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Abstract. We present three q-supercongruences modulo the fifth power of a cyclotomic
polynomial by using Jackson’s 8φ7 summation and Watson’s 8φ7 transformation, together
with the creative microscoping method introduced in [Adv. Math. 346 (2019), 329–358].
As conclusions, we give a partial q-analogue of a supercongruence of Barman and Saikia,
and a complete q-analogue of the supercongruence:
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where p ≡ 5 (mod 8) is a prime, (x)k is the Pochhammer symbol, and Γp(x) is the p-adic
Gamma function.
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1. Introduction

For any complex number x, the Pochhammer symbol is defined by (x)0 = 1 and (x)k =
x(x + 1) · · · (x + k− 1) for k > 1. It is well known that (x)k = Γ(x + k)/Γ(x), where Γ(x)
denotes the classical Gamma function. For any odd prime p, let Zp be the ring of p-adic
integers. The p-adic Gamma function Γp is defined as Γp(0) = 1 and

Γp(n) = (−1)n
∏

0<k<n; p-k
k.

This function can be uniquely extended to a continuous function Γp : Zp → Z×p . For any
x ∈ Zp and x 6= 0, we define

Γp(x) = lim
xn→x

Γp(xn),

where xn ranges over any sequence of positive integers that p-adically approximate x.

*Corresponding author.
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In 1997, Van Hamme [12, (D.2)] observed the following supercongruence: for any prime
p ≡ 1 (mod 6),

(p−1)/3∑

k=0

(6k + 1)
(1

3
)6
k

k!6
≡ −pΓp(

1
3
)9 (mod p4), (1.1)

In 2006, Long and Ramakrishna [10, Theorem 2] proved that, for any prime p > 3,
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)6
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
−pΓp(

1
3
)9 (mod p6), if p ≡ 1 (mod 6),

−10
27

p4Γp(
1
3
)9 (mod p6), if p ≡ 5 (mod 6),

(1.2)

thus confirming Van Hamme’s supercongruence (1.1). Recently, some authors have given
different generalizations of (1.2) (see [5, 8, 14, 16, 17]). In particular, by making use of
Jackson’s 8φ7 summation formula, the method of “creative microscoping” devised by the
first author and Zudilin [7], and the Chinese remainder theorem for polynomials, Wei [16]
gave a q-analogue of the second part in (1.2): for any positive integer n ≡ 2 (mod 3),

n−1∑

k=0

[6k + 1]
(q; q3)6

k

(q3; q3)6
k

q3k ≡ 5[2n]
(q2; q3)3

(2n−1)/3

(q3; q3)3
(2n−1)/3

(mod [n]Φn(q)5). (1.3)

Meanwhile, he also gave a q-analogue of a weaker form of the first part in (1.2), where
the modulus p6 is replaced by p5. At the moment being, we need to recall the standard
q-notation. The q-shifted factorial is defined as (a; q)0 = 1 and (a; q)n = (1 − a)(1 −
aq) · · · (1−aqn−1) for all positive integers n, the q-integer is defined by [n] = (1−qn)/(1−
q). For convenience, we shall also adopt the abbreviated notation for products of q-
shifted factorials: (a1, . . . , am; q)n = (a1; q)n . . . (am; q)n. Moreover, let Φn(q) be the n-th
cyclotomic polynomial, which can be factorized as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ denotes an nth primitive root of unity. It is clear that Φp(q) = [p] for any prime
p. For more recent results on q-congruences, see [3, 4, 11,13,15].

In 2020, motivated by Long and Ramakrishna’s work, Barman and Saikia [1, Theorem
1.4] proved that, for any prime p ≡ 1 (mod 8),

7(p−1)/8∑
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(1
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Note that we may truncate the left-hand side of (1.4) at k = (p − 1)/4, since the p-adic
order of (1

8
)k(

1
4
)5
k/(k!(7

8
)5
k) is 6 for (p− 1)/4 < k 6 7(p− 1)/8.

