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1. Introduction

More than one hundred years ago, Ramanujan discovered 17 remarkable infinite series for
1/π (see [1, p. 352]), such as

∞∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
=

4

π
, (1.1)

where (x)k = x(x + 1) · · · (x + k − 1) is the Pochhammer symbol. Formulae of the form
(1.1) were later utilized to evaluate π more exactly. In 1997, affected by Ramanujan’s
work, Van Hamme [14] numerically observed 13 neat p-adic analogues of Ramanujan-type
series, including the following one: for any prime p > 3,

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)(p−1)/2p (mod p4). (1.2)

Nowadays, a number of authors are interested in finding q-analogues of supercongru-
ences. For example, the first author and Zudilin [7] devised a method called “creative
microscoping” to build q-analogues of many supercongruences modulo p3. The first au-
thor [5] then applied this method and the Chinese remainder theorem for polynomials to

*Corresponding author.
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give a q-analogue of (1.2) as follows: for any positive odd integer n, modulo [n]Φn(q)3,

(n−1)/2∑

k=0

[6k + 1]
(q; q2)2

k(q
2; q4)k

(q4; q4)3
k

qk2 ≡ (−q)(1−n)/2[n]

{
1 +

(n2 − 1)(1− q)2

24
[n]2

}
. (1.3)

Here and in what follows, [n] = (1 − qn)/(1 − q) denotes the q-integer, and (x; q)n =
(1 − x)(1 − xq) · · · (1 − xqn−1) (n > 0) denotes the q-shifted factorial. For convenience,
we will also adopt the abbreviated notation: (x1, . . . , xm; q)n = (x1; q)n . . . (xm; q)n. Let
Φn(q) stand for the n-th cyclotomic polynomial, which can be written as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

with ζ being an n-th primitive root of unity. It is well known that Φp(q) = [p] for primes
p.

Recently, using the method of creative microscoping and a quadratic summation of
Gasper and Rahman, He and Wang [9, Theorem 2.4] proved the following q-congruence:
for any positive integer n with n ≡ 1 (mod 4),

(n−1)/2∑

k=0

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q−k2 ≡ q(1−n)/2[n] (mod [n]Φn(q)2). (1.4)

The first purpose of this paper is to establish a generalization of (1.4).

Theorem 1.1. Let n ≡ 1 (mod 4) be a positive integer. Then, modulo [n]Φn(q)3,

(n−1)/2∑

k=0

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q−k2 ≡ q(1−n)/2[n]

{
1 +

(n2 − 1)(1− q)2

24
[n]2

}
. (1.5)

Letting n = pr be a prime power with pr ≡ 1 (mod 4) and p > 3, and then taking the
limits as q → 1 in (1.5), we deduce the following result.

Corollary 1.2. Let p be an odd prime and r a positive integer with pr ≡ 1 (mod 4) and
p > 3. Then

(pr−1)/2∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k ≡ pr (mod pr+3). (1.6)

Note that the supercongruence (1.6) modulo pr+2 follows from (1.4) and was already
mentioned in [9]. He and Wang [9, Theorem 2.4] also proved that, for any positive integer
n with n ≡ 3 (mod 4),

(n+1)/2∑

k=0

[6k − 1]
(q−1; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k−k2 ≡ q−(n+1)/2[n] (mod [n]Φn(q)2). (1.7)

The second purpose of this paper is to give a generalization of (1.7).
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Theorem 1.3. Let n ≡ 3 (mod 4) be a positive integer. Then, modulo [n]Φn(q)3,

(n+1)/2∑

k=0

[6k − 1]
(q−1; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k−k2 ≡ q−(n+1)/2[n]

{
1 +

(n2 − 1)(1− q)2

24
[n]2

}
. (1.8)

Similarly, letting n = pr be a prime power with pr ≡ 3 (mod 4), and then taking the
limits as q → 1 in (1.8), we get the following result.

Corollary 1.4. Let p be an odd prime and r a positive integer with pr ≡ 3 (mod 4) and
p > 3. Then

(pr+1)/2∑

k=0

(6k − 1)
(1

2
)k(−1

4
)2
k

k!3
4k ≡ pr (mod pr+3). (1.9)

Note that the congruence (1.9) modulo pr+2 also follows from (1.7) and is due to He
and Wang [9].

