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In 2020, the first author and Zudilin gave a g-supercongruence of which the special cases
g = —1 and ¢ = 1 correspond to the (B.2) and (H.2) supercongruences of Van Hamme.
In this paper, we present a further generalization of this g-supercongruence with an extra
parameter.
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1. Introduction

The formula of Bauer [1] from 1859,

k12K 2
2.1 s (1) =2 (1)
became famous after Ramanujan [15] found a number of similar looking infinite
series for the constant but with a faster convergence in 1914. The formula (1.1) can
be deduced from a 4F5 summation (known to Ramanujan). But there are several
other proofs of it without using hypergeometric functions, including the original one
of Bauer [1]. In 1994, Ekhad and Zeilberger [2] gave a remarkable computer proof
of (1.1) by making use of the Wilf-Zeilberger (WZ) method of creative telescoping.
It was Van Hamme [21] who observed in 1997 that many Ramanujan-type series
have beautiful p-adic analogues. For instance, the supercongruence
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(labeled (B.2) on Van Hamme’s list) holds for any odd prime p and corresponds
to the identity (1.1). The supercongruence (1.2) was first confirmed by Mortenson
[14] employing a ¢F5 transformation. It later received a WZ proof by [24] using the
very same WZ pair as in [2]. In 2012, using the WZ method again, Sun [20] gave a
generalization of (1.1) modulo p* for primes p > 3.

Another entry on Van Hamme’s list [21], labeled (H.2), is the supercongruence:
for any odd prime p,

(p—zl)/21<2k)3_ 7I‘p(%)4 (mod p?) ifp=1 (mod 4), (13)
= 64\k/) 1o (mod p?) ifp=3 (mod 4), '

where I',(2) is the p-adic Gamma function. Van Hamme [21] himself not only ob-
served but also confirmed (1.3). Nowadays, many authors have given different gen-
eralizations of (1.3) (see [6,8,9,16,17,18,10,11,12]). For example, Long and Ramakr-
ishna [12, Theorem 3] established the following extension of (1.3):

(p—zl)/2 1 <2k)3 —I'p($)*  (mod p?) ifp=1 (mod 4),
[ = 2
k :
= 04"\ K _%6 I(H* (mod p®) ifp=3 (mod4).

The first author and Zudilin [9, Theorem 1.1] gave a common g-analogue of the
supercongruences (1.2) and (1.3): for any positive odd integer n,

(n—1)/2
Z (14" (% 4"} ¢
k=0 ]- +q ( 4 )k

2 N3 e
_ [nle2(@®dY) 1y 2 1=/ (mod @, (¢)"®n(=¢)") ifn =1 (mod4),

YR (mod ®,,(¢)*®,(—¢)®) ifn=3 (mod 4).
(1.4)

Here and throughout the paper, ®,,(¢) stands for the n-th cyclotomic polynomial in
q; the g-shifted factorial is defined as (a;¢)o = 1 and (a;¢q), = (1—a)(1—aq)--- (1—
aq™ 1) forn > 1 or n = co. For simplicity, we will also adopt the condensed notation

(ala a2, ..., Qm; Q)n = (a1§ Q)n(a% Q)n T (am§ Q)n

for n > 0 or n = co. Moreover, [n] = [n], = (1 — ¢")/(1 — q) denotes the g-integer.
Note that ®,,(q)®,(—q) = ®,(¢?) for all positive odd integers n.
A purpose of this note is to present the following generalization of (1.4).
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Theorem 1.1. Let n be a positive odd integer, and let 0 < s < (n—1)/4. Then

(n—1)/2+s
'q4)qu

(1+ ¢* ) (q% ") k—s(q% ") rs (g%
(1+q)(a* q")r—s(a* ) rrs(ah; ¢k
= (1)l (%4 (n-1)/2-s
a (q5§q4)(n—1)/2+s

(mOd (I)n(Q)QCDn(_Q)B) an =1 (mOd 4):

(mod ®,(q)3®,(—¢)®) ifn=3 (mod 4).