Inspired by Wei’s work [16], we shall establish the following q-supercongruence, which
is a q-analogue of (1.4) modulo p5.
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Theorem 1.1. Let n ≡ 1 (mod 8) be a positive integer. Then, modulo Φn(q)5,

(n−1)/4∑

k=0

[16k + 1]
(q; q8)k(q

2; q8)5
k

(q7; q8)5
k(q

8; q8)k

q8k

≡
(q9; q8)(n−1)/4(q

5; q8)3
(n−1)/4

(q3; q8)(n−1)/4(q7; q8)3
(n−1)/4



1 + [2n]2(2− q2n)

(n−1)/4∑
j=1

(
q8j−3

[8j − 3]2
− q8j−1

[8j − 1]2

)

 .

(1.5)

Letting n = pr be a prime power with p ≡ 1 (mod 8) and taking the limits as q → 1
in (1.5), we obtain the following conclusion.

Corollary 1.2. Let p ≡ 1 (mod 8) be a prime and r a positive integer. Then

(pr−1)/4∑
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
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1
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)

 (mod p5).

(1.6)

Combining the supercongruence (1.4) modulo p5 and the r = 1 case of (1.6), we are
led to the following corollary.

Corollary 1.3. Let p ≡ 1 (mod 8) be a prime. Then, modulo p5,

(9
8
)(p−1)/4(
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)3
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)(p−1)/4(
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8
)3
(p−1)/4



1 + 4p2

(p−1)/4∑
j=1

(
1

(8j − 3)2
− 1

(8j − 1)2

)

 ≡ −pΓp(

7
8
)6Γp(

3
8
)10.

It should be pointed out that the q-supercongruence (1.5) is also true for n ≡ 5
(mod 8). However, in this case the result can be simplified as follows.

Theorem 1.4. Let n ≡ 5 (mod 8) be a positive integer. Then

(n−1)/4∑

k=0

[16k + 1]
(q; q8)k(q

2; q8)5
k

(q7; q8)5
k(q

8; q8)k

q8k ≡ 5
(q9; q8)(n−1)/4(q

5; q8)3
(n−1)/4

(q3; q8)(n−1)/4(q7; q8)3
(n−1)/4

(mod Φn(q)5). (1.7)

From the above result we shall deduce the following conclusion.

Corollary 1.5. Let p ≡ 5 (mod 8) be a prime. Then

(p−1)/4∑
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Not like (1.4), numerical computations imply that the supercongruence (1.8) does not
hold modulo p6 in general.

We shall also give the following companion of (1.5), which seems a little complicated.

Theorem 1.6. Let n ≡ 3 (mod 4) be an integer with n > 3. Then, modulo Φn(q)5,

(n+1)/4∑

k=0

[16k − 1]
(q−1; q8)k(q

−2; q8)5
k

(q9; q8)5
k(q

8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5; q8)k(q9; q8)2
k

q8k

×
{

1− [2n]2(2− q2n)
k∑

j=1

(
q8j−10

[8j − 10]2
+

q8j+1

[8j + 1]2

)}
. (1.9)

It is not difficult to see that the left-hand side of (1.7) is congruent to 0 modulo Φn(q)3.
From Theorem 1.6 we can derive a similar result as follows.

Corollary 1.7. Let n ≡ 3 (mod 8) be an integer with n > 3. Then

(n+1)/4∑

k=0

[16k − 1]
(q−1; q8)k(q

−2; q8)5
k

(q9; q8)5
k(q

8; q8)k

q24k ≡ 0 (mod Φn(q)3). (1.10)

The paper is organized as follows. In the next section, we shall first give a para-
metric version of Theorems 1.1 and 1.4 by employing the creative microscoping method
introduced in [7], together with the Chinese remainder theorem for polynomials; then we
deduce Theorems 1.1 and 1.4 from this parametric version. We shall prove Corollary 1.5
in Section 3 by utilizing some basic properties of the p-adic Gamma function. The proof
of Theorem 1.6 will be presented in Section 4. Finally, in Section 5, we will give a proof
of Corollary 1.7. Note that Jackson’s 8φ7 summation and Watson’s 8φ7 transformation
will also play important roles in this paper.