The rest of the paper is arranged as follows. We shall prove Theorems 1.1 and 1.3 in
Sections 2 and 3, respectively. The proofs make uses of the creative microscoping method,
Gasper and Rahman’s quadratic summation (see (2.1)), and the Chinese remainder the-
orem for polynomials. In Section 4, we shall give a Dwork-type generalization of He and
Wang’s q-congruence (1.4). Finally, in Section 5, we propose some relevant conjectures
on congruences and q-congruences for further study.

2. Proof of Theorem 1.1

Recall that Gasper and Rahman’s quadratic summation (see [3, eq. (3.8.12)]) can be
stated as follows:

∞∑

k=0

1− aq3k

1− a

(a, b, q/b; q)k(d, f, a2q/df ; q2)kq
k

(aq/d, aq/f, df/a; q)k(q2, aq2/b, abq; q2)k

+
(aq, f/a, b, q/b; q)∞(d, a2q/df, fq2/d, df2q/a2; q2)∞

(a/f, fq/a, aq/d, df/a; q)∞(aq2/b, abq, fq/ab, bf/a; q2)∞

×
∞∑

k=0

(f, bf/a, fq/ab; q2)kq
2k

(q2, fq2/d, df2q/a2; q2)k

=
(aq, f/a; q)∞(aq2/bd, abq/d, bdf/a, dfq/ab; q2)∞
(aq/d, df/a; q)∞(aq2/b, abq, bf/a, fq/ab; q2)∞

. (2.1)

Gasper and Rahman’s summation (2.1) plays an important role in the study of q-congruences.
Wei [15] first employed (2.1) to give some q-congruences. The first author [6] then de-
duced more q-congruences modulo Φn(q)2 or Φn(q)3 from (2.1). As mentioned before, Liu
and Wang’s proofs of (1.4) and (1.7) are also based on Gasper and Rahman’s summation
(2.1).

We first establish the following identity.
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Lemma 2.1. Let n ≡ 1 (mod 4) be a positive integer with n > 1. Then

(n−1)/2∑

k=0

1− q6k+1−n

1− q

(q1−n; q2)k(ab2q, q/a, q2−2n/b2; q4)k

(q4; q4)k(q2−n/ab2, aq2−n, b2q1+n; q2)k

q−k2+nk = 0. (2.2)

Proof. Putting b = q−2n and n →∞ in (2.1), we obtain

∞∑

k=0

1− aq3k

1− a

(a; q)k(d, f, a2q/df ; q2)kq
(k−k2)/2

(q2; q2)k(aq/d, aq/f, df/a; q)k

a−k =
(aq2, dq/a, fq/a, aq2/df ; q2)∞
(q/a, aq2/d, aq2/f, dfq/a; q2)∞

, (2.3)

as was already noticed by He and Wang [9].
Letting q 7→ q2, and taking a = q1−n, d = ab2q, and f = q/a in (2.3), we see that the

left-hand side of (2.2) is equal to

(q5−n, ab2q2+n, q2+n/a, q3−n/b2; q4)∞
(q1+n, q4−n/ab2, aq4−n, b2q3+n; q4)∞

= 0.

This is because of the factor (q5−n; q4)∞ = 0 in the numerator. 2

We need the following parametric version of (1.4).

Lemma 2.2. Let n ≡ 1 (mod 4) be a positive integer. Let a and b be indeterminates.
Then, modulo Φn(q)(1− ab2qn)(a− qn),

(n−1)/2∑

k=0

[6k + 1]
(q; q2)k(ab2q, q/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q; q2)k

q−k2 ≡ (q3; q2)(n−1)/2

(b2q; q2)(n−1)/2

b(n−1)/2q(1−n)/2. (2.4)

Proof. Since qn ≡ 1 (mod Φn(q)), the identity (2.2) immediately implies that

(n−1)/2∑

k=0

[6k + 1]
(q; q2)k(ab2q, q/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q; q2)k

q−k2 ≡ 0 (mod Φn(q)).

Moreover, the right-hand side of (2.4) is also congruent to 0 because (q3; q2)(n−1)/2 contains
the factor 1 − qn, while (b2q; q2)(n−1)/2 is coprime with Φn(q). This implies that the q-
congruence (2.4) holds modulo Φn(q).

