Three new q-supercongruences from Jackson's summation and Watson's transformation

Victor J. W. Guo and Xing-Ye Zhu^{*}

School of Mathematics, Hangzhou Normal University, Hangzhou 311121, People's Republic of China jwguo@hznu.edu.cn, xyzhu@stu.hznu.edu.cn

Abstract. We present three q-supercongruences modulo the fifth power of a cyclotomic polynomial by using Jackson's $_8\phi_7$ summation and Watson's $_8\phi_7$ transformation, together with the creative microscoping method introduced in [Adv. Math. 346 (2019), 329–358]. As conclusions, we give a partial q-analogue of a supercongruence of Barman and Saikia, and a complete q-analogue of the supercongruence:

$$\sum_{k=0}^{(p-1)/4} (16k+1) \frac{(\frac{1}{8})_k (\frac{1}{4})_k^5}{k! (\frac{7}{8})_k^5} \equiv -\frac{5p^3}{64} \Gamma_p(\frac{7}{8})^6 \Gamma_p(\frac{3}{8})^{10} \pmod{p^5},$$

where $p \equiv 5 \pmod{8}$ is a prime, $(x)_k$ is the Pochhammer symbol, and $\Gamma_p(x)$ is the *p*-adic Gamma function.

Keywords: *q*-supercongruences; creative microscoping; Chinese remainder theorem for polynomials; *p*-adic Gamma function; Jackson's $_8\phi_7$ summation; Watson's $_8\phi_7$ transformation

AMS Subject Classifications: 33D15; 11A07, 11B65

1. Introduction

For any complex number x, the *Pochhammer symbol* is defined by $(x)_0 = 1$ and $(x)_k = x(x+1)\cdots(x+k-1)$ for $k \ge 1$. It is well known that $(x)_k = \Gamma(x+k)/\Gamma(x)$, where $\Gamma(x)$ denotes the classical *Gamma function*. For any odd prime p, let \mathbb{Z}_p be the ring of p-adic integers. The p-adic Gamma function Γ_p is defined as $\Gamma_p(0) = 1$ and

$$\Gamma_p(n) = (-1)^n \prod_{0 < k < n; \ p \nmid k} k.$$

This function can be uniquely extended to a continuous function $\Gamma_p \colon \mathbb{Z}_p \to \mathbb{Z}_p^{\times}$. For any $x \in \mathbb{Z}_p$ and $x \neq 0$, we define

$$\Gamma_p(x) = \lim_{x_n \to x} \Gamma_p(x_n),$$

where x_n ranges over any sequence of positive integers that *p*-adically approximate *x*.

^{*}Corresponding author.

In 1997, Van Hamme [12, (D.2)] observed the following supercongruence: for any prime $p \equiv 1 \pmod{6}$,

$$\sum_{k=0}^{(p-1)/3} (6k+1) \frac{(\frac{1}{3})_k^6}{k!^6} \equiv -p\Gamma_p(\frac{1}{3})^9 \pmod{p^4}, \tag{1.1}$$

In 2006, Long and Ramakrishna [10, Theorem 2] proved that, for any prime p > 3,

$$\sum_{k=0}^{p-1} (6k+1) \frac{\left(\frac{1}{3}\right)_k^6}{k!^6} \equiv \begin{cases} -p\Gamma_p(\frac{1}{3})^9 \pmod{p^6}, & \text{if } p \equiv 1 \pmod{6}, \\ -\frac{10}{27} p^4 \Gamma_p(\frac{1}{3})^9 \pmod{p^6}, & \text{if } p \equiv 5 \pmod{6}, \end{cases}$$
(1.2)

thus confirming Van Hamme's supercongruence (1.1). Recently, some authors have given different generalizations of (1.2) (see [5, 8, 14, 16, 17]). In particular, by making use of Jackson's $_8\phi_7$ summation formula, the method of "creative microscoping" devised by the first author and Zudilin [7], and the Chinese remainder theorem for polynomials, Wei [16] gave a *q*-analogue of the second part in (1.2): for any positive integer $n \equiv 2 \pmod{3}$,

$$\sum_{k=0}^{n-1} [6k+1] \frac{(q;q^3)_k^6}{(q^3;q^3)_k^6} q^{3k} \equiv 5[2n] \frac{(q^2;q^3)_{(2n-1)/3}^3}{(q^3;q^3)_{(2n-1)/3}^3} \pmod{[n]\Phi_n(q)^5}.$$
 (1.3)

Meanwhile, he also gave a q-analogue of a weaker form of the first part in (1.2), where the modulus p^6 is replaced by p^5 . At the moment being, we need to recall the standard q-notation. The q-shifted factorial is defined as $(a;q)_0 = 1$ and $(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$ for all positive integers n, the q-integer is defined by $[n] = (1-q^n)/(1-q)$. For convenience, we shall also adopt the abbreviated notation for products of qshifted factorials: $(a_1, \ldots, a_m; q)_n = (a_1; q)_n \ldots (a_m; q)_n$. Moreover, let $\Phi_n(q)$ be the n-th cyclotomic polynomial, which can be factorized as

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n) = 1}} (q - \zeta^k),$$

where ζ denotes an *n*th primitive root of unity. It is clear that $\Phi_p(q) = [p]$ for any prime p. For more recent results on q-congruences, see [3,4,11,13,15].

In 2020, motivated by Long and Ramakrishna's work, Barman and Saikia [1, Theorem 1.4] proved that, for any prime $p \equiv 1 \pmod{8}$,

$$\sum_{k=0}^{7(p-1)/8} (16k+1) \frac{(\frac{1}{8})_k (\frac{1}{4})_k^5}{k! (\frac{7}{8})_k^5} \equiv -p\Gamma_p(\frac{7}{8})^6 \Gamma_p(\frac{3}{8})^{10} \pmod{p^6}.$$
(1.4)

Note that we may truncate the left-hand side of (1.4) at k = (p-1)/4, since the *p*-adic order of $(\frac{1}{8})_k(\frac{1}{4})_k^5/(k!(\frac{7}{8})_k^5)$ is 6 for $(p-1)/4 < k \leq 7(p-1)/8$.

