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Abstract. We give two new g-congruences by using the method of “creative microscoping” and Gaspers
Karlsson—Minton type summation. In particular, we present a g-analogue of a congruence of Barman and
Saikia.
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1. INTRODUCTION

Rodriguez-Villegas [12] studied hypergeometric families of Calabi—Yau manifolds, and found a number of
possible supercongruences. For instance, he observed that, for any prime p > 2,

p=l(1y2
,;)(532" = (—1)P" V2 (mod p?), M

where (a)o =1 and (a), =a(a+1)---(a+n—1) (n > 1) is the rising factorial. Mortenson [11] first confirmed
the congruence (T)). Later, the first author and Zeng [4] obtained a g-analogue of (T)):

p—1 (6]' q2)2 N
) 2’72"2q2k = (—1)P=124(r"=1/% (mod [p]?) for any odd prime p. ()
=0 (%9%);
Here and throughout the paper, (a;q)o = 1 and (a;q), = (1 —a)(1 —aq)--- (1 —aq"~") (n > 1) is the g-shifted
factorial, and [n] = 1 +¢q+---+¢""! is the g-integer. For convenience, we will also adopt the condensed
notation (ay,az,...,am:q)n = (a15¢)n(a2:q)n -+ (Am; q)n-

In 2020, Barman and Saikia [[I]] gave a generalization of (T)) as follows: for d > 1 and any prime p satisfying
p=1 (mod d*>+d),

~ == ()T () () (mod p?), 3)

d+1

where I',(x) denotes the p-adic Gamma function (see [8]]).
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Let ®,(g) be the n-th cyclotomic polynomial in g, which can be written as

Pu(q)= [T (a2,

1<k<n
ged(k,n)=1

where { is an n-th primitive root of unity. The first aim of this note is to give the following g-analogue of
Barman and Saikia’s congruence (3)).

THEOREM 1. Let d and n be positive integers withn =1 (mod d? +d). Then, modulo ®,(q)?,

(n=1)/(d+1) (qd;qd2+d)z+1q(d2+d)k

(qd—H ;qu-&-d)z(qdz—i-d;qdz-&-d)

k=0 k
(n=1)(n+1+d—d?)
_ (— 1) D/ (rd) (gl 4d gy g 2D @
(qd—H ;qd2+d)fln—1)/(d2+d)

For n prime, letting ¢ — 1 in Theorem [I] we arrive the following congruence: for d > 1 and any prime
p=1 (mod d’*+d),

(p=1)/(@+1) (L1 yd+1 (_y(p-1)/@+1) (=1
i EDE R o ), )
=0 (Z)k! (@p-1)/+a)

d+1/° = (—l)d“Fp(%)de(dLH)d“ (mod PZ)- (6)

Hence, the congruence (9) is equivalent to (3).

We shall also establish the following congruence similar to (3)).

THEOREM 2. Let d > 1 and let p be a prime with p =1 (mod d? +d). Then

(p=1)/(d+1) (1o )d+1 (—1)d+2

Tk _
k=0 1)k! 2(d*+d)

Lo (1T (745)" (mod p?). 7

Since (1) = —1 and I'p(1)? = (=1)*1/2 for d = 1, the congruence (7) reduces to

Pl (12 —1NptD/2

of which a generalization modulo p? for p > 3 has already been given by Sun [13, Theorem 1.2, (1.8) and
(1.10)].

It is easy to see that, for any prime p > 2,

D2 (- 2p+3< p+1
(

L k1Z2 4t \(p+1)

2
=0 (mod p2 . &)
by ;) =0 (mod )

The last aim of this note is to give the following generalization of (9).
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THEOREM 3. Let d and n be positive integers withn =2d +1 (mod d*> +d). Then

(n+1)/(d+1) (g% ¢ +d)d+1q(d2+d)k .
l;) (gt g ) (g 45 qT )y =0 (mod ®(q)"). (10)

In particular, letting » be prime and taking ¢ — 1 in Theorem 3] we are led to the conclusion.

COROLLARY 1. Let d > 1 and let p be a prime with p =2d+1 (mod d*>+d). Then

(pH1)/(d+1) (L yd+1
d*zk =0 (mod p?)
k=0 (% k!

Similarly to the proof of Theorem 2] we can also deduce the following congruence from Theorem 3]
COROLLARY 2. Let d > 1 and let p be a prime with p=2d+1 (mod d*+d). Then

(p+l)/(d+l) ( 7 )d—H
d

k!

=0 (mod p?).