For a = qn or a = q−n/b2 , the left-hand side of (2.4) can be written as

(n−1)/2∑

k=0

1− q6k+1

1− q

(q, q2)k(q
1−n, b2q1+n, q2/b2; q4)k

(q4, q4)k(q2+n, q2−n/b2, b2q, ; q2)k

q−k2

. (2.5)

Performing the parameter substitutions q 7→ q2, a = q, d = q1−n, and f = b2q1+n in (2.3),
we deduce that (2.5) is equal to

(q5, q2−n, b2q2+n, q3/b2; q4)∞
(q, q4+n, q4−n/b2, b2q3; q4)∞

=
(q5, q3; q4)(n−1)/4

(b2q, b2q3; q4)(n−1)/4

b(n−1)/2q(1−n)/2
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=
(q3; q2)(n−1)/2

(b2q; q2)(n−1)/2

b(n−1)/2q(1−n)/2.

This implies that the q-congruence (2.4) holds modulo 1 − ab2qn and a − qn. Since the
polynomials Φn(q), 1− ab2qn, and a− qn are coprime with one another, we arrive at the
q-congruence (2.4). 2

We also need the following q-congruence.

Lemma 2.3. Let n ≡ 1 (mod 4) be a positive integer. Let a and b be indeterminates.
Then, modulo b− qn,

(n−1)/2∑

k=0

[6k + 1]
(q, q2)k(ab2q, q/a, q2/b2; q4)k

(q4, q4)k(q2/ab2, aq2, b2q; q2)k

q−k2 ≡ (q5, q3/b2; q4)(n−1)/2

(aq4, q4/ab2; q4)(n−1)/2

. (2.6)

Proof. Letting q 7→ q2, and taking a = q, d = q/a, and f = aq2n+1 in (2.3), we get

(n−1)/2∑

k=0

1− q6k+1

1− q

(q, q2)k(q/a, aq2n+1, q2−2n; q4)k

(q4, q4)k(aq2, q2−2n/a, q2n+1; q2)k

q−k2

=
(q5, q2/a, aq2n+2, q3−2n; q4)∞
(q, aq4, q4−2n/a, q2n+3; q4)∞

=
(q5, q3−2n; q4)(n−1)/2

(aq4, q4−2n/a; q4)(n−1)/2

.

This means that both sides of (2.6) are equal for b = qn, and so the q-congruence (2.6)
holds. 2

Finally, we require the following easily proved lemma. For a short proof of it, see [5,
Lemma 2.1].

Lemma 2.4. Let n be a positive odd integer. Then

(aq2, q2)(n−1)/2(q
2/a, q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q−(n−1)2/4

(1− a)a(n−1)/2
(mod Φn(q)), (2.7)

(q; q)n−1 ≡ n (mod Φn(q)). (2.8)

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. It is obvious that Φn(q)(1− ab2qn)(a− qn) and b− qn are coprime
polynomials. By the Chinese reminder theorem for coprime polynomials, we may deter-
mine the remainder of the left-hand side of (2.4) modulo Φn(q)(1− ab2qn)(a− qn)(b− qn)
from (2.4) and (2.6). To this end, we require the following two q-congruences:

(b− qn)(ab2qn + ab3 − a2b2 − 1)

(a− b)(1− ab3)
≡ 1 (mod (1− ab2qn)(a− qn)), (2.9)
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(1− ab2qn)(a− qn)

(a− b)(1− ab3)
≡ 1 (mod b− qn). (2.10)

Therefore, combining (2.4) and (2.6) we obtain

(n−1)/2∑

k=0

[6k + 1]
(q; q2)k(ab2q, q/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q; q2)k

q−k2

≡ (q3; q2)(n−1)/2

(b2q; q2)(n−1)/2

b(n−1)/2q(1−n)/2 (b− qn)(ab2qn + ab3 − a2b2 − 1)

(a− b)(1− ab3)

+
(q5, q3/b2; q4)(n−1)/2

(aq4, q4/ab2; q4)(n−1)/2

(1− ab2qn)(a− qn)

(a− b)(1− ab3)
(2.11)

modulo Φn(q)(1− ab2qn)(a− qn)(b− qn).
Moreover, since (q5, q3; q4)(n−1)/2 = (q3; q2)n−1 = [n](q; q2)(n−1)/2(q

n+2; q2)(n−1)/2, by
(2.7) and (2.8), we have

(q5, q3; q4)(n−1)/2

(aq4, q4/a; q4)(n−1)/2

≡ [n](q, q2; q2)(n−1)/2

(aq4, q4/a; q4)(n−1)/2

≡ [n]n(1− a)a(n−1)/2

(1− an)q(n−1)/2
(mod Φn(q)2).