Inspired by Wei's work [16], we shall establish the following q-supercongruence, which is a q-analogue of (1.4) modulo p^5 .

Theorem 1.1. Let $n \equiv 1 \pmod{8}$ be a positive integer. Then, modulo $\Phi_n(q)^5$,

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(q;q^8)_k (q^2;q^8)_k^5}{(q^7;q^8)_k^5 (q^8;q^8)_k} q^{8k} \\ \equiv \frac{(q^9;q^8)_{(n-1)/4} (q^5;q^8)_{(n-1)/4}^3}{(q^3;q^8)_{(n-1)/4} (q^7;q^8)_{(n-1)/4}^3} \left\{ 1 + [2n]^2 (2-q^{2n}) \sum_{j=1}^{(n-1)/4} \left(\frac{q^{8j-3}}{[8j-3]^2} - \frac{q^{8j-1}}{[8j-1]^2} \right) \right\}.$$
(1.5)

Letting $n = p^r$ be a prime power with $p \equiv 1 \pmod{8}$ and taking the limits as $q \to 1$ in (1.5), we obtain the following conclusion.

Corollary 1.2. Let $p \equiv 1 \pmod{8}$ be a prime and r a positive integer. Then

$$\sum_{k=0}^{(p^{r}-1)/4} (16k+1) \frac{\left(\frac{1}{8}\right)_{k} \left(\frac{1}{4}\right)_{k}^{5}}{k! \left(\frac{7}{8}\right)_{k}^{5}} \\ \equiv \frac{\left(\frac{9}{8}\right)_{(p^{r}-1)/4} \left(\frac{5}{8}\right)_{(p^{r}-1)/4}^{3}}{\left(\frac{3}{8}\right)_{(p^{r}-1)/4} \left(\frac{7}{8}\right)_{(p^{r}-1)/4}^{3}} \left\{ 1 + 4p^{2r} \sum_{j=1}^{(p^{r}-1)/4} \left(\frac{1}{(8j-3)^{2}} - \frac{1}{(8j-1)^{2}}\right) \right\} \pmod{p^{5}}.$$

$$(1.6)$$

Combining the supercongruence (1.4) modulo p^5 and the r = 1 case of (1.6), we are led to the following corollary.

Corollary 1.3. Let $p \equiv 1 \pmod{8}$ be a prime. Then, modulo p^5 ,

$$\frac{\left(\frac{9}{8}\right)_{(p-1)/4}\left(\frac{5}{8}\right)_{(p-1)/4}^{3}}{\left(\frac{3}{8}\right)_{(p-1)/4}^{7}}\left\{1+4p^{2}\sum_{j=1}^{(p-1)/4}\left(\frac{1}{(8j-3)^{2}}-\frac{1}{(8j-1)^{2}}\right)\right\} \equiv -p\Gamma_{p}\left(\frac{7}{8}\right)^{6}\Gamma_{p}\left(\frac{3}{8}\right)^{10}$$

It should be pointed out that the q-supercongruence (1.5) is also true for $n \equiv 5 \pmod{8}$. However, in this case the result can be simplified as follows.

Theorem 1.4. Let $n \equiv 5 \pmod{8}$ be a positive integer. Then

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(q;q^8)_k (q^2;q^8)_k^5}{(q^7;q^8)_k^5 (q^8;q^8)_k} q^{8k} \equiv 5 \frac{(q^9;q^8)_{(n-1)/4} (q^5;q^8)_{(n-1)/4}^3}{(q^3;q^8)_{(n-1)/4} (q^7;q^8)_{(n-1)/4}^3} \pmod{\Phi_n(q)^5}.$$
(1.7)

From the above result we shall deduce the following conclusion.

Corollary 1.5. Let $p \equiv 5 \pmod{8}$ be a prime. Then

$$\sum_{k=0}^{(p-1)/4} (16k+1) \frac{(\frac{1}{8})_k (\frac{1}{4})_k^5}{k! (\frac{7}{8})_k^5} \equiv -\frac{5p^3}{64} \Gamma_p(\frac{7}{8})^6 \Gamma_p(\frac{3}{8})^{10} \pmod{p^5}.$$
 (1.8)

Not like (1.4), numerical computations imply that the supercongruence (1.8) does not hold modulo p^6 in general.

We shall also give the following companion of (1.5), which seems a little complicated.

Theorem 1.6. Let $n \equiv 3 \pmod{4}$ be an integer with n > 3. Then, modulo $\Phi_n(q)^5$,

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(q^{-1};q^8)_k (q^{-2};q^8)_k^5}{(q^9;q^8)_k^5 (q^8;q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7,q^{-5};q^8)_{(n+1)/4}}{(q^9,q^{-3};q^8)_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11};q^8)_k (q^{-2};q^8)_k^3}{(q^8,q^{-2};q^8)_k (q^9;q^8)_k^2} q^{8k}$$

$$\times \left\{ 1 - [2n]^2 (2-q^{2n}) \sum_{j=1}^k \left(\frac{q^{8j-10}}{[8j-10]^2} + \frac{q^{8j+1}}{[8j+1]^2} \right) \right\}.$$
(1.9)

It is not difficult to see that the left-hand side of (1.7) is congruent to 0 modulo $\Phi_n(q)^3$. From Theorem 1.6 we can derive a similar result as follows.