™

(q; q2)25q25(n—s)—(n—1)/2

Letting n = p” be a prime power and taking ¢ — —1 in Theorem 1.1, we arrive
at the following generalization of (1.2), which was already obtained by the first
author [4].

Corollary 1.2. For any odd prime p, positive integer r, and non-negative integer

s < (p" —1)/4, there holds

"_1)/2+s

(r"-1)/ Ak +1 (2k — 2s\ 2k + 25\ (2k\ _ , (p—1)r/2+4s 3
> o\ ks )\ pes J\g) =P mod 7
k=s

Similarly, letting n = p” be a prime power and taking ¢ — 1 in Theorem 1.1,
we get the following generalization of (1.3).

Corollary 1.3. For any odd prime p, positive integer r, and non-negative integer
s < (p" —1)/4, there holds

(”T‘%r"“ 1 (2k — 25\ (2k +25) (2K
P 64F \ k—s k+s k
(mod p?) ifp=1 (mod 4),

S
S

P (=1)*(Dr—1)/2-s(5)2s
(D) r—1)/24s (mod p3) ifp=3 (mod 4).

Mao and Pan [13] (see also [19, Theorem 1.3]) proved that, for any prime p =1
(mod 4),

(p+1)/2 (—1)3
> k!?3k 0 (mod p?). (1.5)

k=0

On the other hand, the r = —1, d = 2 and a = 1 case of [7, Theorem 4.9] implies
that, for any odd prime p,
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The first author and Zudilin [9, Theorem 1.2] also gave a common g-analogue of
the supercongruences (1.5) and (1.6) as follows: for any positive odd integer n,

(n+1)/2 _ _
(L4 ¢* 1) (¢%¢Y;

3

k

2 iy C

k=0
3 N3y ip —
_ [nlg2(@dY) -1y /2 (mod @, (¢)"®n(=)") ifn =1 (mod 4),
7. 44
(50 m-1)/2 (mod ®,,(q)2®,(—q)%) fn=3 (mod 4).
(1.7)

In this note, we shall establish the following generalization of (1.7).
Theorem 1.4. Let n be a positive odd integer, and let 0 < s < (n — 3)/4. Then

(n+1)/2+s o _ - -
3 (L4 ¢ a2 qr—s( % qrrs(@ 50k 7
— (1+a) (% q")r—s(a* ") rts(q* ¢k
(_1)8q2s(n—s+2)+(n—9)/2[n]q2 [4s + 1](g; q4>(n_1)/2_s . q2)
25+ 1225 — U2 [ds — (a3 -1y jors 0 0

(mod @,,(q)3®,(—¢)®) ifn=1 (mod 4),
(mOd q)n(Q)2(I)n(_q)

Letting n be a prime power and ¢ — —1 in Theorem 1.4, we get the following

%)
3) ifn=3 (mod4).

generalization of (1.5).
Corollary 1.5. For any odd prime p, positive integer r, and non-negative integer

s < (p" — 3)/4, there holds

i, (_1)(p71)r/2+s

(p"+1)/2+s _1 _1 -1
( Q)kfs( 2)k+5( Z)k (modp3).

(_1)k(4k_1) (k —8)!(k + s)!k! =P 452 -1

k=s
Meanwhile, letting n be a prime power and ¢ — 1 in Theorem 1.4, we are led to

the following generalization of (1.6).

Corollary 1.6. For any odd prime p, positive integer r, and non-negative integer

s < (p" — 3)/4, there holds

(p"+1)/2+s
P (_%)k—s(_%)kﬁ-s(_%)k

Z (k= $)l(k + s)k!

k=s

P (=1)*(4s + 1) (1) (pr_1)/2—s(L)as | (mod p?) ifp=1 (mod4),

)
45(45% — 1)(4s — 1) (1) (pr—1)/2+5 (mod p?) ifp=3 (mod 4).

We shall prove Theorems 1.1 and 1.4 in Sections 2 and 3, respectively.
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2. Proof of Theorem 1.1

The following easily proved g-congruence (see [5, Lemma 3.1]) will play an important
part in our derivation of Theorems 1.1 and 1.4.

