 1 —g'tok ("™ aq,q/a; )il ¢, 5 q*)e 2
— 1— qlfn (aq4fn’ q4fn/a’ q4 q ) ( n 2 n, qnfl; q2)k

(@ ¢" % D)@ a, 0>, ag™, " a; ¢*) o
( n n 1; q2)oo<q4_n/a7 aq4—n’ aqn—17 qn—l/a; q4)oo
=0,

where we have used the fact that (¢*>"; ¢*)s = 0. Since ¢" =1 (mod ®,,(q)), we conclude
that (5.1) is true modulo ®,(¢). On the other hand, takinga = ¢, b = ¢, d=¢q, f = ¢!
and ¢ — ¢* in (1.13), we have

(3n+1)/4

S 6kt 1] (0,47, 0" )ela: a0k o _ g
pa (@ g™ qe(e % a7 P )r

This proves the truth of (5.1) modulo (1 —ag"™)(a—¢"). Therefore, the g-congruence (5.1)
holds. O

Proof of Theorem 1.5. Letting a = 1 in (5.1), we see that (1.10) holds modulo ®,(q)3.
Along the same lines of the proof of Lemma 2.2, we can prove that it also holds modulo
[n]. O

Acknowledgement. The authors are grateful to the anonymous referee for helpful com-
ments on this paper.

6 Declarations
Conflicts of interest: No potential conflict of interest was reported by the authors.

Availability of data and material: Not applicable.
Code availability: Not applicable.

11



References

[1]
2]

B. Berndt, Ramanujans Notebooks Part IV, Springer-Verlag, New York, 1994.

J.M. Borwein, P.B. Borwein, Pi and the AGM: a Study in Analytic Number Theory
and Computational Complexity, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley—
Interscience Publ., John Wiley & Sons, Inc., New York, 1987.

B. Dwork, p-adic cycles, Publ. Math. Inst. Hautes Etudes Sci. 37 (1969), 27-115.

G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, Encyclopedia of
Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004.
V.J.W. Guo, ¢-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl. 487
(2020), Art. 124022.

V.J.W. Guo, ¢g-Supercongruences modulo the fourth power of a cyclotomic polynomial via
creative microscoping, Adv. Appl. Math. 120 (2020), Art. 102078.

V.J.W. Guo, Some g-supercongruences from the Gasper and Rahman quadratic summation,
Rev. Mat. Complut. 36 (2023), 993-1002.

V.J.W. Guo and W. Zudilin, A g-microscope for supercongruences, Adv. Math. 346 (2019),
329-358.

V.JW. Guo and W. Zudilin, Dwork-type supercongruences through a creative g¢-
microscope, J. Combin. Theory Ser. A 178 (2021), Art. 105362.

B. He, Supercongruences and truncated hypergeometric series, Proc. Amer. Math. Soc. 145
(2017), 501-508.

H. He and X. Wang, Some parametric g-supercongruences from a summation of Gasper
and Rahman, Proc. Amer. Math. Soc. 152 (2024), 4775-4784.

J.-C. Liu, A p-adic supercongruence for truncated hypergeometric series 7Fg, Results Math.
72 (2017), 2057-2066.

Y. Liu and X. Wang, Some g-supercongruences from a quadratic transformation by Rah-
man, Results Math. 77 (2022), Art. 44.

L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249
(2011), 405—418.

Y. Morita, A p-adic supercongruence of the I" function, J. Fac. Sci. Univ. Tokyo 22 (1975),
255-266.

S. Ramanujan, Modular equations and approximations to w, Quart. J. Math. Oxford Ser.
45 (1914), 350-372.

L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric
series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl.
Math. 192, Dekker, New York, 1997, pp. 223-236.

C. Wei, ¢-Supercongruences from Gasper and Rahman’s summation formula, Adv. Appl.
Math. 139 (2022), Art. 102376.

12