Corollary 1.7. Let $n \equiv 3 \pmod{8}$ be an integer with n > 3. Then

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(q^{-1};q^8)_k (q^{-2};q^8)_k^5}{(q^9;q^8)_k^5 (q^8;q^8)_k} q^{24k} \equiv 0 \pmod{\Phi_n(q)^3}.$$
 (1.10)

The paper is organized as follows. In the next section, we shall first give a parametric version of Theorems 1.1 and 1.4 by employing the creative microscoping method introduced in [7], together with the Chinese remainder theorem for polynomials; then we deduce Theorems 1.1 and 1.4 from this parametric version. We shall prove Corollary 1.5 in Section 3 by utilizing some basic properties of the *p*-adic Gamma function. The proof of Theorem 1.6 will be presented in Section 4. Finally, in Section 5, we will give a proof of Corollary 1.7. Note that Jackson's $_8\phi_7$ summation and Watson's $_8\phi_7$ transformation will also play important roles in this paper.

2. Proof of Theorems 1.1 and 1.4

Recall that the basic hypergeometric $_{r+1}\phi_r$ series (see [2]) is defined by

$${}_{r+1}\phi_r \begin{bmatrix} a_1, a_2, \dots, a_{r+1} \\ b_1, \dots, b_r \end{bmatrix} := \sum_{k=0}^{\infty} \frac{(a_0, a_1, \dots, a_r; q)_k}{(q, b_1, \dots, b_r; q)_k} z^k.$$

Then Jackson's $_{8}\phi_{7}$ summation [2, Appendix (II.22)] can be stated as follows:

$${}_{8}\phi_{7}\left[\begin{array}{ccccccc} a, & qa^{\frac{1}{2}}, & -qa^{\frac{1}{2}}, & b, & c, & d, & e, & q^{-n} \\ & a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & aq/b, & aq/c, & aq/d, & aq/e, & aq^{n+1} \end{array};q,q\right]$$

$$=\frac{(aq,aq/bc,aq/bd,aq/cd;q)_n}{(aq/b,aq/c,aq/d,aq/bcd;q)_n},$$
(2.1)

where $a^2q = bcdeq^{-n}$.

In order to prove Theorem 1.1, we need to give the following identity.

Lemma 2.1. Let $n \equiv 1 \pmod{4}$ be a positive integer with n > 1. Then

$$\sum_{k=0}^{(n-1)/4} \frac{1-q^{16k+1-n}}{1-q^{1-n}} \frac{(aq^2, q^2/a, bq^2, q^2/b, q^{1-n}, q^{2-2n}; q^8)_k}{(q^{7-n}/a, aq^{7-n}, q^{7-n}/b, bq^{7-n}, q^{7+n}, q^8; q^8)_k} q^{8k} = 0.$$
(2.2)

Proof. Letting $q \mapsto q^8$, and taking $a = q^{1-n}$, $b = aq^2$, $c = q^2/a$, $d = bq^2$, $e = q^2/b$ and $n \mapsto (n-1)/4$ in (2.1), we see that the left-hand side of (2.2) is equal to

$$\frac{(q^{9-n}, q^{5-n}, q^{5-n}/ab, aq^{5-n}/b; q^8)_{(n-1)/4}}{(q^{7-n}/a, aq^{7-n}, q^{7-n}/b, q^{3-n}/b; q^8)_{(n-1)/4}} = 0.$$

The is because $(q^{9-n}, q^{5-n}; q^8)_{(n-1)/4}$ in the numerator vanishes, while the denominator is not equal to 0.

With the help of Lemma 2.1, we can give a parametric version of Theorems 1.1 and 1.4.

Lemma 2.2. Let $n \equiv 1 \pmod{4}$ be a positive integer. Let a and b be indeterminates. Then, modulo $\Phi_n(q)(1-aq^{2n})(a-q^{2n})(1-bq^{2n})(b-q^{2n})$,

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(aq^2, q^2/a, bq^2, q^2/b, q^2, q; q^8)_k}{(q^7/a, aq^7, q^7/b, bq^7, q^7, q^8; q^8)_k} q^{8k}$$

$$\equiv \frac{(1-bq^{2n})(b-q^{2n})(-1-a^2+aq^{2n})}{(a-b)(1-ab)} \frac{(bq^5, q^5/b, q^5, q^9; q^8)_{(n-1)/4}}{(q^7/b, bq^7, q^7, q^3; q^8)_{(n-1)/4}}$$

$$+ \frac{(1-aq^{2n})(a-q^{2n})(-1-b^2+bq^{2n})}{(b-a)(1-ba)} \frac{(aq^5, q^5/a, q^5, q^9; q^8)_{(n-1)/4}}{(q^7/a, aq^7, q^7, q^3; q^8)_{(n-1)/4}}.$$
(2.3)

Proof. Since $q^n \equiv 1 \pmod{\Phi_n(q)}$, the identity (2.2) immediately leads to

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(aq^2, q^2/a, bq^2, q^2/b, q^2, q; q^8)_k}{(q^7/a, aq^7, q^7/b, bq^7, q^7, q^8; q^8)_k} q^{8k} \equiv 0 \pmod{\Phi_n(q)}$$

Moreover, the right-hand side of (2.3) is also congruent to 0 because $(q^5, q^9; q^8)_{(n-1)/4}$ in the numerator contains the factor $1 - q^n$, while the denominator is coprime with $\Phi_n(q)$. This implies that the *q*-congruence (2.3) holds modulo $\Phi_n(q)$. For $a = q^{-2n}$ or $a = q^{2n}$, the left-hand side of (2.3) can be written as

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(q^{2-2n}, q^{2+2n}, bq^2, q^2/b, q^2, q; q^8)_k}{(q^{7+2n}, q^{7-2n}, q^7/b, bq^7, q^7, q^8; q^8)_k} q^{8k} = {}_8\phi_7 \left[\begin{array}{ccc} q, & q^{\frac{17}{2}}, & -q^{\frac{17}{2}}, & q^2, & bq^2, & q^2/b, & q^{2+2n}, & q^{2-2n} \\ & q^{\frac{1}{2}}, & -q^{\frac{1}{2}}, & q^7, & q^7/b, & bq^7, & q^{7-2n}, & q^{7+2n} \end{array}; q^8, q^8 \right].$$
(2.4)

