Some q-supercongruences from a very-well-poised $_6\phi_5$ summation

Victor J. W. Guo and Xin Zhao

School of Mathematics, Hangzhou Normal University, Hangzhou 311121, People's Republic of China jwguo@hznu.edu.cn, zhaoxin1@stu.hznu.edu.cn

Abstract. By making use of a very-well-poised $_6\phi_5$ summation, the creative microscoping method, and the Chinese remainder theorem for coprime polynomials, we establish some new q-supercongruences, including some Dwork-type q-supercongruences. As a consequence, we obtain the following result: for any prime $p \equiv 1 \pmod{4}$ and integer $r \geqslant 1$,

$$\sum_{k=0}^{(p^r-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv p^r \pmod{p^{r+3}},$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$ for $n \ge 1$.

Keywords: q-supercongruences; p-adic Gamma function; cyclotomic polynomials; creative microscoping; $_6\phi_5$ summation

AMS Subject Classifications: 33D15; 11A07; 11B65

1. Introduction

India's mathematician Ramanujan discovered a number of interesting infinite series identities, such as

$$\sum_{k=0}^{\infty} (8k+1) \frac{(\frac{1}{4})_k^4}{k!^4} = \frac{2\sqrt{2}}{\Gamma(\frac{3}{4})^2 \sqrt{\pi}}$$
 (1.1)

(see [2]). Here $\Gamma(x)$ is the classical Gamma function and $(a)_n = a(a+1)\cdots(a+n-1)$ is the Pochhammer symbol. The identity (1.1) was first proved by Hardy [13]. In 1997, Van Hamme [20] observed that Ramanujan's series have amazing p-adic analogues. For instance, the series (1.1) corresponds to the following result: for any prime $p \equiv 1 \pmod{4}$,

$$\sum_{k=0}^{(p-1)/4} (8k+1) \frac{(\frac{1}{4})_k^4}{k!^4} \equiv p \frac{\Gamma_p(\frac{1}{2})\Gamma_p(\frac{1}{4})}{\Gamma_p(\frac{3}{4})} \pmod{p^3}, \tag{1.2}$$

where $\Gamma_p(x)$ denotes the *p*-adic Gamma function. Some generalizations of (1.2) are given by Barman and Saikia [1] and Pan, Tauraso, and Wang [18].

Liu and Wang [15] proved that (1.2) can be deduced from the following q-supercongruence: for positive integers n with $n \equiv 1 \pmod{4}$, modulo $[n]\Phi_n(q)^2$,

$$\sum_{k=0}^{(n-1)/4} [8k+1] \frac{(q;q^4)_k^4}{(q^4;q^4)_k^4} q^{2k} \equiv \frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} [n] q^{(1-n)/4}$$
(1.3)

(see [9, Theorem 4.3] for a generalization). Here and in what follows, $[n] = (1-q^n)/(1-q)$ denotes the q-integer, the q-shifted factorials are defined as follows:

$$(x;q)_{\infty} = \prod_{k=1}^{\infty} (1 - xq^k), \text{ and } (x;q)_n = \frac{(x;q)_{\infty}}{(xq^n;q)_{\infty}}.$$

For convenience, we shall also use the condensed notation $(x_1, \ldots, x_m; q)_n = (x_1; q)_n \cdots (x_m; q)_n$ for $n = 0, 1, \ldots$ or $n = \infty$. Moreover, we let $\Phi_n(q)$ stand for the *n*-th cyclotomic polynomial, i.e.,

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (q - \zeta^k),$$

where ζ is an *n*-th primitive root of unity. Employing the creative microscoping method [10] and the Chinese remainder theorem for polynomials [6], Liu and Wang [16] further proved the following refinement of (1.3): for $n \equiv 1 \pmod{4}$, modulo $[n]\Phi_n(q)^3$,

$$\sum_{k=0}^{(n-1)/4} [8k+1] \frac{(q;q^4)_k^4}{(q^4;q^4)_k^4} q^{2k}$$

$$\equiv \frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} [n] q^{(1-n)/4} \left\{ 1 + \frac{(n^2-1)(1-q)^2}{24} [n]^2 + [n]^2 \sum_{k=0}^{(n-1)/4} \frac{q^{4k-2}}{[4k-2]^2} \right\}. (1.4)$$

Recently, using the same method along with a terminating very-well-poised $_6\phi_5$ summation (see [4, Appendix (II.21)]), the first author [7, Theorem 1.1] gave an extension of (1.4). For some other interesting q-supercongruences, see [21, 22].

The first aim of this paper is to establish the following new q-supercongruence.

Theorem 1.1. Let $n \equiv 1 \pmod{4}$ be a positive integer. Then, modulo $\Phi_n(q)^4$,

$$\sum_{k=0}^{(n-1)/2} [8k+1] \frac{(q;q^4)_k^3 (q^2;q^4)_k}{(q^4;q^4)_k^3 (q^3;q^4)_k} q^k \equiv q^{(1-n)/2} [n] \left\{ 1 + \frac{(n^2-1)(1-q)^2}{24} [n]^2 \right\}. \tag{1.5}$$

We shall also give a more general form of Theorem 1.1. Then we will take the $n = p^r$ and $q \to 1$ case to deduce the following result.

Theorem 1.2. Let $p \equiv 1 \pmod{4}$ be a prime and let $r \geqslant 1$. Then

$$\sum_{k=0}^{(p^r-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv p^r \pmod{p^{r+3}}.$$
 (1.6)

Swisher [19] built the following supercongruence similar to (1.2): for primes $p \equiv 3 \pmod{4}$ and p > 3,

$$\sum_{k=0}^{p-1} (8k+1) \frac{(\frac{1}{4})_k^4}{k!^4} \equiv -\frac{3p^2 \Gamma_p(\frac{1}{2}) \Gamma_p(\frac{1}{4})}{2\Gamma_p(\frac{3}{4})} \pmod{p^4}.$$
 (1.7)

The first author and Schlosser [9] gave the following q-analogue of (1.7): for positive integers $n \equiv 3 \pmod{4}$, modulo $[n]\Phi_n(q)^3$,

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q;q^4)_k^4}{(q^4;q^4)_k^4} q^{2k} \equiv \frac{(q^2;q^4)_{(3n-1)/4}}{(q^4;q^4)_{(3n-1)/4}} [3n] q^{(1-3n)/4}.$$

The second aim of this paper is to establish the following result, which is a companion of (1.5) modulo $\Phi_n(q)^3$.