(2.12)

Also, it is easy to see that

(1− qn)(1 + a2 − a− aqn) = (1− a)2 + (1− aqn)(a− qn), (2.13)

and when b = 1 the polynomial b−qn = 1−qn has the factor Φn(q). Thus, letting b = 1 in
(2.11) and applying (2.12) and (2.13), we are led to the following q-congruence: modulo
Φn(q)2(1− aqn)(a− qn),

(n−1)/2∑

k=0

[6k + 1]
(q; q2)k(aq, q/a, q2; q4)k

(q4; q4)k(q2/a, aq2, q; q2)k

q−k2

≡ q(1−n)/2[n] + q(1−n)/2[n]
(1− aqn)(a− qn)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)
. (2.14)

By the L’Hôpital rule, there holds

lim
a→1

(1− aqn)(a− qn)

(1− a)2

(1− an − n(1− a)a(n−1)/2)

(1− an)
=

(n2 − 1)(1− q)2

24
[n]2, (2.15)

which was already used in [5]. Hence, taking a → 1 in (2.14) and making use of the above
limit, we conclude that (1.5) is true modulo Φn(q)4. In view of (1.4), the q-congruence
(1.5) is also true modulo [n]. The proof then follows from the fact that the least common
multiple of Φn(q)4 and [n] is [n]Φn(q)3. 2
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3. Proof of Theorem 1.3

The proof is similar to that of Theorem 1.1. We need to establish three related lemmas.

Lemma 3.1. Let n ≡ 3 (mod 4) be a positive integer. Then

(n+1)/2∑

k=0

1− q6k−1−n

1− q

(q−1−n; q2)k(ab2q−1, q−1/a, q2−2n/b2; q4)k

(q4; q4)k(q2−n/ab2, aq2−n, b2q−1+n; q2)k

q−k2+(n+2)k = 0. (3.1)

Proof. Letting q 7→ q2, and taking a = q−1−n, d = ab2q−1 and f = q−1/a in (2.3), we see
that the left-hand side of (3.1) is equal to

(q3−n, ab2q2+n, q2+n/a, q5−n/b2; q4)∞
(q3+n, q4−n/ab2, aq4−n, b2q1+n; q4)∞

= 0, (3.2)

where we have used the fact that (q3−n; q4)∞ = 0. 2

Lemma 3.2. Let n ≡ 3 (mod 4) be a positive integer. Let a and b be indeterminates.
Then, modulo Φn(q)(1− ab2qn)(a− qn),

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(ab2q−1, q−1/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q−1; q2)k

q2k−k2

≡ −(q; q2)(n+1)/2

q(b2q−1; q2)(n+1)/2

b(n+1)/2q−(n+1)/2. (3.3)

Proof. Since qn ≡ 1 (mod Φn(q)), from (3.1) we deduce that

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(ab2q−1, q−1/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q−1; q2)k

q2k−k2 ≡ 0 (mod Φn(q)).

Moreover, the right-hand side of (2.4) is also congruent to 0 because (q; q2)(n+1)/4 in the
numerator contains the factor 1− qn. This implies that (3.3) holds modulo Φn(q).

For a = qn or a = q−n/b2 , the left-hand side of (3.3) can be written as

(n+1)/2∑

k=0

1− q6k−1

1− q

(q−1, q2)k(q
−1−n, b2q−1+n, q2/b2; q4)k

(q4, q4)k(q2+n, q2−n/b2, b2q−1, ; q2)k

q2k−k2

. (3.4)

Making the parameter substitutions q 7→ q2, a = q−1, d = q−1−n and f = b2q−1+n in (2.3),
we conclude that (3.4) is equal to

−(q3, q2−n, b2q2+n, q5/b2; q4)∞
q(q3, q4+n, q4−n/b2, b2q; q4)∞

=
−(q3, q; q4)(n+1)/4

q(b2q−1, b2q; q4)(n+1)/4

b(n+1)/2q−(n+1)/2

=
−(q; q2)(n+1)/2

q(b2q−1; q2)(n+1)/2

b(n+1)/2q−(n+1)/2.