U=

k=0 (

2. PROOF OF THEOREM(I]

We will make use of Gasper’s Karlsson—Minton type summation (see [2} (1.9.9)]; and see [3} (5.13)] for a

generalization): for all non-negative integers nyp,...,n,,
N —N M « . L it n nm
Z blq y . bmq ’Q)qu: (—I)N (q’q>Nb1 bm q(21)+"'+(2)’ (11)
k=0 %bbvbm’Q)k (bl’q)nl (bm’q)nm

where N = ny + - - - +n,,. For some recent congruences and g-congruences related to (L)), see [5}/7,[9]].

We first build the following generalization of Theorem (1| with an extra parameter a by employing the
“creative microscoping” method devised in [6].

THEOREM 4. Let d,n > 1 be integers withn =1 (mod d* +d). Let a be an indeterminate. Then, modulo
(1—ag")(a—q"),

—1)/(d+1
(n—1)/(d+1) (adqd 247 agt; qd +d)
= (adflqd+1’ad 3qd+1 ) azqd“ qd+1 qd2+d)k
—_ _ _ 2
y (a dqd’az dqd a lqd qd +d)kq(d +d)k
(alqud+1,a3qud+l’“"a 2gd+1, g +d) (g +d; gdP+d),

(_1)(n71)/(d+1)(qd2+d;qd2+d)(n_1)/(d+l)

T (a1 a3 a2 g g ) aesa)
(=) (n+1+d—d?)
g 2@ (12)
X
(al‘dq‘”] ,a3_d6]d+l . qd+1 qd2+d)(nfl)/(d2+d)
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if d is odd, and

“1)/(d+1
(n=1)/(d+1) (adqd @ qu ' a2qd qd qd +d)

(ad=1gd+1 qd=3gd+1 qgd+1;gd>+d)

k
d*+d)k

k=0

— _ _ 2
(a dqd,a2 dqd,...,a qu;qd +d)q(

X
T a2
((ll dqd+l’a3 dqd+l’_“’a lqd+l’qd +d)k(qd er,qd +d)

k

B (_1)(n71)/(d+1)(qd2+d;qd2+d)(n_l)/(d+l)

= — — : 5
(ad—1gd+1 qd=3gd+1  qgd+1;gd*+d)

(n—1)/(d*>+d)

(n=1)(n+1+d—d?)
q 2(d+1)

X 13
(al—dqd+l’a3—dqd+17.“7a—1qd+1;qd2+d) (13)

(n—1)/(d>+d)

if d is even.

Proof. Tt is obvious that gcd(d,n) = 1, and therefore none of the numbers d,2d, ... (n— 1)d are divisible
by n. This indicates that the denominators on the left-hand side of do not have the factor 1 —aq" nor
1 —a'q". Thus, fora = g~" or a = ¢", the left-hand side of (T2) may be written as

(n—1)/(d+1) ~(1=)d_g—(n=D)d+2n  —n+d, d+d)

(¢ .q g "y
(q—(d—l)n+d+1 ,q—(d—3)n+d+1 e 7q—2n+d+l 7 qd—H ’qd2+d)

k=0 k

2
(q .q g g g

(gld=—Dntd+1l g(d=3ntd+l - g2ntdtl, gd>+d), (qd?+d; gd?+d)

(n+1)d_(n+1)d=2n (d®+d)k

(14)

X
k

Letting g — ¢ t4, N = (n—1)/(1+d), m =d, b; = g @ ntdH 1+ G=02 and n; = (n— 1) /(d> +d)
(1 < j<d)in (TI), we conclude that is equal to

— 2 2
(_1)(}1 1)/(l+d)(qd +d;qd +d)(n71)/(1+d)
(q—(d—l)n—i-d—i-l7q—(d—3)n+d+l q—2n+d+l qd+1;qd2+d)

(n—1)/ (& +d)
(n—1)+d(d>+d) ()

q
x (q(d—l)n+d+1 , q(d—3)n+d+1 ... gt ;qd2+d)(nfl)/(d2+d) ’ (15)
which is just the a = ¢~ " or a = ¢" case of the right-hand side (I2). This proves the g-congruence (12)).
Similarly, for a = ¢~" or a = ¢", the left-hand side of (13)) may be expressed as
n—1)/(d+1 (n—1)d ,—(n—1)d+2n —2n+d ,d. d*+d
AT (g g RRREY A A A )
= (q (d—1)n+d+1 ,q—(d—3)n+d+1 g —n+d+1. qd2+d)k
_ 2 2
. (grVd glmsl)d=an  ontd, gd>+dy, (@ +d)k 6
<q(d—1)n+d+l,q(d—3)n+d+1,'_"qn+d+1 d2+d) ( d2+d d2+d)k'

Letting ¢ — ¢, N=(n—1)/(1+d), m=d, b; = g~ @~ DmFd+1+G=02 and p; = (n— 1) /(d*> +d) (1 <
Jj < d) in (1I)), we deduce that (16) is equal to the a = g~" or a = ¢" case of the right-hand side (13)). This
establishes (13). O