Theorem 1.3. Let $n \equiv 3 \pmod{4}$ be a positive integer. Then

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q;q^4)_k^3 (q^2;q^4)_k}{(q^4;q^4)_k^3 (q^3;q^4)_k} q^k \equiv q^{(1-3n)/2} [3n] \pmod{\Phi_n(q)^3}.$$
 (1.8)

Similarly, we can deduce the following conclusion from Theorem 1.3.

Theorem 1.4. Let $p \equiv 3 \pmod{4}$ be a prime and let $r \geqslant 1$ be an odd integer. Then

$$\sum_{k=0}^{p^r-1} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv 3p^r \pmod{p^{r+2}}.$$
 (1.9)

Swisher [19, (G.3)] conjectured that the supercongruence (1.2) can be extended as follows: for primes $p \equiv 1 \pmod{4}$ and positive integers r,

$$\sum_{k=0}^{(p^r-1)/4} (8k+1) \frac{(\frac{1}{4})_k^4}{k!^4} \equiv (-1)^{(p^2+7)/8} p \Gamma_p(\frac{1}{2}) \Gamma_p(\frac{1}{4})^2 \sum_{k=0}^{(p^r-1-1)/4} (8k+1) \frac{(\frac{1}{4})_k^4}{k!^4} \pmod{p^{4r}}.$$
(1.10)

This conjecture can be considered as a particular example of Dwork-type supercongruences [3, 17]. The supercongruence (1.10) remains open so far. Some other Dwork-type supercongruences are given in [5, 8, 11, 12, 14, 23].

The third aim of this paper is to establish the following Dwork-type supercongruences: for any prime $p \equiv 1 \pmod 4$ and positive r,

$$\sum_{k=0}^{(p^r-1)/d} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv p \sum_{k=0}^{(p^{r-1}-1)/d} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \pmod{p^{3r}}, \tag{1.11}$$

where d = 1, 2, and for any prime $p \equiv 3 \pmod{4}$ with p > 3 and integer $r \geqslant 2$,

$$\sum_{k=0}^{p^r-1} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \equiv p^2 \sum_{k=0}^{p^{r-2}-1} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \pmod{p^{3r-2}}.$$
 (1.12)

We shall prove (1.11) and (1.12) by building the following two Dwork-type q-supercongruences.

Theorem 1.5. Let $n \equiv 1 \pmod{4}$ be an integer with n > 1 and let $r \geqslant 1$. Then, modulo $\prod_{j=1}^r \Phi_{n^j}(q)^3$,

$$\sum_{k=0}^{(n^{r}-1)/d} [8k+1] \frac{(q;q^{4})_{k}^{3}(q^{2};q^{4})_{k}}{(q^{4};q^{4})_{k}^{3}(q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n)/2} [n] \sum_{k=0}^{(n^{r}-1-1)/d} q^{nk} [8k+1]_{q^{n}} \frac{(q^{n};q^{4n})_{k}^{3}(q^{2n};q^{4n})_{k}}{(q^{4n};q^{4n})_{k}^{3}(q^{3n};q^{4n})_{k}},$$
(1.13)

where d = 1, 2.

Theorem 1.6. Let $n \equiv 3 \pmod{4}$ be a positive integer and let $r \geqslant 2$. Then, modulo $\Phi_n(q) \prod_{j=2}^r \Phi_{n^j}(q)^3$,

$$\sum_{k=0}^{n^{r}-1} [8k+1] \frac{(q;q^{4})_{k}^{3}(q^{2};q^{4})_{k}}{(q^{4};q^{4})_{k}^{3}(q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n^{2})/2} [n^{2}] \sum_{k=0}^{n^{r-2}-1} q^{n^{2}k} [8k+1]_{q^{n^{2}}} \frac{(q^{n^{2}};q^{4n^{2}})_{k}^{3}(q^{2n^{2}};q^{4n^{2}})_{k}}{(q^{4n^{2}};q^{4n^{2}})_{k}^{3}(q^{3n^{2}};q^{4n^{2}})_{k}}.$$
(1.14)

If $n \ge 7$, or n = 3 and $r \ge 3$ is odd, then the denominators on the two sides of (1.14) are coprime with $\Phi_{n^j}(q)$ for any j > r. Further, assuming that these n are primes and taking the limits as $q \to 1$ in (1.14), we get the supercongruence (1.12) and for odd $r \ge 3$,

$$\sum_{k=0}^{3^{r-1}} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \equiv 9 \sum_{k=0}^{3^{r-2}-1} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \pmod{3^{3r-2}}.$$

Similarly, the supercongruence (1.11) can be deduced from the limiting case of (1.13). From Theorem 1.5, we can deduce the following conclusion.

Theorem 1.7. Let $p \equiv 3 \pmod{4}$ be a prime and $r \geqslant 2$ even. Then

$$\sum_{k=0}^{(p^r-1)/d} (8k+1) \frac{(\frac{1}{2})_k (\frac{1}{4})_k^3}{k!^3 (\frac{3}{4})_k} \equiv p^2 \sum_{k=0}^{(p^{r-2}-1)/d} (8k+1) \frac{(\frac{1}{2})_k (\frac{1}{4})_k^3}{k!^3 (\frac{3}{4})_k} \pmod{p^{3r/2}}, \tag{1.15}$$

where d=1,2.

The paper is arranged as follows. We shall prove Theorems 1.1–1.4 by using a very-well-poised $_6\phi_5$ summation in Sections 2–5, respectively. The proof of Theorems 1.5–1.7 will be given in Section 6. In the final Section 7, we raise several related conjectures on supercongruences and q-congruences.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we first give the following lemma.

Lemma 2.1. Let n be a positive odd integer. Let a and b be indeterminates. Then

$$\sum_{k=0}^{M} [8k+1] \frac{(q, aq, q/a, q^2/b^2; q^4)_k}{(q^4, q^4/a, aq^4, b^2q^3; q^4)_k} b^{2k} q^k \equiv 0 \pmod{\Phi_n(q)},$$

where M = (n-1)/2 if $n \equiv 1 \pmod{4}$, and M = n-1 if $n \equiv 3 \pmod{4}$.

