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Abstract. We give two new q-congruences by using the method of “creative microscoping” and Gaspers
Karlsson–Minton type summation. In particular, we present a q-analogue of a congruence of Barman and
Saikia.
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1. INTRODUCTION

Rodriguez-Villegas [12] studied hypergeometric families of Calabi–Yau manifolds, and found a number of
possible supercongruences. For instance, he observed that, for any prime p > 2,

p−1

∑
k=0

(1
2)

2
k

k!2 ≡ (−1)(p−1)/2 (mod p2), (1)

where (a)0 = 1 and (a)n = a(a+1) · · ·(a+n−1) (n ⩾ 1) is the rising factorial. Mortenson [11] first confirmed
the congruence (1). Later, the first author and Zeng [4] obtained a q-analogue of (1):

p−1

∑
k=0

(q;q2)2
k

(q2;q2)2
k

q2k ≡ (−1)(p−1)/2q(p2−1)/4 (mod [p]2) for any odd prime p. (2)

Here and throughout the paper, (a;q)0 = 1 and (a;q)n = (1−a)(1−aq) · · ·(1−aqn−1) (n ⩾ 1) is the q-shifted
factorial, and [n] = 1+ q+ · · ·+ qn−1 is the q-integer. For convenience, we will also adopt the condensed
notation (a1,a2, . . . ,am;q)n = (a1;q)n(a2;q)n · · ·(am;q)n.

In 2020, Barman and Saikia [1] gave a generalization of (1) as follows: for d ⩾ 1 and any prime p satisfying
p ≡ 1 (mod d2 +d),

(p−1)/(d+1)

∑
k=0

( 1
d+1)

d+1
k

( 1
d )

d
k k!

≡ (−1)d+1
Γp(

1
d )

d
Γp(

d
d+1)

d+1 (mod p2), (3)

where Γp(x) denotes the p-adic Gamma function (see [8]).
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Let Φn(q) be the n-th cyclotomic polynomial in q, which can be written as

Φn(q) = ∏
1⩽k⩽n

gcd(k,n)=1

(q−ζ
k),

where ζ is an n-th primitive root of unity. The first aim of this note is to give the following q-analogue of
Barman and Saikia’s congruence (3).

THEOREM 1. Let d and n be positive integers with n ≡ 1 (mod d2 +d). Then, modulo Φn(q)2,

(n−1)/(d+1)

∑
k=0

(qd ;qd2+d)d+1
k q(d

2+d)k

(qd+1;qd2+d)d
k (q

d2+d ;qd2+d)k

≡
(−1)(n−1)/(1+d)(qd2+d ;qd2+d)(n−1)/(1+d)q

(n−1)(n+1+d−d2)
2(d+1)

(qd+1;qd2+d)d
(n−1)/(d2+d)

. (4)

For n prime, letting q → 1 in Theorem 1, we arrive the following congruence: for d ⩾ 1 and any prime
p ≡ 1 (mod d2 +d),

(p−1)/(d+1)

∑
k=0

( 1
d+1)

d+1
k

( 1
d )

d
k k!

≡
(−1)(p−1)/(d+1)( p−1

d+1 )!

( 1
d )

d
(p−1)/(d2+d)

(mod p2). (5)

In view of properties of p-adic Gamma functions (see [10, Section 2]), it is not hard to show that

(−1)(p−1)/(d+1)( p−1
d+1 )!

( 1
d )

d
(p−1)/(d2+d)

≡ (−1)d+1
Γp(

1
d )

d
Γp(

d
d+1)

d+1 (mod p2). (6)

Hence, the congruence (5) is equivalent to (3).

We shall also establish the following congruence similar to (3).

THEOREM 2. Let d ⩾ 1 and let p be a prime with p ≡ 1 (mod d2 +d). Then

(p−1)/(d+1)

∑
k=0

k( 1
d+1)

d+1
k

( 1
d )

d
k k!

≡ (−1)d+2

2(d2 +d)
Γp(

1
d )

d
Γp(

d
d+1)

d+1 (mod p2). (7)

Since Γp(1) =−1 and Γp(
1
2)

2 = (−1)(p+1)/2, for d = 1, the congruence (7) reduces to

p−1

∑
k=0

k(1
2)

2
k

k!2 ≡ (−1)(p+1)/2

4
(mod p2), (8)

of which a generalization modulo p3 for p > 3 has already been given by Sun [13, Theorem 1.2, (1.8) and
(1.10)].