2. Proof of Theorems 1.1 and 1.4

Recall that the basic hypergeometric r+1φr series (see [2]) is defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑

k=0

(a0, a1, . . . , ar; q)k

(q, b1, . . . , br; q)k

zk.

Then Jackson’s 8φ7 summation [2, Appendix (II.22)] can be stated as follows:

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q, q

]

4



=
(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n

, (2.1)

where a2q = bcdeq−n.
In order to prove Theorem 1.1, we need to give the following identity.

Lemma 2.1. Let n ≡ 1 (mod 4) be a positive integer with n > 1. Then

(n−1)/4∑

k=0

1− q16k+1−n

1− q1−n

(aq2, q2/a, bq2, q2/b, q1−n, q2−2n; q8)k

(q7−n/a, aq7−n, q7−n/b, bq7−n, q7+n, q8; q8)k

q8k = 0. (2.2)

Proof. Letting q 7→ q8, and taking a = q1−n, b = aq2, c = q2/a, d = bq2, e = q2/b and
n 7→ (n− 1)/4 in (2.1), we see that the left-hand side of (2.2) is equal to

(q9−n, q5−n, q5−n/ab, aq5−n/b; q8)(n−1)/4

(q7−n/a, aq7−n, q7−n/b, q3−n/b; q8)(n−1)/4

= 0.

The is because (q9−n, q5−n; q8)(n−1)/4 in the numerator vanishes, while the denominator is
not equal to 0. 2

With the help of Lemma 2.1, we can give a parametric version of Theorems 1.1 and
1.4.

Lemma 2.2. Let n ≡ 1 (mod 4) be a positive integer. Let a and b be indeterminates.
Then, modulo Φn(q)(1− aq2n)(a− q2n)(1− bq2n)(b− q2n),

(n−1)/4∑

k=0

[16k + 1]
(aq2, q2/a, bq2, q2/b, q2, q; q8)k

(q7/a, aq7, q7/b, bq7, q7, q8; q8)k

q8k

≡ (1− bq2n)(b− q2n)(−1− a2 + aq2n)

(a− b)(1− ab)

(bq5, q5/b, q5, q9; q8)(n−1)/4

(q7/b, bq7, q7, q3; q8)(n−1)/4

+
(1− aq2n)(a− q2n)(−1− b2 + bq2n)

(b− a)(1− ba)

(aq5, q5/a, q5, q9; q8)(n−1)/4

(q7/a, aq7, q7, q3; q8)(n−1)/4

. (2.3)

Proof. Since qn ≡ 1 (mod Φn(q)), the identity (2.2) immediately leads to

(n−1)/4∑

k=0

[16k + 1]
(aq2, q2/a, bq2, q2/b, q2, q; q8)k

(q7/a, aq7, q7/b, bq7, q7, q8; q8)k

q8k ≡ 0 (mod Φn(q)).

Moreover, the right-hand side of (2.3) is also congruent to 0 because (q5, q9; q8)(n−1)/4 in
the numerator contains the factor 1 − qn, while the denominator is coprime with Φn(q).
This implies that the q-congruence (2.3) holds modulo Φn(q).
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For a = q−2n or a = q2n, the left-hand side of (2.3) can be written as

(n−1)/4∑

k=0

[16k + 1]
(q2−2n, q2+2n, bq2, q2/b, q2, q; q8)k

(q7+2n, q7−2n, q7/b, bq7, q7, q8; q8)k

q8k

= 8φ7

[
q, q

17
2 , −q

17
2 , q2, bq2, q2/b, q2+2n, q2−2n

q
1
2 , −q

1
2 , q7, q7/b, bq7, q7−2n, q7+2n

; q8, q8

]
. (2.4)

By Jackson’s summation (2.1), the right-hand side of (2.4) is equal to

(bq5, q5/b, q5, q9; q8)(n−1)/4

(q7/b, bq7, q7, q3; q8)(n−1)/4

.