Proof. Recall that a very-well-poised $_6\phi_5$ summation (see [4, Appendix (II.20)]) can be stated as follows:

$$\sum_{k=0}^{\infty} \frac{1 - aq^{2k}}{1 - a} \frac{(a, b, c, d; q)_k}{(q, aq/b, aq/c, aq/d; q)_k} \left(\frac{aq}{bcd}\right)^k = \frac{(aq, aq/bc, aq/bd, aq/cd; q)_{\infty}}{(aq/b, aq/c, aq/bcd, aq/d; q)_{\infty}}.$$
 (2.1)

For $n \equiv 1 \pmod{4}$, letting $q \mapsto q^4$, $a = q^{1-n}$, b = aq, c = q/a, and $d = q^{2-n}/b^2$ in (2.1), we obtain

$$\sum_{k=0}^{(n-1)/2} \frac{1 - q^{8k+1-n}}{1 - q^{1-n}} \frac{(q^{1-n}, aq, q/a, q^{2-n}/b^2; q^4)_k}{(q^4, q^{4-n}/a, aq^{4-n}, b^2q^3; q^4)_k} b^{2k} q^k = 0.$$

For $n \equiv 3 \pmod{4}$, letting $q \mapsto q^4$, $a = q^{1-3n}$, b = aq, c = q/a, and $d = q^{2-3n}/b^2$ in (2.1), we get

$$\sum_{k=0}^{n-1} \frac{1 - q^{8k+1-3n}}{1 - q^{1-3n}} \frac{(q^{1-3n}, aq, q/a, q^{2-3n}/b^2; q^4)_k}{(q^4, q^{4-3n}/a, aq^{4-3n}, b^2q^3; q^4)_k} b^{2k} q^k = 0.$$

The proof then follows from the q-congruence $q^n \equiv 1 \pmod{\Phi_n(q)}$.

We also require the following easily proved lemma. For a short proof of it, see [6, Lemma 2.1].

Lemma 2.2. Let n be a positive odd integer. Then

$$(aq^2, q^2/a; q^2)_{(n-1)/2} \equiv (-1)^{(n-1)/2} \frac{(1-a^n)q^{-(n-1)^2/4}}{(1-a)a^{(n-1)/2}} \pmod{\Phi_n(q)}, \tag{2.2}$$

$$(q;q)_{n-1} \equiv n \pmod{\Phi_n(q)}. \tag{2.3}$$

We now present a parametric extension of Theorem 1.1.

Theorem 2.3. Let n > 1 be an integer with $n \equiv 1 \pmod{4}$. Let a and b be indeterminates. Then, modulo $\Phi_n(q)(1 - aq^n)(a - q^n)(b - q^n)$,

$$\sum_{k=0}^{(n-1)/2} [8k+1] \frac{(q, aq, q/a, q^2/b^2; q^4)_k}{(q^4, q^4/a, aq^4, b^2q^3; q^4)_k} b^{2k} q^k$$

$$\equiv \frac{(b-q^n)(ab-1-a^2+aq^n)}{(a-b)(1-ab)} \frac{(q^5, q^3/b^2; q^4)_{(n-1)/4}(b/q)^{(n-1)/2}}{(b^2q^3, q; q^4)_{(n-1)/4}}$$

$$+ \frac{(1-aq^n)(a-q^n)}{(a-b)(1-ab)} \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(aq^4, q^4/a; q^4)_{(n-1)/2}}.$$
(2.4)

Proof. For $a = q^n$ or $a = q^{-n}$, the left-hand side of (2.4) can be written as

$$\sum_{k=0}^{(n-1)/2} \left[8k+1 \right] \frac{(q,q^{1+n},q^{1-n},q^2/b^2;q^4)_k}{(q^4,q^{4-n},q^{4+n},b^2q^3;q^4)_k} b^{2k} q^k. \tag{2.5}$$

Performing the parameter substitutions $q \mapsto q^4$, a = q, $b = q^{1+n}$, $c = q^{1-n}$, and $d = q^2/b^2$ in (2.1), we deduce that (2.5) is equal to

$$\frac{(q^5, q^3, b^2q^{2-n}, b^2q^{2+n}; q^4)_{\infty}}{(q^{4-n}, q^{4+n}, b^2q^3, b^2q; q^4)_{\infty}} = \frac{(q^5, q^3/b^2; q^4)_{(n-1)/4}}{(q, b^2q^3; q^4)_{(n-1)/4}} b^{(n-1)/2} q^{(1-n)/2}.$$

Since the polynomials $1 - aq^n$ and $a - q^n$ are coprime with each other, we obtain the q-congruence: modulo $(1 - aq^n)(a - q^n)$,

$$\sum_{k=0}^{(n-1)/2} [8k+1] \frac{(q, aq, q/a, q^2/b^2; q^4)_k}{(q^4, q^4/a, aq^4, b^2q^3; q^4)_k} b^{2k} q^k$$

$$\equiv \frac{(q^5, q^3/b^2; q^4)_{(n-1)/4}}{(q, b^2q^3; q^4)_{(n-1)/4}} b^{(n-1)/2} q^{(1-n)/2}.$$
(2.6)

For $b = q^n$, the left-hand side of (2.4) can be written as

$$\sum_{k=0}^{(n-1)/2} \left[8k+1 \right] \frac{(q, aq, q/a, q^{2-2n}; q^4)_k q^{k+2nk}}{(q^4, aq^4, q^4/a, q^{3+2n}; q^4)_k}. \tag{2.7}$$

Putting $q \mapsto q^4$, a = q, b = aq, c = q/a and $f = q^{2-2n}$ in (2.1), we see that (2.7) is equal to

$$\frac{(q^5, q^3, q^{2+2n}/a, aq^{2+2n}; q^4)_{\infty}}{(q^4/a, aq^4, q^{3+2n}, q^{1+2n}; q^4)_{\infty}} = \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(aq^4, q^4/a; q^4)_{(n-1)/2}}.$$

This establishes the q-congruence: modulo $b-q^n$,

$$\sum_{k=0}^{(n-1)/2} \left[8k+1 \right] \frac{(q, aq, q/a, q^{2-2n}; q^4)_k q^{k+2nk}}{(q^4, aq^4, q^4/a, q^{3+2n}; q^4)_k} \equiv \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(aq^4, q^4/a; q^4)_{(n-1)/2}}.$$
 (2.8)