Lemma 2.1. Let n be a positive odd integer. Then, for 0 < k < (n—1)/2, we have

(aq; ¢*) (n—1)/2- (n—1)/2—2k (aq; @) (n—1)%/4+k
=(—a)\" ——— g mod ®,(q)).
P Py (@/a: ) mod a(a)
We shall also use the ¢-Dixon sum (see [3, Appendix (II.13)]), which can be
written as

: : (2.1)

a, fqa% b,c qa% (aq,qb‘la%,qc_ a%,aq/bc; q)oo
493 14, = T T
a2, aq/b,aq/c (agq/b,aq/c, qa?, qaz /bc; @)oo

where the basic hypergeometric ,i11¢, series with r + 1 upper parameters
ai,...,a,41, 7 lower parameters by, ..., b, base ¢ and argument z is defined as

o0

a1,as,...,ar41 (a1, ar4 15k
l(b 4,2 = Z .
r+ 7‘|: b1,~~~7br :| g(q,bl,..‘,br;q)k

We first build the following g-congruence with an additional parameter a.

Theorem 2.2. Let n be a positive odd integer and 0 < s < (n —1)/4. Let a be an
indeterminate. Then

(n—1)/2+s
Z (14 ¢* 1) (ag?; ¢*)k—s (6% q ) its (P as qNi

(I +a) (g% ") k—s(q*/a; ¢")krs(agh; ¢

(054 nr1)/2(6% ) n-1)/2-5(0*/0:00% ¢%)s (4a 1y((no1yj2-) 24
(@0 (1) /245 (@50 (n—1)2(1 + @) (1 — ¢'+9)

(mod @, (—q)(1 —ag®*)(a—¢*")) ifn=1 (mod4),
(mod ®,(¢*)(1 — ag**)(a —¢**)) ifn=3 (mod4).

k=s

(2.2)

Proof. For a = ¢~2", the left-hand side of (2.2) can be written as

(n—1)/2+s n n
3 (1 + ¢ (@2 ¢ ks (0% @) irs (T2 0%k
Pt (L4 @) (0% ) k—s (@27 ¢ kgs (275 ¢4
(n—1)/2

Z 1+q”4’“+45)(q2 7 g e (6 ks (P ¢ )k+sqk+5
gt D" q)k (@ 2" ¢ ) k25 (02" 0 k4

_ ol ) <2+2n,q>
(q4+2n q )25((]4 2n’q )

(n—1)/2 1+4k+4s\(,2—2n. A4 248s. 4 2+4s+2n. 4
1 . . . .
" Z +q (@ ¢ k(%5 4%)n(g ' q )qu. (2.3)

(14 ) (g% g*)r(g*+85H2n; g4) (g4 =2 g
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Making the parameter substitutions ¢ — ¢*, a — ¢**%%, b ¢>**%/a and ¢ — aq?
n (2.1), we get

i 2+85 5+4s’ q2+4s/a, an; q4)k v (q6+85, aq3 q5+4s/a q2+457 q )
_q1+4s aq4+45 4+85/a; q4)k qa = (aqll-i-lls7 q4-|-8s/a7 q5+4s’ q;q )oo

(2.4)

Since n is odd, taking a = ¢~2" in (2.4), we know that the left-hand side terminates
and is equal to

& 248 544 244542 2—2n. 4
E: +s_+sq+s+n7q nvq)kk
0 1+4€ 4—‘,—49—2n7 q4+83+2n; q4)k

(n—1)/2

(1 4 q1+4k+4s)(q272n’ q2+88’ q2+4s+2n; q4)k X

= q
kzzo (1 + qi+2s) (g4, gA+8s+2n gi+ds=2n, gd), ’

while the right-hand side becomes

(q6+83, q372n, q3+4s+2n7 q2+4s; q4)oo B (q6+857 q3*2n; q4)(n—1)/2

(qél—‘,-éls—Qn7 q4-|—8$-',-2n7 q5+4s’ q; q4)oo - (q4+4s—2n’ q5+4s; q4)(n71)/2 !