By Jackson's summation (2.1), the right-hand side of (2.4) is equal to

$$\frac{(bq^5, q^5/b, q^5, q^9; q^8)_{(n-1)/4}}{(q^7/b, bq^7, q^7, q^3; q^8)_{(n-1)/4}}$$

Since the polynomial $1 - aq^{2n}$ is coprime with the polynomial $a - q^{2n}$, we immediately obtain the following q-congruence: modulo $(1 - aq^{2n})(a - q^{2n})$,

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(aq^2, q^2/a, bq^2, q^2/b, q^2, q; q^8)_k}{(q^7/a, aq^7, q^7/b, bq^7, q^7, q^8; q^8)_k} q^{8k} \equiv \frac{(bq^5, q^5/b, q^5, q^9; q^8)_{(n-1)/4}}{(q^7/b, bq^7, q^7, q^3; q^8)_{(n-1)/4}}.$$
 (2.5)

Noting that the left-hand side of (2.5) is symmetric in a and b, we deduce from (2.5) that, modulo $(1 - bq^{2n})(b - q^{2n})$,

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(aq^2, q^2/a, bq^2, q^2/b, q^2, q; q^8)_k}{(q^7/a, aq^7, q^7/b, bq^7, q^7, q^8; q^8)_k} q^{8k} \equiv \frac{(aq^5, q^5/a, q^5, q^9; q^8)_{(n-1)/4}}{(q^7/a, aq^7, q^7, q^3; q^8)_{(n-1)/4}}.$$
 (2.6)

It is obvious that $\Phi_n(q)$, $(1-aq^{2n})(a-q^{2n})$, and $(1-bq^{2n})(b-q^{2n})$ are pairwise coprime polynomials in q. Furthermore, we have the following relation

$$\frac{(1-bq^{2n})(b-q^{2n})(-1-a^2+aq^{2n})}{(a-b)(1-ab)} \equiv 1 \pmod{(1-aq^{2n})(a-q^{2n})}.$$
 (2.7)

By making use of the Chinese remainder theorem for polynomials, from (2.5), (2.6), (2.7) and its dual form $(a \leftrightarrow b)$, we are led to the *q*-congruence (2.3).

We are now able to prove Theorems 1.1 and 1.4.

Proof of Theorem 1.1. Since $1 - q^{2n}$ contains the factor $\Phi_n(q)$, letting b = 1 in (2.3), we have the following q-congruence: modulo $\Phi_n(q)^3(1 - aq^{2n})(a - q^{2n})$,

$$\sum_{k=0}^{(n-1)/4} [16k+1] \frac{(aq^2, q^2/a, q^2, q^2, q^2, q; q^8)_k}{(q^7/a, aq^7, q^7, q^7, q^7, q^8; q^8)_k} q^{8k}$$

$$\equiv \frac{(1-q^{2n})^2 (1+a^2-aq^{2n})}{(1-a)^2} \frac{(q^5; q^8)^3_{(n-1)/4} (q^9; q^8)_{(n-1)/4}}{(q^7; q^8)^3_{(n-1)/4} (q^3; q^8)_{(n-1)/4}}$$

$$-\frac{(1-aq^{2n})(a-q^{2n})(2-q^{2n})}{(1-a)^2}\frac{(aq^5,q^5/a,q^5,q^9;q^8)_{(n-1)/4}}{(q^7/a,aq^7,q^7,q^3;q^8)_{(n-1)/4}}$$

$$=(1-q^{2n})^2\frac{(q^5;q^8)_{(n-1)/4}^3(q^9;q^8)_{(n-1)/4}}{(q^7;q^8)_{(n-1)/4}^3(q^9;q^8)_{(n-1)/4}}$$

$$+\frac{a(1-q^{2n})^2(2-q^{2n})}{(1-a)^2}\frac{(q^5;q^8)_{(n-1)/4}^3(q^9;q^8)_{(n-1)/4}}{(q^7;q^8)_{(n-1)/4}^3(q^3;q^8)_{(n-1)/4}}$$

$$-\frac{(1-aq^{2n})(a-q^{2n})(2-q^{2n})}{(1-a)^2}\frac{(aq^5,q^5/a,q^5,q^9;q^8)_{(n-1)/4}}{(q^7/a,aq^7,q^7,q^3;q^8)_{(n-1)/4}}.$$
(2.8)

By L'Hôpital's rule, we get

$$\lim_{a \to 1} \left\{ \frac{a(1-q^{2n})^2}{(1-a)^2} \frac{(q^5; q^8)^2_{(n-1)/4}}{(q^7; q^8)^2_{(n-1)/4}} - \frac{(1-aq^{2n})(a-q^{2n})}{(1-a)^2} \frac{(aq^5, q^5/a; q^8)_{(n-1)/4}}{(q^7/a, aq^7; q^8)_{(n-1)/4}} \right\}$$
$$= \frac{(q^5; q^8)^2_{(n-1)/4}}{(q^7; q^8)^2_{(n-1)/4}} \left\{ q^{2n} + [2n]^2 \sum_{j=1}^{(n-1)/4} \left(\frac{q^{8j-3}}{[8j-3]^2} - \frac{q^{8j-1}}{[8j-1]^2} \right) \right\}.$$

Therefore, taking $a \to 1$ in (2.8) and applying the above limit, we obtain the *q*-supercongruence (1.5).