It is clear that $\Phi_n(q)(1-aq^n)(a-q^n)$ and $b-q^n$ are coprime polynomials. In view of the Chinese reminder theorem for coprime polynomials, we can determine the remainder of the left-hand side of (2.4) modulo $\Phi_n(q)(1-aq^n)(a-q^n)(b-q^n)$ from (2.6) and (2.8). For this purpose, we need the following two q-congruences:

$$\frac{(b-q^n)(ab-1-a^2+aq^n)}{(a-b)(1-ab)} \equiv 1 \pmod{(1-aq^n)(a-q^n)},\tag{2.9}$$

$$\frac{(1 - aq^n)(a - q^n)}{(a - b)(1 - ab)} \equiv 1 \pmod{b - q^n}.$$
 (2.10)

The q-congruence (2.4) then follows from (2.6), (2.8), (2.9) and (2.10) immediately. \Box

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Since

$$(q^5, q^3; q^4)_{(n-1)/2} = (q^3; q^2)_{n-1} = [n](q; q^2)_{(n-1)/2} (q^{n+2}; q^2)_{(n-1)/2},$$

in light of (2.2) and (2.3), we get

$$\frac{(q^5, q^3; q^4)_{(n-1)/2}}{(aq^4, q^4/a; q^4)_{(n-1)/2}} \equiv \frac{[n](q, q^2; q^2)_{(n-1)/2}}{(aq^4, q^4/a; q^4)_{(n-1)/2}} \equiv \frac{[n]n(1-a)a^{(n-1)/2}}{(1-a^n)q^{(n-1)/2}} \pmod{\Phi_n(q)^2}.$$
(2.11)

Moreover, we have the identity:

$$(1 - q^n)(1 + a^2 - a - aq^n) = (1 - a)^2 + (1 - aq^n)(a - q^n).$$
(2.12)

And, when b = 1 the polynomial $b - q^n = 1 - q^n$ has the factor $\Phi_n(q)$. Hence, letting b = 1 in (2.4) and making use of (2.11) and (2.12), we arrive at the following q-congruence: modulo $\Phi_n(q)^2(1 - aq^n)(a - q^n)$,

$$\sum_{k=0}^{(n-1)/2} [8k+1] \frac{(q, aq, q/a, q^2; q^4)_k}{(q^4, q^4/a, aq^4, q^3; q^4)_k} q^k$$

$$\equiv q^{(1-n)/2} [n] + q^{(1-n)/2} [n] \frac{(1-aq^n)(a-q^n)}{(1-a)^2} \left\{ 1 - \frac{n(1-a)a^{(n-1)/2}}{1-a^n} \right\}. \tag{2.13}$$

By the L'Hôpital rule, we have

$$\lim_{a \to 1} \frac{(1 - aq^n)(a - q^n)}{(1 - a)^2} \frac{(1 - a^n - n(1 - a)a^{(n-1)/2})}{(1 - a^n)} = \frac{(n^2 - 1)(1 - q)^2}{24} [n]^2,$$

which first appeared in [6]. Hence, taking $a \to 1$ in (2.13) and applying the above limit, we get the desired q-supercongruence (1.5).

3. Proof of Theorem 1.2

We first prove the following lemma.

Lemma 3.1. Let $n \equiv 1 \pmod{4}$ be a positive integer and $r \geqslant 1$. Then

$$\sum_{k=0}^{(n^r-1)/d} [8k+1] \frac{(q, aq, q/a, q^2; q^4)_k}{(q^4, q^4/a, aq^4, q^3; q^4)_k} q^k \equiv 0 \pmod{\prod_{j=1}^r \Phi_{n^j}(q)},$$
(3.1)

where d = 1, 2.

Proof. From Lemma 2.1, we know that

$$\sum_{k=0}^{(n-1)/2} [8k+1] \frac{(q, aq, q/a, q^2/b^2; q^4)_k}{(q^4, q^4/a, aq^4, b^2q^3; q^4)_k} b^{2k} q^k \equiv 0 \pmod{\Phi_n(q)}.$$
(3.2)

We now assume that $r \ge 2$ and $1 \le s \le r$. Since $n \equiv 1 \pmod{4}$, we have $n^s \equiv 1 \pmod{4}$. Consequently, replacing $n \mapsto n^s$ and b = 1 in (3.2) yields the q-congruence:

$$\sum_{k=0}^{(n^s-1)/d} [8k+1] \frac{(q, aq, q/a, q^2; q^4)_k}{(q^4, q^4/a, aq^4, q^3; q^4)_k} q^k \equiv 0 \pmod{\Phi_{n^s}(q)}, \tag{3.3}$$

where d = 1, 2. Let ζ be an n^s -th primitive root of unity and $c_q(k)$ the k-th term on the left-hand side of (3.3), i.e.,

$$c_q(k) = [8k+1] \frac{(q, aq, q/a, q^2; q^4)_k}{(q^4, q^4/a, aq^4, q^3; q^4)_k} q^k.$$

Thus, the q-congruence (3.3) means that

$$\sum_{k=0}^{n^s-1} c_{\zeta}(k) = \sum_{k=0}^{(n^s-1)/2} c_{\zeta}(k) = 0.$$

It is easy to see that, for any non-negative integers l and k,

$$\frac{c_{\zeta}(\ln^s + k)}{c_{\zeta}(\ln^s)} = \lim_{q \to \zeta} \frac{c_q(\ln^s + k)}{c_q(\ln^s)} = c_{\zeta}(k).$$

Therefore,

$$\sum_{k=0}^{n^r-1} c_{\zeta}(k) = \sum_{l=0}^{n^{r-s}-1} \sum_{k=0}^{n^s-1} c_{\zeta}(ln^s + k) = \sum_{l=0}^{n^{r-s}-1} c_{\zeta}(ln^s) \sum_{k=0}^{n^s-1} c_{\zeta}(k) = 0,$$

$$\sum_{k=0}^{(n^r-1)/2} c_{\zeta}(k) = \sum_{l=0}^{(n^{r-s}-3)/2} c_{\zeta}(ln^s) \sum_{k=0}^{n^s-1} c_{\zeta}(k) + \sum_{k=0}^{(n^s-1)/2} c_{\zeta}((n^r-n^s)/2 + k) = 0.$$

This indicates that the sums $\sum_{k=0}^{n^r-1} c_q(k)$ and $\sum_{k=0}^{(n^r-1)/2} c_q(k)$ are both congruent to 0 modulo $\Phi_{n^s}(q)$ for $1 \leq j \leq r$. Since $\Phi_n(q), \Phi_{n^2}(q), \dots, \Phi_{n^r}(q)$ are pairwise coprime polynomials in $\mathbb{Z}[q]$, we conclude that the q-congruence (3.1) holds.