It follows that

(n—1)/2 _ . .
(1 + q1+4k+4s)(q2 Qn’ 612—‘,-857 q2+45+2n; q4)k: X

- q
/;0 (1 + q1+4s)(q4’ q4+85+2n, q4+4s Zn; q4)k’

(@ ) ey ' 25)
(q4+48—2n’ q5+4s; q4)(n71)/2

Substituting (2.5) into (2.3) and making some simplifications, we obtain

(n—1)/2+s
S (14 ¢* (2" ¢ s (0% ¢ s (P25 0Nk 4,
— (L4 a)(a* ¢)k—s (@20 ) its (0275 ¢k

()@ 02 (P (05T, 2T 0 () 2
T 1+ @) (@ T2 gY)as (qF 27 gh) s (AT 2n, 54N (1) 2
(@) 2@ 0 1) 2T T Y

(@) (1) 24 (T 0N (nm1) 2 (1 + ) (1 — g1 F49)

gUs—D((n=1)/2=5)/2+s

This proves that the g-congruence (2.2) is true modulo 1 — ag®?
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Similarly, for a = ¢, the left-hand side of (2.4) can be written as
(n—1)/2+s n n

3 (14" ™)@ 0 ) r—s (0% ¢")krs (@50 k4

P (4 a)(a* ¢ )r—s (2" 0" k45 (a5 ¢ )i

(n—1)/2 _
-y (14 g %4 (@27 g k(0% 0 hrs (7250 ) kts ks

k=0 (T+a) (g% D) r(@* 27 ¢ k25 (€275 ¢ ks

_ (@)@ ),
(425 qh)2s (25 %)
(n—1)/2 14+4k+4 242n. 4 218s. 4 244s5—2n. 4
(1+ gt ; ; ;
Y e e @9
(1+q) (g% q¢*)r(q 1qY)k(q )k

Letting a = ¢®" in (2.4), we conclude that the left-hand side is equal to

o0 248 544 24+4s5—2 242
(q2F8s, —gPTs, g2 s =2n 22 gty

q
(q4’ _q1+4s, q4+4s+2n7 q4+85 2n’ q4)k

k=0
(n%2s

k=0
(n—1)/2

(1+q1+4k+4s)(q2+2n 24-8s ,24+4s—2n.

;4 4 4 ) k
(1 + q1+4s)(q4, q4+8872n’ q4+4s+2n’ q )k

_ Z (1 + ql—4—4k:—&-4s)(qQ-‘,-Qn7 q2+83, q2+4s—2n; q4)qu
pors (1 + q1+4s)(q4’ q4+8572n7 q4+4s+2n; q4)k ’

while the right-hand side becomes

(qG—i-8s7 q3+2n’ q3—0—45—2n7 q2+4s; q4)oo _ (q ,q

(q4+4s+2n’ q4+8372n7 qo+457 q; q4)oo (q4+8572n7 qo+4s

6+8s ,3+4s—2n.

q4)(n 1)/2—s
)(n 1)/2—s

It follows that

(n—1)/2 _
Z (1 + q1+4k+4s)(q2+2n’ q2+8s’ q2+4s Qn; q4)k

k
(1 + q1+4s)(q4 q4+83—2n, q4+4s+2n; q4)k q

k=0

_ (q 4 4 )(nfl)/Zfs
(q4+8872’ﬂ, q5+4s’ q )

6+8s 3+4s5—2n.