Proof of Theorem 1.4. In the proof of Theorem 1.1, we see that (1.5) is true for $n \equiv 1 \pmod{4}$. Now, for $n \equiv 5 \pmod{8}$, we have $(q^5; q^8)_{(n-1)/4} \equiv 0 \pmod{\Phi_n(q)}$ and

$$1 + [2n]^2 (2 - q^{2n}) \sum_{j=1}^{(n-1)/4} \left(\frac{q^{8j-3}}{[8j-3]^2} - \frac{q^{8j-1}}{[8j-1]^2} \right)$$
$$\equiv 1 + [2n]^2 (2 - q^{2n}) \frac{q^n}{[n]^2} \equiv 5 \pmod{\Phi_n(q)^2}.$$

This completes the proof.

3. Proof of Corollary 1.5

Let p be an odd prime. We first give some fundamental properties of the p-adic Gamma function. By the definition of p-adic Gamma function, it is easy to see that

$$\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x, & p \nmid x, \\ -1, & p \mid x. \end{cases}$$
(3.1)

Furthermore, for any $x \in \mathbb{Z}_p$, we have

$$\Gamma_p(x)\Gamma_p(1-x) = (-1)^{p-\langle -x\rangle_p},\tag{3.2}$$

where $\langle x \rangle_p$ represents the least nonnegative residue of x modulo p, and for any $a, m \in \mathbb{Z}_p$,

$$\Gamma_p(a+mp) \equiv \Gamma_p(a) + \Gamma'_p(a)mp \pmod{p^2}$$
(3.3)

(see, for example, [10, Theorem 14]).

Proof of Corollary 1.5. Letting n = p and taking the limits as $q \to 1$ in (1.7), we get

$$\sum_{k=0}^{(p-1)/4} (16k+1) \frac{\left(\frac{1}{8}\right)_k \left(\frac{1}{4}\right)_k^5}{k! \left(\frac{7}{8}\right)_k^5} \equiv 5 \frac{\left(\frac{9}{8}\right)_{(p-1)/4} \left(\frac{5}{8}\right)_{(p-1)/4}^3}{\left(\frac{3}{8}\right)_{(p-1)/4} \left(\frac{7}{8}\right)_{(p-1)/4}^3} \pmod{p^5}.$$
(3.4)

In view of (3.1), we have

$$\frac{\left(\frac{9}{8}\right)_{(p-1)/4}\left(\frac{5}{8}\right)_{(p-1)/4}^{3}}{\left(\frac{3}{8}\right)_{(p-1)/4}} = \frac{\Gamma\left(\frac{3}{8}\right)\Gamma\left(\frac{2p+7}{8}\right)\Gamma\left(\frac{7}{8}\right)^{3}\Gamma\left(\frac{2p+3}{8}\right)^{3}}{\Gamma\left(\frac{2p+1}{8}\right)\Gamma\left(\frac{9}{8}\right)\Gamma\left(\frac{5}{8}\right)^{3}\Gamma\left(\frac{2p+5}{8}\right)^{3}} = \frac{p^{3}}{8^{3}} \cdot \frac{\Gamma_{p}\left(\frac{3}{8}\right)\Gamma_{p}\left(\frac{2p+7}{8}\right)\Gamma_{p}\left(\frac{7}{8}\right)^{3}\Gamma_{p}\left(\frac{2p+3}{8}\right)^{3}}{\Gamma_{p}\left(\frac{2p+1}{8}\right)\Gamma_{p}\left(\frac{9}{8}\right)\Gamma_{p}\left(\frac{5}{8}\right)^{3}\Gamma_{p}\left(\frac{2p+3}{8}\right)^{3}}.$$
(3.5)

Since $p \equiv 5 \pmod{8}$, in light of (3.2) and (3.3), we obtain

$$\frac{\Gamma_p(\frac{2p+7}{8})}{\Gamma_p(\frac{2p+1}{8})} = (-1)^{(3p+1)/8} \Gamma_p(\frac{7+2p}{8}) \Gamma_p(\frac{7-2p}{8}) \equiv (-1)^{(3p+1)/8} \Gamma_p(\frac{7}{8})^2 \pmod{p^2}, \quad (3.6)$$

$$\frac{\Gamma_p(\frac{2p+3}{8})}{\Gamma_p(\frac{2p+5}{8})} = (-1)^{(p+3)/8} \Gamma_p(\frac{3+2p}{8}) \Gamma_p(\frac{3-2p}{8}) \equiv (-1)^{(p+3)/8} \Gamma_p(\frac{3}{8})^2 \pmod{p^2}.$$
 (3.7)

Substituting (3.6) and (3.7) into (3.5) and using the identities $1/\Gamma_p(\frac{9}{8}) = -8/\Gamma_p(\frac{1}{8}) = -(-1)^{(3p+1)/8}8\Gamma_p(\frac{7}{8})$ and $1/\Gamma_p(\frac{5}{8}) \equiv (-1)^{(p+3)/8}\Gamma_p(\frac{3}{8})$, we deduce that

$$\frac{\left(\frac{9}{8}\right)_{(p-1)/4}\left(\frac{5}{8}\right)_{(p-1)/4}^3}{\left(\frac{3}{8}\right)_{(p-1)/4}^3\left(\frac{7}{8}\right)_{(p-1)/4}^3} \equiv -\frac{p^3}{64}\Gamma_p(\frac{7}{8})^6\Gamma_p(\frac{3}{8})^{10} \pmod{p^5}.$$
(3.8)

The proof then follows from (3.4) and (3.8).

4. Proof of Theorem 1.6

The proof is similar to that of Theorem 1.1. We first give the following q-identity.