It is easy to see that, for any prime p > 2,

(p+1)/2

∑
k=0

(−1
2)

2
k

k!2 =
2p+3
4p+1

(
p+1

(p+1)/2

)2

≡ 0 (mod p2). (9)

The last aim of this note is to give the following generalization of (9).
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THEOREM 3. Let d and n be positive integers with n ≡ 2d +1 (mod d2 +d). Then

(n+1)/(d+1)

∑
k=0

(q−d ;qd2+d)d+1
k q(d

2+d)k

(qd+1;qd2+d)d
k (q

d2+d ;qd2+d)k
≡ 0 (mod Φn(q)2). (10)

In particular, letting n be prime and taking q → 1 in Theorem 3, we are led to the conclusion.

COROLLARY 1. Let d ⩾ 1 and let p be a prime with p ≡ 2d +1 (mod d2 +d). Then

(p+1)/(d+1)

∑
k=0

(− 1
d+1)

d+1
k

( 1
d )

d
k k!

≡ 0 (mod p2).

Similarly to the proof of Theorem 2, we can also deduce the following congruence from Theorem 3.

COROLLARY 2. Let d ⩾ 1 and let p be a prime with p ≡ 2d +1 (mod d2 +d). Then

(p+1)/(d+1)

∑
k=0

k(− 1
d+1)

d+1
k

( 1
d )

d
k k!

≡ 0 (mod p2).

2. PROOF OF THEOREM 1

We will make use of Gasper’s Karlsson–Minton type summation (see [2, (1.9.9)]; and see [3, (5.13)] for a
generalization): for all non-negative integers n1, . . . ,nm,

N

∑
k=0

(q−N ,b1qn1 , . . . ,bmqnm ;q)k

(q,b1, . . . ,bm;q)k
qk = (−1)N (q;q)Nbn1

1 · · ·bnm
m

(b1;q)n1 · · ·(bm;q)nm

q(
n1
2 )+···+(nm

2 ), (11)

where N = n1 + · · ·+nm. For some recent congruences and q-congruences related to (11), see [5, 7, 9].

We first build the following generalization of Theorem 1 with an extra parameter a by employing the
“creative microscoping” method devised in [6].

THEOREM 4. Let d,n > 1 be integers with n ≡ 1 (mod d2 +d). Let a be an indeterminate. Then, modulo
(1−aqn)(a−qn),

(n−1)/(d+1)

∑
k=0

(adqd ,ad−2qd , . . . ,aqd ;qd2+d)k

(ad−1qd+1,ad−3qd+1, . . . ,a2qd+1,qd+1;qd2+d)k

× (a−dqd ,a2−dqd , . . . ,a−1qd ;qd2+d)kq(d
2+d)k

(a1−dqd+1,a3−dqd+1, . . . ,a−2qd+1;qd2+d)k(qd2+d ;qd2+d)k

≡
(−1)(n−1)/(d+1)(qd2+d ;qd2+d)(n−1)/(d+1)

(ad−1qd+1,ad−3qd+1, . . . ,a2qd+1,qd+1;qd2+d)(n−1)/(d2+d)

× q
(n−1)(n+1+d−d2)

2(d+1)

(a1−dqd+1,a3−dqd+1, . . . ,a−2qd+1;qd2+d)(n−1)/(d2+d)
(12)
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if d is odd, and

(n−1)/(d+1)

∑
k=0

(adqd ,ad−2qd , . . . ,a2qd ,qd ;qd2+d)k

(ad−1qd+1,ad−3qd+1, . . . ,aqd+1;qd2+d)k

× (a−dqd ,a2−dqd , . . . ,a−2qd ;qd2+d)q(d
2+d)k

(a1−dqd+1,a3−dqd+1, . . . ,a−1qd+1;qd2+d)k(qd2+d ;qd2+d)k

≡
(−1)(n−1)/(d+1)(qd2+d ;qd2+d)(n−1)/(d+1)

(ad−1qd+1,ad−3qd+1, . . . ,aqd+1;qd2+d)(n−1)/(d2+d)

× q
(n−1)(n+1+d−d2)

2(d+1)

(a1−dqd+1,a3−dqd+1, . . . ,a−1qd+1;qd2+d)(n−1)/(d2+d)
(13)

if d is even.