Proof of Theorem 1.2. Replacing n by n^r in Theorem 1.1, we obtain

$$\sum_{k=0}^{(n^{r}-1)/2} [8k+1] \frac{(q;q^{4})_{k}^{3}(q^{2};q^{4})_{k}}{(q^{4};q^{4})_{k}^{3}(q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n^{r})/2} [n^{r}] \left\{ 1 + \frac{(n^{2r}-1)(1-q)^{2}}{24} [n^{r}]^{2} \right\} \pmod{\Phi_{n^{r}}(q)^{4}}. \tag{3.4}$$

Since $[n^r]$ is divisible by $\prod_{j=1}^r \Phi_{n^j}(q)$, we conclude from Lemma 3.1 that (3.4) is true modulo $\Phi_{n^r}(q)^4 \prod_{j=1}^{r-1} \Phi_{n^j}(q)$. Letting n=p be a prime and taking the limits as $q \to 1$ in this q-congruence, we obtain the supercongruence (1.6).

4. Proof of Theorem 1.3

Like the proof of Theorem 1.1, we first present a parametric version of Theorem 1.3.

Theorem 4.1. Let n be a positive integer with $n \equiv 3 \pmod{4}$. Let a and b be indeterminates. Then modulo $\Phi_n(q)(1-aq^n)(a-q^n)(b-q^n)$,

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q, a^{3}q, q/a^{3}, q^{2}/b^{2}; q^{4})_{k}}{(a^{3}q^{4}, q^{4}/a^{3}, q^{4}, b^{2}q^{3}; q^{4})_{k}} b^{2k} q^{k}$$

$$\equiv \frac{(b-q^{n})(ab-1-a^{2}+aq^{n})}{(a-b)(1-ab)} \frac{(q^{5}, q^{3}/b^{2}; q^{4})_{(3n-1)/4}(b/q)^{(3n-1)/2}}{(b^{2}q^{3}, q; q^{4})_{(3n-1)/4}}$$

$$+ \frac{(1-aq^{n})(a-q^{n})}{(a-b)(1-ab)} \frac{(q^{5}, q^{3}; q^{4})_{(n-1)/2}}{(a^{3}q^{4}, q^{4}/a^{3}; q^{4})_{(n-1)/2}}.$$
(4.1)

Proof. For $a = q^n$ or $a = q^{-n}$, the left-hand side of (4.1) can be written as

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q, q^{1+3n}, q^{1-3n}, q^2/b^2; q^4)_k}{(q^4, q^{4-3n}, q^{4+3n}, b^2q^3; q^4)_k} b^{2k} q^k.$$
(4.2)

Making the substitutions $q \mapsto q^4$, a = q, $b = q^{1+3n}$, $c = q^{1-3n}$, and $d = q^2/b^2$ in (2.1), we see that (4.2) is equal to

$$\frac{(q^5, q^3, b^2q^{2-3n}, b^2q^{2+3n}; q^4)_{\infty}}{(q^{4-3n}, q^{4+3n}, b^2q^3, b^2q; q^4)_{\infty}} = \frac{(q^5, q^3/b^2; q^4)_{(3n-1)/4}}{(q, b^2q^3; q^4)_{(3n-1)/4}} (b/q)^{(3n-1)/2}.$$

This implies that, modulo $(1 - aq^n)(a - q^n)$,

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q, a^3q, q/a^3, q^2/b^2; q^4)_k}{(q^4, q^4/a^3, a^3q^4, b^2q^3; q^4)_k} b^{2k} q^k \equiv \frac{(q^5, q^3/b^2; q^4)_{(3n-1)/4}}{(q, b^2q^3; q^4)_{(3n-1)/4}} (b/q)^{(3n-1)/2}. \tag{4.3}$$

For $b = q^n$, the left-hand side of (4.1) can be written as

$$\sum_{k=0}^{n-1} \left[8k+1\right] \frac{(q, a^3q, q/a^3, q^{2-2n}; q^4)_k q^{k+2nk}}{(q^4, a^3q^4, q^4/a^3, q^{3+2n}; q^4)_k}.$$
(4.4)

Putting $q \mapsto q^4$, a = q, $b = a^3 q$, $c = q/a^3$ and $d = q^{2-2n}$ in (2.1), we conclude that (4.4) is equal to

$$\frac{(q^5, q^3, q^{2+2n}/a^3, a^3q^{2+2n}; q^4)_{\infty}}{(q^4/a^3, a^3q^4, q^{3+2n}, q^{1+2n}; q^4)_{\infty}} = \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(a^3q^4, q^4/a^3; q^4)_{(n-1)/2}}.$$

This establishes the q-congruence: modulo $b-q^n$,

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q, a^3q, q/a^3, q^{2-2n}; q^4)_k q^{k+2nk}}{(q^4, a^3q^4, q^4/a^3, q^{3+2n}; q^4)_k} \equiv \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(a^3q^4, q^4/a^3; q^4)_{(n-1)/2}}.$$
 (4.5)

By the Chinese reminder theorem for coprime polynomials, we obtain the q-congruence (4.1) from (2.9), (2.10), (4.3) and (4.5).

Proof of Theorem 1.3. In view of (2.12), the b = 1 case of (4.1) reduces to the following q-congruence: modulo $\Phi_n(q)(1 - aq^n)(a - q^n)$

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q, a^3q, q/a^3, q^2; q^4)_k}{(q^4, q^4/a^3, a^3q^4, q^3; q^4)_k} q^k$$

$$\equiv q^{(1-3n)/2} [3n] + \frac{(1-aq^n)(a-q^n)}{(1-a)^2} \left(q^{(1-3n)/2} [3n] - \frac{(q^5, q^3; q^4)_{(n-1)/2}}{(a^3q^4, q^4/a^3; q^4)_{(n-1)/2}} \right)$$

$$\equiv q^{(1-3n)/2} [3n]. \tag{4.6}$$

This is because $(q^3; q^4)_{n-1}$ only contains the factor $\Phi_n(q)$, but does not contain the square of $\Phi_n(q)$. Finally, letting n = p and $q \to 1$ in (4.6), we finish the proof of (1.8).