Since the polynomial 1 − aq2n is coprime with the polynomial a − q2n, we immediately
obtain the following q-congruence: modulo (1− aq2n)(a− q2n),

(n−1)/4∑

k=0

[16k + 1]
(aq2, q2/a, bq2, q2/b, q2, q; q8)k

(q7/a, aq7, q7/b, bq7, q7, q8; q8)k

q8k ≡ (bq5, q5/b, q5, q9; q8)(n−1)/4

(q7/b, bq7, q7, q3; q8)(n−1)/4

. (2.5)

Noting that the left-hand side of (2.5) is symmetric in a and b, we deduce from (2.5) that,
modulo (1− bq2n)(b− q2n),

(n−1)/4∑

k=0

[16k + 1]
(aq2, q2/a, bq2, q2/b, q2, q; q8)k

(q7/a, aq7, q7/b, bq7, q7, q8; q8)k

q8k ≡ (aq5, q5/a, q5, q9; q8)(n−1)/4

(q7/a, aq7, q7, q3; q8)(n−1)/4

. (2.6)

It is obvious that Φn(q), (1−aq2n)(a−q2n), and (1−bq2n)(b−q2n) are pairwise coprime
polynomials in q. Furthermore, we have the following relation

(1− bq2n)(b− q2n)(−1− a2 + aq2n)

(a− b)(1− ab)
≡ 1 (mod (1− aq2n)(a− q2n)). (2.7)

By making use of the Chinese remainder theorem for polynomials, from (2.5), (2.6), (2.7)
and its dual form (a ↔ b), we are led to the q-congruence (2.3). 2

We are now able to prove Theorems 1.1 and 1.4.

Proof of Theorem 1.1. Since 1 − q2n contains the factor Φn(q), letting b = 1 in (2.3), we
have the following q-congruence: modulo Φn(q)3(1− aq2n)(a− q2n),

(n−1)/4∑

k=0

[16k + 1]
(aq2, q2/a, q2, q2, q2, q; q8)k

(q7/a, aq7, q7, q7, q7, q8; q8)k

q8k

≡ (1− q2n)2(1 + a2 − aq2n)

(1− a)2

(q5; q8)3
(n−1)/4(q

9; q8)(n−1)/4

(q7; q8)3
(n−1)/4(q

3; q8)(n−1)/4
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− (1− aq2n)(a− q2n)(2− q2n)

(1− a)2

(aq5, q5/a, q5, q9; q8)(n−1)/4

(q7/a, aq7, q7, q3; q8)(n−1)/4

= (1− q2n)2
(q5; q8)3

(n−1)/4(q
9; q8)(n−1)/4

(q7; q8)3
(n−1)/4(q

3; q8)(n−1)/4

+
a(1− q2n)2(2− q2n)

(1− a)2

(q5; q8)3
(n−1)/4(q

9; q8)(n−1)/4

(q7; q8)3
(n−1)/4(q

3; q8)(n−1)/4

− (1− aq2n)(a− q2n)(2− q2n)

(1− a)2

(aq5, q5/a, q5, q9; q8)(n−1)/4

(q7/a, aq7, q7, q3; q8)(n−1)/4

. (2.8)

By L’Hôpital’s rule, we get

lim
a→1

{
a(1− q2n)2

(1− a)2

(q5; q8)2
(n−1)/4

(q7; q8)2
(n−1)/4

− (1− aq2n)(a− q2n)

(1− a)2

(aq5, q5/a; q8)(n−1)/4

(q7/a, aq7; q8)(n−1)/4

}

=
(q5; q8)2

(n−1)/4

(q7; q8)2
(n−1)/4

{
q2n + [2n]2

(n−1)/4∑
j=1

(
q8j−3

[8j − 3]2
− q8j−1

[8j − 1]2

)}
.