Proof of Theorem|[l] Note that ®,(q) is a factor of 1 —¢” if and only if m is divisible by n. Hence, when
a = 1 the denominators of (I2) are all coprime with ®,(g). Meanwhile, when a = 1 the polynomial (1 —
aq")(a—q") = (1 —¢")? incorporates the factor ®,(q)?. The proof of (@) then follows immediately from the

a =1 case of (I2) and (13). O
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3. PROOF OF THEOREM 2]

Let n > 1 be an integer with n =1 (mod d” +d). Performing the substitution g — ¢!

dual form: modulo ®,(q)?,

in (@), we get its

(1—n)(nd+d?)
(n—1)/(d+1) (qd qd2+d)d+l _ (_1)(n71)/(1+d) (qd2+d;qd2+d)(nil)/(Hd)q;z(dH) a7
= (gd+1 ;qdz—l—d);{l(qdz—&-d’ qd2+d)k (gd+1; qd2+d)t(ln—1)/(d2+d)

Subtracting (@) from and dividing both sides by 1 — g, we are led to

(n— 1)/(d+1)( d. d2+d)d+l(1_q(d2+d)k)
k=0 (qu;quer)z(l —q)
—n)(n 2 n— W n
(—1) =D/ (g gy 71)/(1+d)q%fl+)d>(l —q(l)(z(ziﬁm)

= (mod ®,(q)?).
(¢! ;qd2+d)t(in_1)/(dz+d)(1 —q)

Letting n = p be a prime and taking the limit as ¢ — 1 in the above g-supercongruence, we obtain the following
result: for any positive integer d and prime p = 1 (mod d? +d),

1)/ (B2 — 1)
O s D@ )
(-1 (p+d)/(d+l)(5%})y

(

The proof then follows from the congruence (6)).

4. PROOF OF THEOREM 3]

We will utilize another Karlsson—Minton type summation due to Gasper (see [2, (1.9.11)]): for all non-
negative integers ny,...,n;,
N —Nb nooh gl
(q 014, s Omq ’q)qu:()' (18)
k=0 (q,bl,---,meQ)k

where N > ny +--- +ny,.
We first establish the following parametric generalization of Theorem [3]

THEOREM 5. Let d,n > 1 be integers with n =2d+1 (mod d*> +d). Let a be an indeterminate. Then,
modulo (1 —aq")(a—q"),

1)/(d+1 2
(n+1)/(d+1) (aqd d2qd aqdqd—i-d)
= (ad—1qd+1 ad=3qd+1 | 2qdt! gdt, qd +d),
_ _ _ 2 2
(a dg=d @2—dg=d_ g=1gd; 4 +d)kq(d +d)k

=0 (19)
(alqud“,a%dqd“,...,a qu,qd2+d)k(qd2+d;qd2+d)k
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if d is odd, and

(n+1)/(d+1) d —d 25— 2 d ~d. d2+d)

q ....,aq

(a k
~ (ad 1 d+1 ad 3qd+1 o aqd“ d2+d)
(

k
(> +d)k

>~

_ 2
a dqd a” qdqd+d)q

X
2 g, 2
(Cll dqd+l’a3 dqurl,...,d qurl’qd +d)k(qd +d’qd +d)

=0 (20)
k

if d is even.

Proof. 1t is easy to see that gcd(d,n) = 1 and so none of the numbers d,2d,...(n— 1)d are multiples of
n. This implies that the denominators of the left-hand sides of have no factors 1 —aq" and 1 —a~!q".
Therefore, for a = ¢~" or a = ¢", the left-hand side of (T9) can be expressed as

(n+1)/(d+1) —(r+)d_g—(n)d+2n mntd, d—l—d)

(¢ q g "
(qf(dfl)n+d+1’qf(df3)n+d+l ...,q 2L qd+1;qd2+d)

k=0 k

(q(nfl)d7q(n71)d72n g d. qd2+d)kq(d2+d)k

X (q(d—l)n+d+1 ’ q(d—3)n+d+1’ L 7q2n+d+1;qd2+d)k(qd2+d;qdz-i-d)k ’ 21

Letting g — ¢, N =nd+d,m=d, b; = g~ @ Dmtd+ 14002 and p; = (n—2d — 1) /(d>+d) (1 < j <
d) in (18), we conclude that (21)) is equal to 0, which is just the a = ¢" or a = ¢" case of the right-hand side of
(19). Namely, the congruence holds. Exactly in the same way, we can prove the g-congruence (20). [

Proof of Theorem[3] When a = 1, the polynomial (1 —aq")(a — ¢") contains the factor ®,(q)?, which is
coprime with the denominators of the left-hand sides of (19) and (20). Hence, the congruence (10) immediately
follows from the a = 1 case of and (20). O
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