5. Proof of Theorem 1.4

We can prove that (3.1) also holds for $n \equiv 3 \pmod{4}$ and d = 1, and so we can show that (6.5) holds modulo $\prod_{j=1}^r \Phi_{n^j}(q)$. This, together with the $n \mapsto n^r$ case of Theorem 1.3, implies that

$$\sum_{k=0}^{n^r-1} [8k+1] \frac{(q;q^4)_k^3(q^2;q^4)_k}{(q^4;q^4)_k^3(q^3;q^4)_k} q^k \equiv q^{(1-3n^r)/2} [3n^r] \pmod{\Phi_{n^r}(q)^3} \prod_{j=1}^{r-1} \Phi_{n^j}(q).$$
 (5.1)

The proof then follows from (5.1) by taking n = p and $q \to 1$.

6. Proof of Theorems 1.5, 1.6 and Theorem 1.7

To prove Theorem 1.5, we need to establish the following parametric q-congruence.

Lemma 6.1. Let $n \equiv 1 \pmod{4}$ be an integer with n > 1 and let $r \geqslant 1$. Let a be an indeterminate. Then, modulo

$$\left(\prod_{j=1}^r \Phi_{n^j}(q)\right) \left(\prod_{j=0}^{(n^{r-1}-1)/d} (1 - aq^{(4j+1)n})(a - q^{(4j+1)n})\right),$$

we have

$$\sum_{k=0}^{(n^{r}-1)/d} [8k+1] \frac{(aq,q/a,q,q^{2};q^{4})_{k}}{(aq^{4},q^{4}/a,q^{4},q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n)/2} [n] \sum_{k=0}^{(n^{r-1}-1)/d} q^{nk} [8k+1]_{q^{n}} \frac{(aq^{n},q^{n}/a,q^{n},q^{2n};q^{4n})_{k}}{(aq^{4n},q^{4n}/a,q^{4n},q^{3n};q^{4n})_{k}}, \tag{6.1}$$

where d = 1, 2.

Proof. In view of (3.1), the right-hand side of (6.1) is congruent to 0 modulo $\Phi_n(q) \prod_{j=1}^{r-1} \Phi_{n^j}(q^n)$. Since $\Phi_{n^j}(q^n)$ is divisible by $\Phi_{n^{j+1}}(q)$, we see that both sides of (6.1) are congruent to 0 modulo $\prod_{j=1}^r \Phi_{n^j}(q)$.

In order to prove (6.1) modulo

$$\prod_{j=0}^{(n^{r-1}-1)/d} (1 - aq^{(4j+1)n})(a - q^{(4j+1)n}), \tag{6.2}$$

we need the following identity: for $n \equiv 1 \pmod{4}$,

$$\sum_{k=0}^{(n-1)/4} [8k+1] \frac{(q^{1-n}, q^{1+n}, q, q^2; q^4)_k}{(q^{4+n}, q^{4-n}, q^4, q^3; q^4)_k} q^k = q^{(1-n)/2}[n], \tag{6.3}$$

which is equivalent to the b = 1 case of (2.6).

For $a=q^{-(4j+1)n}$ or $a=q^{(4j+1)n}$ with $0 \le j \le (n^{r-1}-1)/d$, in view of (6.3), the left-hand side of (6.1) is equal to

$$\sum_{k=0}^{(n^r-1)/d} [8k+1] \frac{(q^{1-(4j+1)n}, q^{1+(4j+1)n}, q, q^2; q^4)_k}{(q^{4-(4j+1)n}, q^{4+(4j+1)n}, q^4, q^3; q^4)_k} q^k = q^{(1-(4j+1)n)/2} [(4j+1)n], \qquad (6.4)$$

where we have used the facts that $(n^r-1)/d \ge ((4j+1)n-1)/4$ for $0 \le j \le (n^{r-1}-1)/d$, and $(q^{1-(4j+1)n}; q^4)_k = 0$ for k > ((4j+1)n-1)/4. Similarly, in this case the right-hand

side of (6.1) is equal to

$$q^{(1-n)/2}[n] \sum_{k=0}^{(n^{r-1}-1)/d} q^{nk} [8k+1]_{q^n} \frac{(q^{-4jn}, q^{(4j+2)n}, q^n, q^{2n}; q^{4n})_k}{(q^{(3-4j)n}, q^{(4j+5)n}, q^{4n}, q^{3n}; q^{4n})_k}$$

$$= q^{(1-n)/2}[n] q^{-2jn} [4j+1]_{q^n},$$

which is the same as the right-hand side of (6.4). This proves that both sides of (6.1) are equal for $a=q^{\pm(4j+1)n}$ with $0 \le j \le (n^{r-1}-1)/d$. Namely, the q-congruence (6.1) is true modulo (6.2).

Proof of Theorem 1.5. It is not hard to see that the limit of (6.2) as $a \to 1$ incorporates the factor

$$\begin{cases} \prod_{j=1}^{r} \Phi_{n^{j}}(q)^{2n^{r-j}} & \text{if } d = 1, \\ \prod_{j=1}^{r} \Phi_{n^{j}}(q)^{n^{r-j}+1}, & \text{if } d = 2. \end{cases}$$

Furthermore, the denominator of the right-hand side of (6.1) divides that of the left-hand side of (6.1). The factor involving a in the latter is $(aq^4, q^4/a; q^4)_{(n^r-1)/d}$, the limit of which as a tends to 1 merely owns the following factor

$$\begin{cases} \prod_{j=1}^{r} \Phi_{n^{j}}(q)^{2n^{r-j}-2} & \text{if } d = 1, \\ \prod_{j=1}^{r} \Phi_{n^{j}}(q)^{n^{r-j}-1}, & \text{if } d = 2. \end{cases}$$

related to $\Phi_n(q), \Phi_{n^2}(q), \dots, \Phi_{n^r}(q)$. Therefore, taking $a \to 1$ in (6.1), we conclude that (1.13) holds modulo $\prod_{j=1}^r \Phi_{n^j}(q)^3$, as desired.

The proof of Theorem 1.6 is analogous, and we need to construct a parametric q-congruence as follows.