Therefore, taking a → 1 in (2.8) and applying the above limit, we obtain the q-supercongruence
(1.5). 2

Proof of Theorem 1.4. In the proof of Theorem 1.1, we see that (1.5) is true for n ≡ 1
(mod 4). Now, for n ≡ 5 (mod 8), we have (q5; q8)(n−1)/4 ≡ 0 (mod Φn(q)) and

1 + [2n]2(2− q2n)

(n−1)/4∑
j=1

(
q8j−3

[8j − 3]2
− q8j−1

[8j − 1]2

)

≡ 1 + [2n]2(2− q2n)
qn

[n]2
≡ 5 (mod Φn(q)2).

This completes the proof. 2

3. Proof of Corollary 1.5

Let p be an odd prime. We first give some fundamental properties of the p-adic Gamma
function. By the definition of p-adic Gamma function, it is easy to see that

Γp(x + 1)

Γp(x)
=

{−x, p - x,

−1, p | x.
(3.1)

Furthermore, for any x ∈ Zp, we have

Γp(x)Γp(1− x) = (−1)p−〈−x〉p , (3.2)
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where 〈x〉p represents the least nonnegative residue of x modulo p, and for any a,m ∈ Zp,

Γp(a + mp) ≡ Γp(a) + Γ′p(a)mp (mod p2) (3.3)

(see, for example, [10, Theorem 14]).

Proof of Corollary 1.5. Letting n = p and taking the limits as q → 1 in (1.7), we get

(p−1)/4∑

k=0

(16k + 1)
(1

8
)k(

1
4
)5
k

k!(7
8
)5
k

≡ 5
(9

8
)(p−1)/4(

5
8
)3
(p−1)/4

(3
8
)(p−1)/4(

7
8
)3
(p−1)/4

(mod p5). (3.4)

In view of (3.1), we have

(9
8
)(p−1)/4(

5
8
)3
(p−1)/4

(3
8
)(p−1)/4(

7
8
)3
(p−1)/4

=
Γ(3

8
)Γ(2p+7

8
)Γ(7

8
)3Γ(2p+3

8
)3

Γ(2p+1
8

)Γ(9
8
)Γ(5

8
)3Γ(2p+5

8
)3

=
p3

83
· Γp(

3
8
)Γp(

2p+7
8

)Γp(
7
8
)3Γp(

2p+3
8

)3

Γp(
2p+1

8
)Γp(

9
8
)Γp(

5
8
)3Γp(

2p+5
8

)3
. (3.5)

Since p ≡ 5 (mod 8), in light of (3.2) and (3.3), we obtain

Γp(
2p+7

8
)

Γp(
2p+1

8
)

= (−1)(3p+1)/8Γp(
7+2p

8
)Γp(

7−2p
8

) ≡ (−1)(3p+1)/8Γp(
7
8
)2 (mod p2), (3.6)

Γp(
2p+3

8
)

Γp(
2p+5

8
)

= (−1)(p+3)/8Γp(
3+2p

8
)Γp(

3−2p
8

) ≡ (−1)(p+3)/8Γp(
3
8
)2 (mod p2). (3.7)

Substituting (3.6) and (3.7) into (3.5) and using the identities 1/Γp(
9
8
) = −8/Γp(

1
8
) =

−(−1)(3p+1)/88Γp(
7
8
) and 1/Γp(

5
8
) ≡ (−1)(p+3)/8Γp(

3
8
), we deduce that

(9
8
)(p−1)/4(

5
8
)3
(p−1)/4

(3
8
)(p−1)/4(

7
8
)3
(p−1)/4

≡ −p3

64
Γp(

7
8
)6Γp(

3
8
)10 (mod p5). (3.8)

The proof then follows from (3.4) and (3.8). 2

4. Proof of Theorem 1.6

The proof is similar to that of Theorem 1.1. We first give the following q-identity.