Lemma 4.1. Let $n \equiv 3 \pmod{4}$ be an integer with n > 3. Then

$$\sum_{k=0}^{(n+1)/4} \frac{1-q^{16k-1-n}}{1-q^{-1-n}} \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-1-n}, q^{-2-2n}; q^8)_k}{(q^{9-n}/a, aq^{9-n}, q^{9-n}/b, bq^{9-n}, q^{9+n}, q^8; q^8)_k} q^{24k} = 0.$$
(4.1)

Proof. Recall that Watson's $_8\phi_7$ transformation (see [2, Appendix (III.18)]) can be written as follows:

$${}_{8}\phi_{7}\left[\begin{array}{cccc}a, & qa^{\frac{1}{2}}, & -qa^{\frac{1}{2}}, & b, & c, & d, & e, & q^{-n}\\ a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & aq/b, & aq/c, & aq/d, & aq/e, & aq^{n+1} ; q, & \frac{a^{2}q^{n+2}}{bcde}\right]$$
$$= \frac{(aq, aq/de; q)_{n}}{(aq/d, aq/e; q)_{n}} {}_{4}\phi_{3}\left[\begin{array}{c}aq/bc, & d, & e, & q^{-n}\\ aq/b, & aq/c, & deq^{-n}/a ; q, q\right].$$
(4.2)

Letting $q \to q^8$, and taking $a = q^{-1-n}$, $b = aq^{-2}$, $c = q^{-2}/a$, $d = bq^{-2}$, $e = q^{-2}/b$ and $n \mapsto (n+1)/4$ in (4.2), we obtain

$$\sum_{k=0}^{(n+1)/4} \frac{1-q^{16k-1-n}}{1-q^{-1-n}} \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b; q^8)_k (q^{-1-n}, q^{-2-2n}; q^8)_k}{(q^{9-n}/a, aq^{9-n}, q^{9-n}/b, bq^{9-n}; q^8)_k (q^{9+n}, q^8; q^8)_k} q^{24k} = \frac{(q^{7-n}, q^{11-n}; q^8)_{(n+1)/4}}{(q^{9-n}/b, bq^{9-n}; q^8)_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11-n}, bq^{-2}, q^{-2}/b, q^{-2n-2}; q^8)_k}{(q^8, q^{9-n}/a, aq^{9-n}, q^{-n-5}; q^8)_k} q^{8k}.$$
(4.3)

It is easy to see that the right-hand side of (4.3) vanishes, because of the factor $(q^{7-n}, q^{11-n}; q^8)_{(n+1)/4}$ in the numerator.

On the basis of Lemma 4.1, we can present a parametric version of Theorem 1.6.

Lemma 4.2. Let $n \equiv 3 \pmod{4}$ be an integer with n > 3. Let a and b be indeterminates. Then, modulo $\Phi_n(q)(1 - aq^{2n})(a - q^{2n})(1 - bq^{2n})(b - q^{2n})$,

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-2}, q^{-1}; q^8)_k}{(q^9/a, aq^9, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7, q^{-5}; q^8)_{(n+1)/4}}{(q^9, q^{-3}; q^8)_{(n+1)/4}}$$

$$\times \left\{ \frac{(1-bq^{2n})(b-q^{2n})(-1-a^2+aq^{2n})}{(a-b)(1-ab)} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/a, aq^{-2}; q^8)_k}{(q^8, q^9/b, bq^9, q^{-5}; q^8)_k} q^{8k} + \frac{(1-aq^{2n})(a-q^{2n})(-1-b^2+bq^{2n})}{(b-a)(1-ba)} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/b, bq^{-2}; q^8)_k}{(q^8, q^9/a, aq^9, q^{-5}; q^8)_k} q^{8k} \right\}.$$
(4.4)

Proof. Since $q^n \equiv 1 \pmod{\Phi_n(q)}$, the identity (4.1) indicates that

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-2}, q^{-1}; q^8)_k}{(q^9/a, aq^9, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k} \equiv 0 \pmod{\Phi_n(q)}.$$

Moreover, the right-hand side of (4.4) is also congruent to 0 because $(q^7, q^{-5}; q^8)_{(n+1)/4}$ has the factor $1 - q^n$, while the denominator is coprime with $\Phi_n(q)$. This means that the *q*-congruence (4.4) holds modulo $\Phi_n(q)$.

For $a = q^{-2n}$ or $a = q^{2n}$, the left-hand side of (4.4) may be written as

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(q^{-2-2n}, q^{-2+2n}, bq^{-2}, q^{-2}/b, q^{-2}, q^{-1}; q^8)_k}{(q^{9+2n}, q^{9-2n}, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k} = -\frac{1}{q} {}_8\phi_7 \left[\begin{array}{c} q^{-1}, \ q^{\frac{15}{2}}, \ -q^{\frac{15}{2}}, \ bq^{-2}, \ q^{-2}/b, \ q^{-2}, \ q^{-2+2n}, \ q^{-2-2n} \\ q^{-\frac{1}{2}}, \ -q^{-\frac{1}{2}}, \ q^9/b, \ bq^9, \ q^9, \ q^{9-2n}, \ q^{9+2n} \end{array}; q^8, \ q^{24} \right].$$
(4.5)

By Watson's transformation (4.2), the right-hand side of (4.5) is equal to

$$-\frac{(q^{7}, q^{11-2n}; q^{8})_{(n+1)/4}}{q(q^{9}, q^{9-2n}; q^{8})_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2+2n}, q^{-2-2n}; q^{8})_{k}}{(q^{8}, q^{9}/b, bq^{9}, q^{-5}; q^{8})_{k}} q^{8k}$$

$$= -q^{(n-1)/2} \frac{(q^{7}, q^{-5}; q^{8})_{(n+1)/4}}{(q^{9}, q^{-3}; q^{8})_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2+2n}, q^{-2-2n}; q^{8})_{k}}{(q^{8}, q^{9}/b, bq^{9}, q^{-5}; q^{8})_{k}} q^{8k}.$$
(4.6)

Since the polynomial $1 - aq^{2n}$ is coprime with $a - q^{2n}$, the above identity yields the following q-congruence: modulo $(1 - aq^{2n})(a - q^{2n})$,