This implies that (3.3) holds modulo 1 − ab2qn and a − qn. Since Φn(q), 1 − ab2qn, and
a− qn are pairwise coprime polynomials, we get the desired q-congruence (3.3). 2
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Lemma 3.3. Let n ≡ 3 (mod 4) be a positive integer. Let a and b be indeterminates.
Then, modulo b− qn,

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(ab2q−1, q−1/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q−1; q2)k

q2k−k2 ≡ −(q3, q5/b2; q4)(n−1)/2

q(aq4, q4/ab2; q4)(n−1)/2

. (3.5)

Proof. Letting q 7→ q2, and taking a = q−1, d = q−1/a and f = aq2n−1 in (2.3), we have

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(ab2q−1, q−1/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q−1; q2)k

q2k−k2

= − (q3, q2/a, aq2n+2, q5−2n; q4)∞
q(q3, aq4, q4−2n/a, q2n+1; q4)∞

= − (q3, q5−2n; q4)(n−1)/2

q(aq4, q4−2n/a; q4)(n−1)/2

.

This indicates that the two sides of (3.5) are equal for b = qn. Namely, the q-congruence
(3.5) holds. 2

Proof of Theorem 1.3. Applying the q-congruences (2.9) and (2.10), from (3.3) and (3.5)
we deduce that, modulo Φn(q)(1− ab2qn)(a− qn)(b− qn),

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(ab2q−1, q−1/a, q2/b2; q4)k

(q4; q4)k(q2/ab2, aq2, b2q−1; q2)k

q2k−k2

≡ − (q; q2)(n+1)/2

q(b2q−1; q2)(n+1)/2

b(n+1)/2q−(n+1)/2 (b− qn)(ab2qn + ab3 − a2b2 − 1)

(a− b)(1− ab3)

− (q3, q5/b2; q4)(n−1)/2

q(aq4, q4/ab2; q4)(n−1)/2

(1− ab2qn)(a− qn)

(a− b)(1− ab3)
. (3.6)

Since n ≡ 3 (mod 4), by (2.7) and (2.8), we have

(q5, q3; q4)(n−1)/2

(aq4, q4/a; q4)(n−1)/2

≡ [n](q, q2; q2)(n−1)/2

(aq4, q4/a; q4)(n−1)/2

≡ − [n]n(1− a)a(n−1)/2

(1− an)q(n−1)/2
(mod Φn(q)2).

(3.7)

Thus, letting b = 1 in (3.6) and applying (3.7) and (2.13), we are led to the following
q-congruence: modulo Φn(q)2(1− aqn)(a− qn),

(n+1)/2∑

k=0

[6k − 1]
(q−1; q2)k(aq−1, q−1/a, q2; q4)k

(q4; q4)k(q2/a, aq2, q−1; q2)k

q2k−k2

≡ q−(1+n)/2[n] + q−(1+n)/2[n]
(1− aqn)(a− qn)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)
. (3.8)

Therefore, taking a → 1 in (3.8) and applying the limit (2.15), we are led to (1.8). 2
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4. A Dwork-type generalization of (1.4)

Swisher [13, (J.3)] conjectured that Van Hamme’s congruence (1.2) can be generalized as
follows: for any prime p > 3 and positive integer r,

(pr−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)(p−1)/2p

(pr−1−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
(mod p4r). (4.1)

Note that Swisher’s conjecture (4.1) may be viewed as a particular instance of Dwork-type
congruences [2, 11]. The first author [4] proved the modulus p3r case of (4.1) by building
a q-analogue of it. For more Dwork-type congruences, we refer the reader to [8].

In this section, we shall establish the following Dwork-type congruence: for any odd
prime p and positive integer r,

(pr−1)/2∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k ≡ p

(pr−1−1)/2∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k (mod p3r), (4.2)

which is obviously a generalization of (1.6) modulo pr+2.
We first give the following result, which is due to He and Wang [9, Lemma 5.2].

Lemma 4.1. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

[6k + 1]
(aq; q4)k(q/a; q4)k(q

2; q4)k

(aq2; q2)k(q2/a; q2)k(q4; q4)k

q−k2 ≡ 0 (mod [n]). (4.3)

We also need another two q-congruences with a parameter a.