Lemma 4.1. Let n ≡ 3 (mod 4) be an integer with n > 3. Then

(n+1)/4∑

k=0

1− q16k−1−n

1− q−1−n

(aq−2, q−2/a, bq−2, q−2/b, q−1−n, q−2−2n; q8)k

(q9−n/a, aq9−n, q9−n/b, bq9−n, q9+n, q8; q8)k

q24k = 0. (4.1)
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Proof. Recall that Watson’s 8φ7 transformation (see [2, Appendix (III.18)]) can be written
as follows:

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

=
(aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
. (4.2)

Letting q → q8, and taking a = q−1−n, b = aq−2, c = q−2/a, d = bq−2, e = q−2/b and
n 7→ (n + 1)/4 in (4.2), we obtain

(n+1)/4∑

k=0

1− q16k−1−n

1− q−1−n

(aq−2, q−2/a, bq−2, q−2/b; q8)k(q
−1−n, q−2−2n; q8)k

(q9−n/a, aq9−n, q9−n/b, bq9−n; q8)k(q9+n, q8; q8)k

q24k

=
(q7−n, q11−n; q8)(n+1)/4

(q9−n/b, bq9−n; q8)(n+1)/4

(n+1)/4∑

k=0

(q11−n, bq−2, q−2/b, q−2n−2; q8)k

(q8, q9−n/a, aq9−n, q−n−5; q8)k

q8k. (4.3)

It is easy to see that the right-hand side of (4.3) vanishes, because of the factor
(q7−n, q11−n; q8)(n+1)/4 in the numerator. 2

On the basis of Lemma 4.1, we can present a parametric version of Theorem 1.6.

Lemma 4.2. Let n ≡ 3 (mod 4) be an integer with n > 3. Let a and b be indeterminates.
Then, modulo Φn(q)(1− aq2n)(a− q2n)(1− bq2n)(b− q2n),

(n+1)/4∑

k=0

[16k − 1]
(aq−2, q−2/a, bq−2, q−2/b, q−2, q−1; q8)k

(q9/a, aq9, q9/b, bq9, q9, q8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

×
{

(1− bq2n)(b− q2n)(−1− a2 + aq2n)

(a− b)(1− ab)

(n+1)/4∑

k=0

(q11, q−2, q−2/a, aq−2; q8)k

(q8, q9/b, bq9, q−5; q8)k

q8k

+
(1− aq2n)(a− q2n)(−1− b2 + bq2n)

(b− a)(1− ba)

(n+1)/4∑

k=0

(q11, q−2, q−2/b, bq−2; q8)k

(q8, q9/a, aq9, q−5; q8)k

q8k

}
. (4.4)

Proof. Since qn ≡ 1 (mod Φn(q)), the identity (4.1) indicates that

(n+1)/4∑

k=0

[16k − 1]
(aq−2, q−2/a, bq−2, q−2/b, q−2, q−1; q8)k

(q9/a, aq9, q9/b, bq9, q9, q8; q8)k

q24k ≡ 0 (mod Φn(q)).

Moreover, the right-hand side of (4.4) is also congruent to 0 because (q7, q−5; q8)(n+1)/4

has the factor 1− qn, while the denominator is coprime with Φn(q). This means that the
q-congruence (4.4) holds modulo Φn(q).
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For a = q−2n or a = q2n, the left-hand side of (4.4) may be written as