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-1}, q^{-2}; q^8)_k}{(q^9/a, aq^9, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7, q^{-5}; q^8)_{(n+1)/4}}{(q^9, q^{-3}; q^8)_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/a, aq^{-2}; q^8)_k}{(q^8, q^9/b, bq^9, q^{-5}; q^8)_k} q^{8k}.$$
(4.7)

Exchanging the indeterminates a and b in (4.7) leads to another q-congruence: modulo $(1 - bq^{2n})(b - q^{2n}),$

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-1}, q^{-2}; q^8)_k}{(q^9/a, aq^9, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7, q^{-5}; q^8)_{(n+1)/4}}{(q^9, q^{-3}; q^8)_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/b, bq^{-2}; q^8)_k}{(q^8, q^9/a, aq^9, q^{-5}; q^8)_k} q^{8k}.$$
(4.8)

Applying the Chinese remainder theorem for polynomials, from (4.7), (4.8), (2.7) and its dual form, we arrive at the desired q-congruence (4.4). \Box

Proof of Theorem 1.4. Letting b = 1 in (4.4), and using the identity

$$\frac{(1-q^{2n})^2(1+a^2-aq^{2n})}{(1-a)^2} = (1-q^{2n})^2 + \frac{a(1-q^{2n})^2(2-q^{2n})}{(1-a)^2},$$

we get the following q-congruence: modulo $\Phi_n(q)^3(1-aq^{2n})(a-q^{2n})$,

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(aq^{-2}, q^{-2}/a, bq^{-2}, q^{-2}/b, q^{-1}, q^{-2}; q^8)_k}{(q^9/a, aq^9, q^9/b, bq^9, q^9, q^8; q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7, q^{-5}; q^8)_{(n+1)/4}}{(q^9, q^{-3}; q^8)_{(n+1)/4}} \left\{ (1-q^{2n})^2 \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/a, aq^{-2}; q^8)_k}{(q^8, q^{-5}; q^8)_k (q^9; q^8)_k^2} q^{8k} + \frac{a(1-q^{2n})^2(2-q^{2n})}{(1-a)^2} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/a, aq^{-2}; q^8)_k}{(q^8, q^{-5}; q^8)_k (q^9; q^8)_k^2} q^{8k} - \frac{(1-aq^{2n})(a-q^{2n})(2-q^{2n})}{(1-a)^2} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}; q^8)_k (q^{-2}; q^8)_k}{(q^8, q^{-5}, q^9/a, aq^9; q^8)_k} q^{8k} \right\}.$$

$$(4.9)$$

By the L'Hôpital rule, we have

$$\begin{split} \lim_{a \to 1} & \left\{ \frac{a(1-q^{2n})^2}{(1-a)^2} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2}/a, aq^{-2}; q^8)_k}{(q^8, q^{-5}; q^8)_k (q^9; q^8)_k^2} q^{8k} \right. \\ & \left. - \frac{(1-aq^{2n})(a-q^{2n})}{(1-a)^2} \sum_{k=0}^{(n+1)/4} \frac{(q^{11}; q^8)_k (q^{-2}; q^8)_k^3}{(q^8, q^{-5}, q^9/a, aq^9; q^8)_k} q^{8k} \right\} \\ & = \sum_{k=0}^{(n+1)/4} \frac{(q^{11}; q^8)_k (q^{-2}; q^8)_k^3}{(q^8, q^{-5}; q^8)_k (q^9; q^8)_k^2} q^{8k} \left\{ q^{2n} - [2n]^2 \sum_{j=1}^k \left(\frac{q^{8j-10}}{[8j-10]^2} + \frac{q^{8j+1}}{[8j+1]^2} \right) \right\}. \end{split}$$

Hence, taking $a \to 1$ in (4.4) and using the above limit, we get (1.5).

We first establish the following identity.

Lemma 5.1. Let $n \equiv 3 \pmod{8}$ be an integer with n > 3. Then

$$\sum_{k=0}^{(n+1)/4} \frac{(q^{11}, q^{-2}, q^{-2+2n}, q^{-2-2n}; q^8)_k}{(q^8, q^{9-n}, q^{9+n}, q^{-5}; q^8)_k} q^{8k} = 0.$$
(5.1)

Proof. When $b = q^n$, the left-hand side of (4.5) is equal to

$$-q\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(q^{-2-2n}, q^{-2+2n}, q^{-2+n}, q^{-2-n}, q^{-1}, q^{-2}; q^8)_k}{(q^{9+2n}, q^{9-2n}, q^{9-n}, q^{9+n}, q^9, q^8; q^8)_k} q^{24k}$$

$$= {}_{8}\phi_{7} \left[\begin{array}{c} q^{-1}, \ q^{\frac{15}{2}}, \ -q^{\frac{15}{2}}, \ q^{-2+n}, \ q^{-2}, \ q^{-2-n}, \ q^{-2+2n}, \ q^{-2-2n} \\ q^{-\frac{1}{2}}, \ -q^{-\frac{1}{2}}, \ q^{9-n}, \ q^{9}, \ q^{9+n}, \ q^{9-2n}, \ q^{9+2n} \end{array} ; q^{8}, \ q^{24} \right].$$

$$= \lim_{x \to 1} {}_{8}\phi_{7} \left[\begin{array}{c} q^{-1}, \ q^{\frac{15}{2}}, \ -q^{\frac{15}{2}}, \ xq^{-2+n}, \ q^{-2}, \ q^{-2-n}/x, \ x^{2}q^{-2+2n}, \ q^{-2-2n}/x^{2} \\ q^{-\frac{1}{2}}, \ -q^{-\frac{1}{2}}, \ q^{9-n}/x, \ q^{9}, \ xq^{9+n}, \ q^{9-2n}/x^{2}, \ x^{2}q^{9+2n} \end{array} ; q^{8}, \ q^{24} \right].$$
(5.2)