Lemma 6.2. Let $n \equiv 3 \pmod{4}$ be a positive integer and let $r \geqslant 1$. Let a be an indeterminate. Then, modulo

$$\left(\prod_{j=1}^r \Phi_{n^j}(q)\right) \left(\prod_{j=0}^{n^{r-2}-1} (1 - aq^{(4j+1)n^2})(a - q^{(4j+1)n^2})\right),$$

we have

$$\sum_{k=0}^{n^{r}-1} [8k+1] \frac{(aq,q/a,q,q^{2};q^{4})_{k}}{(aq^{4},q^{4}/a,q^{4},q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n^{2})/2} [n^{2}] \sum_{k=0}^{n^{r}-2-1} q^{n^{2}k} [8k+1]_{q^{n^{2}}} \frac{(aq^{n^{2}},q^{n^{2}}/a,q^{n^{2}},q^{2n^{2}};q^{4n^{2}})_{k}}{(aq^{4n^{2}},q^{4n^{2}}/a,q^{4n^{2}},q^{3n^{2}};q^{4n^{2}})_{k}}.$$
(6.5)

Proof. We have already mentioned in Section 5, the q-congruence (3.1) is also true for $n \equiv 3 \pmod{4}$ and d = 1. This enables us to show that (6.5) holds modulo $\prod_{j=1}^r \Phi_{n^j}(q)$. In order to prove (6.5) holds modulo

$$\prod_{j=0}^{n^{r-2}-1} (1 - aq^{(4j+1)n^2})(a - q^{(4j+1)n^2}), \tag{6.6}$$

it suffices to show that both sides of (6.5) are equal when $a = q^{-(4j+1)n^2}$ or $a = q^{(4j+1)n^2}$ for all $0 \le j \le n^{r-2} - 1$, namely,

$$\sum_{k=0}^{n^{r}-1} [8k+1] \frac{(q^{1-(4j+1)n^{2}}, q^{1+(4j+1)n^{2}}, q, q^{2}; q^{4})_{k}}{(q^{4-(4j+1)n^{2}}, q^{4+(4j+1)n^{2}}, q^{4}, q^{3}; q^{4})_{k}} q^{k}$$

$$= q^{(1-n^{2})/2} [n^{2}] \sum_{k=0}^{n^{r-2}-1} q^{n^{2}k} [8k+1]_{q^{n^{2}}} \frac{(q^{-4jn^{2}}, q^{(4j+2)n^{2}}, q^{n^{2}}, q^{2n^{2}}; q^{4n^{2}})_{k}}{(q^{(3-4j)n^{2}}, q^{(4j+5)n^{2}}, q^{4n^{2}}, q^{3n^{2}}; q^{4n^{2}})_{k}}.$$
(6.7)

It is easy to see that $n^r - 1 \ge ((4j+1)n^2 - 1)/4$ for $0 \le j \le n^{r-2} - 1$, and $(q^{1-(4j+1)n^2}; q^4)_k = 0$ for $k > ((4j+1)n^2 - 1)/4$. In light of (6.3), the two sides of (6.7) are both equal to

$$q^{(1-(4j+1)n^2)/2}[(4j+1)n^2] = q^{(1-n^2)/2}[n^2] \cdot q^{-2jn^2}[4j+1]_{q^{n^2}}.$$

This completes the proof of (6.5) modulo (6.6).

Proof of Theorem 1.6. Obviously, the limit of (6.6) as $a \to 1$ contains the factor

$$\prod_{j=2}^{r} \Phi_{n^j}(q)^{2n^{r-j}}.$$

On the other hand, the denominator of the left-hand side of (6.5) is divisible by that of the right-hand side of (6.5). The factor of the former containing the indeterminate a is $(aq^4, q^4/a; q^4)_{n^r-1}$. Its limit as a tends to 1 only has the factor

$$\prod_{i=2}^{r} \Phi_{n^{j}}(q)^{2n^{r-j}-2}$$

that is relevant to $\Phi_{n^2}(q), \Phi_{n^3}(q), \dots, \Phi_{n^r}(q)$. Hence, letting $a \to 1$ in (6.5), we complete the proof of (1.14).

Proof of Theorem 1.7. For any positive integer n with $n \equiv 3 \pmod 4$, we have $n^2 \equiv 1 \pmod 4$. Putting $n \mapsto n^2$ and $r \mapsto r/2$ in (1.13), we acquire the following q-congruence: modulo $\prod_{j=1}^{r/2} \Phi_{n^{2j}}(q)^3$,

$$\sum_{k=0}^{(n^{r}-1)/d} [8k+1] \frac{(q;q^{4})_{k}^{3}(q^{2};q^{4})_{k}}{(q^{4};q^{4})_{k}^{3}(q^{3};q^{4})_{k}} q^{k}$$

$$\equiv q^{(1-n^{2})/2} [n^{2}] \sum_{k=0}^{(n^{r}-2-1)/d} q^{n^{2}k} [8k+1]_{q^{n^{2}}} \frac{(q^{n^{2}};q^{4n^{2}})_{k}^{3}(q^{2n^{2}};q^{4n^{2}})_{k}}{(q^{4n^{2}};q^{4n^{2}})_{k}^{3}(q^{3n^{2}};q^{4n^{2}})_{k}},$$
(6.8)

where d = 1, 2. Letting n = p be a prime and taking $q \to 1$ in (6.8), we get the desired supercongruence (1.15).

7. Concluding remarks and open problems

In this section, we put forward several related conjectures for further investigation. We first propose the following generalization of Theorem 1.2.

Conjecture 7.1. Let $p \equiv 1 \pmod{4}$ be a prime with p > 5 and let $r \geqslant 1$. Then

$$\sum_{k=0}^{(p^r-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \equiv p^r \pmod{p^{r+5}}.$$

A natural idea to tackle Conjecture 7.1 is to give a generalization of (1.5) modulo $\Phi_n(q)^6$. However, it seems rather difficult to provide such a generalization, even in the modulus $\Phi_n(q)^5$ case.

Although we did not find a generalization of (1.8) modulo $\Phi_n(q)^4$, on the basis of numerical calculation, we believe that the following extension of (1.9) modulo p^{r+3} should be true.

Conjecture 7.2. Let $p \equiv 3 \pmod{4}$ be a prime and $r \geqslant 1$ an odd integer. Then

$$\sum_{k=0}^{p^r-1} (8k+1) \frac{(\frac{1}{4})_k^3 (\frac{1}{2})_k}{k!^3 (\frac{3}{4})_k} \equiv 3p^r + \frac{27p^{3r}}{4} \sum_{j=1}^{(p^r-3)/4} \frac{1}{j^2} \pmod{p^{r+3}}.$$

We have the following generalization of (1.11) for d = 2. Note that the r = 1 case is also open.