Proof. It is obvious that gcd(d,n) = 1, and therefore none of the numbers d,2d, . . .(n− 1)d are divisible
by n. This indicates that the denominators on the left-hand side of (12) do not have the factor 1− aqn nor
1−a−1qn. Thus, for a = q−n or a = qn, the left-hand side of (12) may be written as

(n−1)/(d+1)

∑
k=0

(q−(n−1)d ,q−(n−1)d+2n, . . . ,q−n+d ;qd2+d)k

(q−(d−1)n+d+1,q−(d−3)n+d+1, . . . ,q−2n+d+1,qd+1;qd2+d)k

× (q(n+1)d ,q(n+1)d−2n, . . . ,qn+d ;qd2+d)kq(d
2+d)k

(q(d−1)n+d+1,q(d−3)n+d+1, . . . ,q2n+d+1;qd2+d)k(qd2+d ;qd2+d)k
. (14)

Letting q 7→ qd2+d , N = (n − 1)/(1+ d), m = d, b j = q−(d−1)n+d+1+( j−1)2n and n j = (n − 1)/(d2 +d)
(1 ⩽ j ⩽ d) in (11), we conclude that (12) is equal to

(−1)(n−1)/(1+d)(qd2+d ;qd2+d)(n−1)/(1+d)

(q−(d−1)n+d+1,q−(d−3)n+d+1, . . . ,q−2n+d+1,qd+1;qd2+d)(n−1)/(d2+d)

× q(n−1)+d(d2+d)((n−1)/(d2+d)
2 )

(q(d−1)n+d+1,q(d−3)n+d+1, . . . ,q2n+d+1;qd2+d)(n−1)/(d2+d)
. (15)

which is just the a = q−n or a = qn case of the right-hand side (12). This proves the q-congruence (12).
Similarly, for a = q−n or a = qn, the left-hand side of (13) may be expressed as

(n−1)/(d+1)

∑
k=0

(q−(n−1)d ,q−(n−1)d+2n, . . . ,q−2n+d ,qd ;qd2+d)k

(q−(d−1)n+d+1,q−(d−3)n+d+1, . . . ,q−n+d+1;qd2+d)k

× (q(n+1)d ,q(n+1)d−2n, . . . ,q2n+d ;qd2+d)kq(d
2+d)k

(q(d−1)n+d+1,q(d−3)n+d+1, . . . ,qn+d+1;qd2+d)k(qd2+d ;qd2+d)k
. (16)

Letting q 7→ qd(1+d), N = (n− 1)/(1+ d), m = d, b j = q−(d−1)n+d+1+( j−1)2n and n j = (n− 1)/(d2 +d) (1 ⩽
j ⩽ d) in (11), we deduce that (16) is equal to the a = q−n or a = qn case of the right-hand side (13). This
establishes (13).

Proof of Theorem 1. Note that Φn(q) is a factor of 1− qm if and only if m is divisible by n. Hence, when
a = 1 the denominators of (12) are all coprime with Φn(q). Meanwhile, when a = 1 the polynomial (1−
aqn)(a− qn) = (1− qn)2 incorporates the factor Φn(q)2. The proof of (4) then follows immediately from the
a = 1 case of (12) and (13).
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3. PROOF OF THEOREM 2

Let n > 1 be an integer with n ≡ 1 (mod d2 + d). Performing the substitution q 7→ q−1 in (4), we get its
dual form: modulo Φn(q)2,

(n−1)/(d+1)

∑
k=0

(qd ;qd2+d)d+1
k

(qd+1;qd2+d)d
k (q

d2+d ;qd2+d)k
≡

(−1)(n−1)/(1+d)(qd2+d ;qd2+d)(n−1)/(1+d)q
(1−n)(nd+d2)

2(d+1)

(qd+1;qd2+d)d
(n−1)/(d2+d)

. (17)

Subtracting (4) from (17) and dividing both sides by 1−q, we are led to

(n−1)/(d+1)

∑
k=0

(qd ;qd2+d)d+1
k (1−q(d

2+d)k)

(qd+1;qd2+d)d
k (1−q)

≡
(−1)(n−1)/(1+d)(qd ;qd2+d)(n−1)/(1+d)q

(1−n)(nd+d2)
2(d+1) (1−q

(n−1)(nd+d+n+1)
2(d+1) )

(qd+1;qd2+d)d
(n−1)/(d2+d)(1−q)

(mod Φn(q)2).