In view of Watson's $_{8}\phi_{7}$ transformation (4.2), the above limit is equal to

$$\lim_{x \to 1} \frac{(q^7, q^{11-n}/x; q^8)_{(n+1)/4}}{(xq^{9+n}, q^{9-2n}/x^2; q^8)_{(n+1)/4}} \times \sum_{k=0}^{(n+1)/4} \frac{(q^{11-n}/x, q^{-2-n}/x, x^2q^{-2+2n}, q^{-2-2n}/x^2; q^8)_k}{(q^8, q^{9-n}/x, q^9, q^{-5-n}/x; q^8)_k} q^{8k}.$$
(5.3)

Since the limit of $(q^{11-n}/x; q^8)_{(n+1)/4}$ as $x \to 1$ has the factor $1 - q^0$, one sees that (5.3) vanishes. Namely, the left-hand side of (5.2) is equal to 0. The proof of (5.1) then follows from (4.6) with $b = q^n$ and the fact that $(q^7, q^{-5}; q^8)_{(n+1)/4}/(q^9, q^{-3}; q^8)_{(n+1)/4} \neq 0$. \Box

We also need a q-congruence modulo $\Phi_n(q)^2$, which was already utilized in [6].

Lemma 5.2. Let α and r be integers and n a positive integer. Then, for $k \ge 0$,

$$(q^{r-\alpha n}, q^{r+\alpha n}; q^d)_k \equiv (q^r; q^d)_k^2 \pmod{\Phi_n(q)^2}.$$

Proof of Corollary 1.7. Since $n \equiv 3 \pmod{8}$ and n > 3, we have $(q^{-5}; q^8)_{(n+1)/4} \equiv [2n] \equiv 0 \pmod{\Phi_n(q)}$. Furthermore, for $1 \leq k \leq (n+1)/4$, the denominators in

$$\sum_{j=1}^{k} \left(\frac{q^{8j-10}}{[8j-10]^2} + \frac{q^{8j+1}}{[8j+1]^2} \right)$$

are coprime with $\Phi_n(q)$. It follows that, modulo $\Phi_n(q)^3$,

$$\sum_{k=0}^{(n+1)/4} [16k-1] \frac{(q^{-1};q^8)_k (q^{-2};q^8)_k^5}{(q^9;q^8)_k^5 (q^8;q^8)_k} q^{24k}$$

$$\equiv -q^{(n-1)/2} \frac{(q^7,q^{-5};q^8)_{(n+1)/4}}{(q^9,q^{-3};q^8)_{(n+1)/4}} \sum_{k=0}^{(n+1)/4} \frac{(q^{11};q^8)_k (q^{-2};q^8)_k^3}{(q^8,q^{-5};q^8)_k (q^9;q^8)_k^2} q^{8k}.$$
 (5.4)

By firstly applying Lemma 5.2 twice and then applying Lemma 5.1, we have

$$\sum_{k=0}^{(n+1)/4} \frac{(q^{11};q^8)_k(q^{-2};q^8)_k^3}{(q^8,q^{-5};q^8)_k(q^9;q^8)_k^2} q^{8k} \equiv \sum_{k=0}^{(n+1)/4} \frac{(q^{11},q^{-2},q^{-2+2n},q^{-2-2n};q^8)_k}{(q^8,q^{9-n},q^{9+n},q^{-5};q^8)_k} q^{8k} = 0 \pmod{\Phi_n(q)^2}.$$

Substituting the above q-congruence into (5.4) and noticing $(q^{-5}; q^8)_{(n+1)/4} \equiv 0 \pmod{\Phi_n(q)}$ again, we complete the proof of the corollary.

Declarations

Author contributions. Both authors contributed equally in this manuscript. Data Availability. Data sharing not applicable to this article. Conflict of interest. The authors declare no conflict of interest.

References

- R. Barman and N. Saikia, Supercongruences for truncated hypergeometric series and p-adic gamma function, Math. Proc. Camb. Phil. Soc. 168 (2020), 171–195.
- [2] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
- [3] G. Gu and X. Wang, Proof of two conjectures of Guo and of Tang, J. Math. Anal. Appl. 541 (2025), Art. 128712.
- [4] V.J.W. Guo, A new q-variation of the (C.2) supercongruence of Van Hamme, Results Math. 79 (2024), Art. 87.
- [5] V.J.W. Guo, J.-C. Liu, and M.J. Schlosser, An extension of a supercongruence of Long and Ramakrishna, Proc. Am. Math. Soc. 151 (2023) 1157–1166.
- [6] V.J.W. Guo and M.J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Israel J. Math. 240 (2020), 821–835.
- [7] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329–358.
- [8] H. He and X. Wang, Some congruences that extend Van Hamme's (D.2) supercongruence, J. Math. Anal. Appl. 527 (2023), Art. 127344.
- [9] N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, London Math. Soc. Lecture Note Series 46, Cambridge University Press, Cambridge-New York, 1980.
- [10] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math. 290 (2016), 773–808.
- [11] H. Song and C. Wang, Further generalizations of the (A.2) and (H.2) supercongruences of Van Hamme, Results Math. 79 (2024), Art. 147.
- [12] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: *p*-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223–236.
- [13] C. Wang, A new extension of Van Hamme's (E.2) supercongruence, Results Math. 79 (2024), Art. 97.
- [14] C. Wang, Supercongruences arising from a $_7F_6$ hypergeometric transformation formula, Forum Math. 36 (2024), 1267–1277.
- [15] C. Wei, Generalizations of the (F.2) supercongruence of Van Hamme, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118 (2024), Art. 33.
- [16] C. Wei, q-Supercongruences from Jackson's $_8\phi_7$ summation and Watson's $_8\phi_7$ transformation, J. Combin. Theory Ser. A 204 (2024), Art. 105853.
- [17] W. Xia, and C. Wang, Two supercongruences involving truncated hypergeometric series, Bull. Malays. Math. Sci. Soc. 47 (2024), Art. 170.