Conjecture 7.3. Let $p \equiv 1 \pmod{4}$ be a prime and let $r \geqslant 1$. Then

$$\sum_{k=0}^{(p^r-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv p \sum_{k=0}^{(p^{r-1}-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \pmod{p^{6r-\delta_{p,5}}},$$

where δ is the Kronecker delta with $\delta_{i,j} = 1$ if i = j and $\delta_{i,j} = 0$ otherwise.

We also observe that (1.12) has the following companion.

Conjecture 7.4. Let $p \equiv 3 \pmod{4}$ be a prime and let $r \geqslant 2$. Then

$$\sum_{k=0}^{(p^r-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \equiv p^2 \sum_{k=0}^{(p^r-2-1)/2} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k} \pmod{p^{3r-1}}.$$
 (7.1)

Although there exists a parametric q-congruence similar to (6.5) when the left-hand side is truncated at $(n^r - 1)/2$ and the right-hand side is truncated at $(n^{r-2} - 1)/2$, we cannot use this q-congruence to get a q-analogue of (7.1). Therefore, in order to confirm (7.1) we perhaps need to employ new methods and techniques.

It is easy to see that Theorem 1.1 implies the following q-supercongruence: for $n \equiv 1 \pmod{4}$, modulo $\Phi_n(q)^3$,

$$\sum_{k=0}^{n-1} [8k+1] \frac{(q;q^4)_k^3 (q^2;q^4)_k}{(q^4;q^4)_k^3 (q^3;q^4)_k} q^k \equiv q^{(1-n)/2} [n].$$

We end this paper with the following two challenging conjectures.

Conjecture 7.5. Let m and n be positive integers with $n \equiv 1 \pmod{4}$ and n > 1. Then, modulo $\Phi_n(q)^3$,

$$\sum_{k=0}^{mn-1} [8k+1] \frac{(q;q^4)_k^3(q^2;q^4)_k}{(q^4;q^4)_k^3(q^3;q^4)_k} q^k \equiv q^{(1-n)/2} [n] \sum_{k=0}^{m-1} (8k+1) \frac{(\frac{1}{4})_k^3(\frac{1}{2})_k}{k!^3(\frac{3}{4})_k}.$$

Conjecture 7.6. Let m and n be positive odd integers with $n \equiv 1 \pmod{4}$ and n > 1. Then, modulo $\Phi_n(q)^4$,

$$\sum_{k=0}^{(mn-1)/2} [8k+1] \frac{(q;q^4)_k^3 (q^2;q^4)_k}{(q^4;q^4)_k^3 (q^3;q^4)_k} q^k$$

$$\equiv q^{(1-n)/2} [n] \left\{ 1 + \frac{(n^2-1)(1-q)^2}{24} [n]^2 \right\}$$

$$\times \sum_{k=0}^{(m-1)/2} q^{n^2k} [8k+1]_{q^{n^2}} \frac{(q^{n^2};q^{4n^2})_k^3 (q^{2n^2};q^{4n^2})_k}{(q^{4n^2};q^{4n^2})_k^3 (q^{3n^2};q^{4n^2})_k}.$$

References

- [1] R. Barman and N. Saikia, Supercongruences for truncated hypergeometric series and p-adic gamma function, Math. Proc. Camb. Phil. Soc. 168 (2020), 171–195.
- [2] B. Berndt, Ramanujans Notebooks Part IV, Springer-Verlag, New York, 1994.
- [3] B. Dwork, p-adic cycles, Publ. Math. Inst. Hautes Etudes Sci. 37 (1969), 27–115.
- [4] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004.
- [5] V.J.W. Guo, q-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl. 487 (2020), Art. 124022.
- [6] V.J.W. Guo, q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math. 120 (2020), Art. 102078.
- [7] V.J.W. Guo, A new family of q-supercongruences from Jackson's $_6\phi_5$ summation, Results Math. 80 (2025), Art. 50.

- [8] V.J.W. Guo, q-Analogues of two supercongruences in the (E.3) and (F.3) conjectures of Swisher, Rocky Mountain J. Math. 55 (2025), 147–154.
- [9] V.J.W. Guo and M.J. Schlosser, A new family of q-supercongruences modulo the forth power of a cyclotomic polynomial, Results Math. 75 (2020), Art. 155.
- [10] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329–358.
- [11] V.J.W. Guo and X.-Y. Zhu, New q-congruences from a quadratic summation of Gasper and Rahman, J. Math. Anal. Appl. 550 (2025), Art. 129558.
- [12] V.J.W. Guo and W. Zudilin, Dwork-type supercongruences through a creative q-microscope, J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
- [13] G.H. Hardy, A chapter from Ramanujan's note-book, Proc. Cambridge Philos. Soc. 21 (1923), 492–503.
- [14] Y. Hu and X. Wang, Proof of a conjecture by Wei, Bull. Malays. Math. Sci. Soc. 48 (2025), Art. 130.
- [15] Y. Liu and X. Wang, q-Analogues of the (G.2) supercongruence of Van Hamme, Rocky Mountain J. Math. 51 (2021), 1329–1340.
- [16] Y. Liu and X. Wang, Further q-analogues of the (G.2) supercongruence of Van Hamme, Ramanujan J. 59 (2022), 791–802.
- [17] A. Mellit and M. Vlasenko, Dwork's congruences for the constant terms of powers of a Laurent polynomial, Int. J. Number Theory 12 (2016), 313–321.
- [18] H. Pan, R. Tauraso, and C. Wang, A local-global theorem for *p*-adic supercongruences, J. Reine Angew. Math. 790 (2022), 53–83.
- [19] H. Swisher, On the supercongruence conjectures of Van Hamme, Res. Math. Sci. 2 (2015), Art. 18.
- [20] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223–236.
- [21] C. Wei, A q-supercongruence from a q-analogue of Whipples $_3F_2$ summation formula, J. Combin. Theory, Ser. A 194 (2023), Art. 105705.
- [22] C. Wei, q-supercongruences from Jackson's $_8\phi_7$ summation and Watson's $_8\phi_7$ transformation, J. Combin. Theory Ser. A 204 (2024), Art. 105853.
- [23] Y. Zhang and P. Yuan, Proof of a Dwork-type supercongruence by induction, AIMS Math. 6 (2021), 11568–11583.