(n+1)/4∑

k=0

[16k − 1]
(q−2−2n, q−2+2n, bq−2, q−2/b, q−2, q−1; q8)k

(q9+2n, q9−2n, q9/b, bq9, q9, q8; q8)k

q24k

= −1

q
8φ7

[
q−1, q

15
2 , −q

15
2 , bq−2, q−2/b, q−2, q−2+2n, q−2−2n

q−
1
2 , −q−

1
2 , q9/b, bq9, q9, q9−2n, q9+2n

; q8, q24

]
. (4.5)

By Watson’s transformation (4.2), the right-hand side of (4.5) is equal to

− (q7, q11−2n; q8)(n+1)/4

q(q9, q9−2n; q8)(n+1)/4

(n+1)/4∑

k=0

(q11, q−2, q−2+2n, q−2−2n; q8)k

(q8, q9/b, bq9, q−5; q8)k

q8k

= −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

(n+1)/4∑

k=0

(q11, q−2, q−2+2n, q−2−2n; q8)k

(q8, q9/b, bq9, q−5; q8)k

q8k. (4.6)

Since the polynomial 1 − aq2n is coprime with a − q2n, the above identity yields the
following q-congruence: modulo (1− aq2n)(a− q2n),

(n+1)/4∑

k=0

[16k − 1]
(aq−2, q−2/a, bq−2, q−2/b, q−1, q−2; q8)k

(q9/a, aq9, q9/b, bq9, q9, q8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

(n+1)/4∑

k=0

(q11, q−2, q−2/a, aq−2; q8)k

(q8, q9/b, bq9, q−5; q8)k

q8k. (4.7)

Exchanging the indeterminates a and b in (4.7) leads to another q-congruence: modulo
(1− bq2n)(b− q2n),

(n+1)/4∑

k=0

[16k − 1]
(aq−2, q−2/a, bq−2, q−2/b, q−1, q−2; q8)k

(q9/a, aq9, q9/b, bq9, q9, q8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

(n+1)/4∑

k=0

(q11, q−2, q−2/b, bq−2; q8)k

(q8, q9/a, aq9, q−5; q8)k

q8k. (4.8)

Applying the Chinese remainder theorem for polynomials, from (4.7), (4.8), (2.7) and its
dual form, we arrive at the desired q-congruence (4.4). 2

Proof of Theorem 1.4. Letting b = 1 in (4.4), and using the identity

(1− q2n)2(1 + a2 − aq2n)

(1− a)2
= (1− q2n)2 +

a(1− q2n)2(2− q2n)

(1− a)2
,
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we get the following q-congruence: modulo Φn(q)3(1− aq2n)(a− q2n),

(n+1)/4∑

k=0

[16k − 1]
(aq−2, q−2/a, bq−2, q−2/b, q−1, q−2; q8)k

(q9/a, aq9, q9/b, bq9, q9, q8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

{
(1− q2n)2

(n+1)/4∑

k=0

(q11, q−2, q−2/a, aq−2; q8)k

(q8, q−5; q8)k(q9; q8)2
k

q8k

+
a(1− q2n)2(2− q2n)

(1− a)2

(n+1)/4∑

k=0

(q11, q−2, q−2/a, aq−2; q8)k

(q8, q−5; q8)k(q9; q8)2
k

q8k

− (1− aq2n)(a− q2n)(2− q2n)

(1− a)2

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5, q9/a, aq9; q8)k

q8k

}
. (4.9)

By the L’Hôpital rule, we have

lim
a→1

{
a(1− q2n)2

(1− a)2

(n+1)/4∑

k=0

(q11, q−2, q−2/a, aq−2; q8)k

(q8, q−5; q8)k(q9; q8)2
k

q8k

− (1− aq2n)(a− q2n)

(1− a)2

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5, q9/a, aq9; q8)k

q8k

}

=

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5; q8)k(q9; q8)2
k

q8k

{
q2n − [2n]2

k∑
j=1

(
q8j−10

[8j − 10]2
+

q8j+1

[8j + 1]2

)}
.

Hence, taking a → 1 in (4.4) and using the above limit, we get (1.5). 2

5. Proof of Corollary 1.7

We first establish the following identity.