Lemma 4.2. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

[6k + 1]
(q1−n; q4)k(q

1+n; q4)k(q
2; q4)k

(q2+n; q2)k, q2−n; q2)k(q4; q4)k

q−k2

= q(1−n)/2[n]. (4.4)

Proof. Letting q 7→ q2, a = q, d = q1−n, and f = q1+n in (2.3) and making some
simplifications, we obtain (4.4). This identity also follows from the b = 1 case of (2.4). 2

Lemma 4.3. Let n ≡ 1 (mod 4) be an integer with n > 1 and let r > 1. Then, modulo

[nr]

(nr−1−1)/2∏
j=0

(1− aq(4j+1)n)(a− q(4j+1)n),

we have
(nr−1)/2∑

k=0

[6k + 1]
(aq; q4)k(q/a; q4)k(q

2; q4)k

(aq2; q2)k(q2/a; q2)k(q4; q4)k

q−k2

≡ q(1−n)/2[n]

(nr−1−1)/2∑

k=0

q−nk2

[6k + 1]qn

(aqn; q4n)k(q
n/a; q4n)k(q

2n; q4n)k

(aq2n; q2n)k(q2n/a; q2n)k(q4n; q4n)k

. (4.5)

9



Proof. Replacing n by nr in (4.3), we know that the left-hand side of (4.5) is congruent
to 0 modulo [nr]. Meanwhile, making the parameter substitutions r 7→ r − 1 and q 7→ qn

in (4.3), we derive that the sum on the right-hand side of (4.5) without the pre-factor is
congruent to 0 modulo [nr−1]qn . Further, it is not hard to see that, for any positive odd
integer n, the q-integer [n] is coprime with 1+ qk for all positive integers k. Therefore, [n]
is also coprime with the denominators of the sum on the right-hand side of (4.5) because
of the identity

(q2n; q4n)k

(q4n; q4n)k

=

[
2k

k

]

q2n

1

(−q2n; q2n)2
k

,

where
[
2k
k

]
q2n = (q2n; q2n)2k/(q

2n; q2n)2
k is the q-binomial coefficient (a polynomial in q2n

with integer coefficients). This implies that the right-hand side of (4.5) is congruent to 0
modulo [n][nr−1]qn = [nr]. Thus, we have proved the q-congruence (4.5) modulo [nr].

In order to prove (4.5) modulo

(nr−1−1)/2∏
j=0

(1− aq(4j+1)n)(a− q(4j+1)n), (4.6)

it suffices to show that both sides of (4.5) are equal when a = q−(4j+1)n or a = q(4j+1)n for
all 0 6 j 6 (nr−1 − 1)/2. Namely, we need to prove that, for these j,

(nr−1)/2∑

k=0

[6k + 1]
(q1−(4j+1)n; q4)k(q

1+(4j+1)n; q4)k(q
2; q4)k

(q2−(4j+1)n; q2)k(q2+(4j+1)n; q2)k(q4; q4)k

q−k2

= q(1−n)/2[n]

(nr−1−1)/2∑

k=0

q−nk2

[6k + 1]qn

(q−4jn; q4n)k(q
(4j+2)n; q4n)k(q

2n; q4n)k

(q(1−4j)n; q2n)k(q(4j+3)n; q2n)k(q4n; q4n)k

. (4.7)

First notice that (nr − 1)/2 > ((4j + 1)n − 1)/4 for 0 6 j 6 (nr−1 − 1)/2, and
(q1−(4j+1)n; q4)k = 0 for k > ((4j + 1)n− 1)/4. Then, in light of Lemma 4.2, the left-hand
side of (4.7) equals q(1−(4j+1)n)/2[(4j + 1)n], and the right-hand side of (4.7) equals

q(1−n)/2[n] · q−2jn[4j + 1]qn = q(1−(4j+1)n)/2[(4j + 1)n].

This establishes the identity (4.7). Consequently, the q-congruence (4.5) is true modulo
(4.6). Since [nr] and (4.6) are coprime polynomials, we finish the proof of (4.5). 2

We are now able to prove (4.2) by establishing the following q-congruence, which may
also be deemed a Dwork-type generalization of (1.4).

Theorem 4.4. Let n ≡ 1 (mod 4) be an integer with n > 1 and let r > 1. Then, modulo
[nr]

∏r
j=1 Φnj(q)2,

(nr−1)/2∑

k=0

q−k2

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k
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≡ q(1−n)/2[n]

(nr−1−1)/2∑

k=0

q−nk2

[6k + 1]qn

(qn; q4n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

. (4.8)

Proof. Clearly, the limit of (4.6) as a → 1 contains the factor
∏r

j=1 Φnj(q)nr−j+1. On the
other hand, the denominator of the left-hand side of (4.5) is divisible that of the right-
hand side of (4.5). The factor of the former involving a is (aq2; q2)(nr−1)/2(q

2/a; q2)(nr−1)/2,

the limit of which as a tends to 1 merely owns the factor
∏r

j=1 Φnj(q)nr−j−1 that is related
to Φn(q), Φn2(q), . . . , Φnr(q). Therefore, taking a → 1 in (4.5), we conclude that (4.8)
holds modulo

∏r
j=1 Φnj(q)3, one factor

∏r
j=1 Φnj(q) arising from [nr].