Letting n = p be a prime and taking the limit as q → 1 in the above q-supercongruence, we obtain the following
result: for any positive integer d and prime p ≡ 1 (mod d2 +d),

(p−1)/(d+1)

∑
k=0

k( 1
d+1)

d+1
k

( 1
d )

d
k k!

≡
(−1)(p−1)/(d+1)( p−1

d+1 )!(p2 −1)

2( 1
d )

d
(p−1)/(d2+d)(d +1)(d2 +d)

≡
(−1)(p+d)/(d+1)( p−1

d+1 )!

2( 1
d )

d
(p−1)/(d2+d)(d

2 +d)
.

The proof then follows from the congruence (6).

4. PROOF OF THEOREM 3

We will utilize another Karlsson–Minton type summation due to Gasper (see [2, (1.9.11)]): for all non-
negative integers n1, . . . ,nm,

N

∑
k=0

(q−N ,b1qn1 , . . . ,bmqnm ;q)k

(q,b1, . . . ,bm;q)k
qk = 0. (18)

where N > n1 + · · ·+nm.
We first establish the following parametric generalization of Theorem 3.

THEOREM 5. Let d,n > 1 be integers with n ≡ 2d +1 (mod d2 + d). Let a be an indeterminate. Then,
modulo (1−aqn)(a−qn),

(n+1)/(d+1)

∑
k=0

(adq−d ,ad−2q−d , . . . ,aq−d ;qd2+d)k

(ad−1qd+1,ad−3qd+1, . . . ,a2qd+1,qd+1;qd2+d)k

× (a−dq−d ,a2−dq−d , . . . ,a−1q−d ;qd2+d)kq(d
2+d)k

(a1−dqd+1,a3−dqd+1, . . . ,a−2qd+1;qd2+d)k(qd2+d ;qd2+d)k
= 0 (19)
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if d is odd, and

(n+1)/(d+1)

∑
k=0

(adq−d ,ad−2q−d , . . . ,a2q−d ,q−d ;qd2+d)k

(ad−1qd+1,ad−3qd+1, . . . ,aqd+1;qd2+d)k

× (a−dq−d ,a2−dq−d , . . . ,a−2q−d ;qd2+d)q(d
2+d)k

(a1−dqd+1,a3−dqd+1, . . . ,a−1qd+1;qd2+d)k(qd2+d ;qd2+d)k
= 0 (20)

if d is even.

Proof. It is easy to see that gcd(d,n) = 1 and so none of the numbers d,2d, . . .(n− 1)d are multiples of
n. This implies that the denominators of the left-hand sides of (19) have no factors 1− aqn and 1− a−1qn.
Therefore, for a = q−n or a = qn, the left-hand side of (19) can be expressed as

(n+1)/(d+1)

∑
k=0

(q−(n+1)d ,q−(n+1)d+2n, . . . ,q−n+d ;qd2+d)k

(q−(d−1)n+d+1,q−(d−3)n+d+1, . . . ,q−2n+d+1,qd+1;qd2+d)k

× (q(n−1)d ,q(n−1)d−2n, . . . ,qn−d ;qd2+d)kq(d
2+d)k

(q(d−1)n+d+1,q(d−3)n+d+1, . . . ,q2n+d+1;qd2+d)k(qd2+d ;qd2+d)k
. (21)

Letting q 7→ qd2+d , N = nd+d, m = d, b j = q−(d−1)n+d+1+( j−1)2n and n j = (n−2d−1)/(d2 +d) (1 ⩽ j ⩽
d) in (18), we conclude that (21) is equal to 0, which is just the a = q−n or a = qn case of the right-hand side of
(19). Namely, the congruence (19) holds. Exactly in the same way, we can prove the q-congruence (20).

Proof of Theorem 3. When a = 1, the polynomial (1− aqn)(a− qn) contains the factor Φn(q)2, which is
coprime with the denominators of the left-hand sides of (19) and (20). Hence, the congruence (10) immediately
follows from the a = 1 case of (19) and (20).
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