Lemma 5.1. Let n ≡ 3 (mod 8) be an integer with n > 3. Then

(n+1)/4∑

k=0

(q11, q−2, q−2+2n, q−2−2n; q8)k

(q8, q9−n, q9+n, q−5; q8)k

q8k = 0. (5.1)

Proof. When b = qn, the left-hand side of (4.5) is equal to

− q

(n+1)/4∑

k=0

[16k − 1]
(q−2−2n, q−2+2n, q−2+n, q−2−n, q−1, q−2; q8)k

(q9+2n, q9−2n, q9−n, q9+n, q9, q8; q8)k

q24k
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= 8φ7

[
q−1, q

15
2 , −q

15
2 , q−2+n, q−2, q−2−n, q−2+2n, q−2−2n

q−
1
2 , −q−

1
2 , q9−n, q9, q9+n, q9−2n, q9+2n

; q8, q24

]
.

= lim
x→1

8φ7

[
q−1, q

15
2 , −q

15
2 , xq−2+n, q−2, q−2−n/x, x2q−2+2n, q−2−2n/x2

q−
1
2 ,−q−

1
2 , q9−n/x, q9, xq9+n, q9−2n/x2, x2q9+2n

; q8, q24

]
. (5.2)

In view of Watson’s 8φ7 transformation (4.2), the above limit is equal to

lim
x→1

(q7, q11−n/x; q8)(n+1)/4

(xq9+n, q9−2n/x2; q8)(n+1)/4

×
(n+1)/4∑

k=0

(q11−n/x, q−2−n/x, x2q−2+2n, q−2−2n/x2; q8)k

(q8, q9−n/x, q9, q−5−n/x; q8)k

q8k. (5.3)

Since the limit of (q11−n/x; q8)(n+1)/4 as x → 1 has the factor 1 − q0, one sees that (5.3)
vanishes. Namely, the left-hand side of (5.2) is equal to 0. The proof of (5.1) then follows
from (4.6) with b = qn and the fact that (q7, q−5; q8)(n+1)/4/(q

9, q−3; q8)(n+1)/4 6= 0. 2

We also need a q-congruence modulo Φn(q)2, which was already utilized in [6].

Lemma 5.2. Let α and r be integers and n a positive integer. Then, for k > 0,

(qr−αn, qr+αn; qd)k ≡ (qr; qd)2
k (mod Φn(q)2).

Proof of Corollary 1.7. Since n ≡ 3 (mod 8) and n > 3, we have (q−5; q8)(n+1)/4 ≡ [2n] ≡
0 (mod Φn(q)). Furthermore, for 1 6 k 6 (n + 1)/4, the denominators in

k∑
j=1

(
q8j−10

[8j − 10]2
+

q8j+1

[8j + 1]2

)

are coprime with Φn(q). It follows that, modulo Φn(q)3,

(n+1)/4∑

k=0

[16k − 1]
(q−1; q8)k(q

−2; q8)5
k

(q9; q8)5
k(q

8; q8)k

q24k

≡ −q(n−1)/2 (q7, q−5; q8)(n+1)/4

(q9, q−3; q8)(n+1)/4

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5; q8)k(q9; q8)2
k

q8k. (5.4)

By firstly applying Lemma 5.2 twice and then applying Lemma 5.1, we have

(n+1)/4∑

k=0

(q11; q8)k(q
−2; q8)3

k

(q8, q−5; q8)k(q9; q8)2
k

q8k ≡
(n+1)/4∑

k=0

(q11, q−2, q−2+2n, q−2−2n; q8)k

(q8, q9−n, q9+n, q−5; q8)k

q8k

= 0 (mod Φn(q)2).

Substituting the above q-congruence into (5.4) and noticing (q−5; q8)(n+1)/4 ≡ 0 (mod Φn(q))
again, we complete the proof of the corollary. 2
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