Moreover, in view of (1.4), we have

(n−1)/2∑

k=0

q−k2

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

≡ 0 (mod [n]). (4.9)

Substituting n 7→ nr into the above q-congruence, we deduce that the left-hand side of
(4.8) is congruent to 0 modulo [nr], while putting q 7→ qn and n 7→ nr−1 in (4.9), we see
that the right-hand side of (4.8) is congruent to 0 modulo [n][nr−1]qn = [nr]. This means
that (4.8) is true modulo [nr]. Since the least common multiple of

∏r
j=1 Φnj(q)3 and [nr]

is [nr]
∏r

j=1 Φnj(q)2, we finish the proof. 2

Letting n = p be a prime and taking q → 1 in (4.8), we immediately obtain (4.2).
From Theorem 4.4, we can also deduce the following conclusion.

Corollary 4.5. Let p ≡ 3 (mod 4) be a prime and r a positive integer. Then

(p2r−1)/2∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k ≡ p2

(p2r−2−1)/2∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k (mod p4r). (4.10)

Proof. For any positive integer n with n ≡ 3 (mod 4), we have n2 ≡ 1 (mod 4). Replacing
n by n2 in (4.8), we arrive at the following q-congruence: modulo [n2r]

∏r
j=1 Φn2j(q)2,

(n2r−1)/2∑

k=0

q−k2

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

≡ q(1−n2)/2[n2]

(n2r−2−1)/2∑

k=0

q−n2k2

[6k + 1]qn2

(qn2
; q4n2

)2
k(q

2n2
; q4n2

)k

(q2n2 ; q2n2)2
k(q

4n2 ; q4n2)k

. (4.11)

Letting n = p be a prime and taking the limits as q → 1 in (4.11), we get the desired
congruence (4.10). 2
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5. Concluding remarks and open problems

Recall that the Euler numbers En are defined by

E0 = 1, and En = −
bn/2c∑

k=0

(
n

2k

)
En−2k for n = 1, 2, . . . .

In 2021, Mao and Wen [10] proved that, for any prime p > 3,

p−1∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)

p−1
2 p− p3Ep−3 (mod p4), (5.1)

which was originally conjectured by Sun [12].
Numerical calculation implies that the following similar congruences seems to be true.

Conjecture 5.1. Let p ≡ 1 (mod 4) be a prime. Then

p−1∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k ≡ p− p3Ep−3 (mod p4). (5.2)

If the above conjecture is true, then combining (5.1) and (5.2) yields that, for any
prime p ≡ 1 (mod 4),

p−1∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡

p−1∑

k=0

(6k + 1)
(1

2
)k(

1
4
)2
k

k!3
4k (mod p4). (5.3)

In fact, much more should be true. We conjecture that the following q-analogue of (5.3)
holds.

Conjecture 5.2. Let n ≡ 1 (mod 4) be a positive integer. Then, modulo [n]Φn(q)3,

n−1∑

k=0

[6k + 1]
(q; q2)2

k(q
2; q4)k

(q4; q4)3
k

qk2 ≡
n−1∑

k=0

[6k + 1]
(q; q4)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q−k2

. (5.4)

In view of (1.3) and (1.8), we see that the q-congruence (5.4) is true when both sides
are truncated at k = (n− 1)/2.

On the basis of numerical calculation, we believe that the following generalizations of
(4.2) and (4.10) should be true.

Conjecture 5.3. Let p ≡ 1 (mod 4) be a prime and r a positive integer. Then (4.2)
holds modulo p4r.

Conjecture 5.4. Let p ≡ 3 (mod 4) be a prime and r a positive integer with pr > 3.
Then (4.10) holds modulo p5r.

Note that all the proved Dwork-type congruences in [4, 8] are modulo p3r or p2r. For
this reason, we think that Conjectures 5.3 and 5.4 are rather challenging. We hope that
an interested reader can make progress on these two conjectures.
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