. 2.7
(n—1)/2—s ( )

Substituting (2.7) into (2.6), we arrive at

(n—1)/2+s n.
3 (1 + g™ ™) (@2 q") k—s (0% 0" kts (72" 0Y)k 4

k=s (T4 ) (@5 g s (@27 ¢ ) rs (27 g2

()% g2 (P75 0 (@03, AT ) 1y ja—s
= (1 + q)( 4— 2n7q ) (q4+2n;q4)s(q4+88—2n q5+4s. 4)(7171)/275
(%4 e 2@ 0 (1) ja—s (@ T g1

(@50 1) 245 (@ 0 (1) 2 (1 @) (1 — g1 )

This proves that the g-congruence (2.2) is true modulo a — ¢*"

(4s—1)((n—1)/2—s)/2+s.
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In view of Lemma 2.1 we can check that, for m = (n—1)/2 and s < k < m —s,
(L+ " ) (ag® ¢ ) m—i—s(0% ¢ ) m—n+s(®/05 @) m—k
(1+a)(g* ) m—k—s(a*/a; ¢*)m—r+s(aq*; ¢*) m—r
(1+ ¢ ) (ag®; ¢ r—s (% ¢ Drrs (@ /a; 4"k 4,
(L4 ) (g% q*)k—s(q*/a; ¢*)+s(ag; ¢* )k
(mod ®,(—q)) ifn=1 (mod4),

(mod ®,,(¢?)) ifn=3 (mod 4).

Furthermore, for s in the range (n—1)/2—s < k < (n—1)/2, the summand indexed
k on the left-hand side of (2.2) is congruent to 0 modulo ®,,(¢*) because the factor
(¢%; ¢*)1+s appears in the numerator. This means that

(n—1)/2+s
! y + ¢ ) (ag? ¢")n—s (6% 0 rrs(@P/ai a4
P (1+a)(a* q")r—s(a*/a; " )r+s(ag*; ¢*)r
(mod ®,(—q)) ifn=1 (mod4),
=0

(mod @,(¢?)) ifn=3 (mod4).

Namely, the g-congruence (2.2) is true modulo ®,,(—¢) if n = 1 (mod 4), and is
true modulo ®,,(¢?) if n = 3 (mod 4). The proof then follows from the fact that
(®,(—q)) (or ®,(q)?), 1 —ag®", and a — ¢*" are pairwise coprime polynomials in @

Proof of Theorem 1.1. Suppose that n > 1, for the n = 1 case is trivial. Both
sides of (2.2) are coprime with ®,,(¢?) when a = 1, since k is in the range s < k <
(n—1)/2+ s. On the other hand, when a = 1, the polynomial (1 —ag*")(a — ¢*") =
(1 —¢*")? has the factor ®,,(¢?)2. Thus, letting a = 1 in (2.2) and performing some
simplifications, we are led to

(n—1)/2+s
) (14 ¢* ) (0% q)r—s (0% ¢ rrs (@ q*)r

(14 q)(a* ¢")r—s(a*; a*)k+s(a*; ¢

k=s

(0% 0Y) (4 1)/2(01 6 (n-1) 2= (0%, 65 0%)s (=D (1) /2-5) 24
(@0 (1) /245 (@454 ) (n—1)/2(1 + @) (1 — ¢'7%)

(q3; q4)(n—1)/2—s

—1 S n - - NG e 2

(=1l (@°:4%) (n—1)2+s

(mod ®,(q)*®,(—¢)®) ifn=1 (mod 4),

(q, q2)25q2s(n75)7(n71)/2

(mod ®,,(¢)3®,(—¢q)3) ifn=3 (mod 4),

as desired. 0

3. Proof of Theorem 1.4

Likewise, we need the following parametric generalization of Theorem 1.4.
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Theorem 3.1. Let n be a positive odd integer and 0 < s < (n — 3)/4. Let a be an
indeterminate. Then

(n+1)/2+s

5 (1+ ¢ (ag % q"r—s(a % ¢ rrs(q?/a; q4>7€q7k
2 (1F @) (% qi—s(a*/a:q%)rs(ag% 4
_ (q6+4s )(n 1)/2— s(q 115 )(n 1)/2(“‘1 4 /a q )e (2n+5)5+(n 5)/2

(@%50%) (n—3)/2(47: 4*) (n—1) j24s (1 + @) (g7 1+ = 1)

(mod ®,,(¢*)(1 —ag®*)(a —¢**)) ifn=1 (mod 4), (3.1)
(mod ®,(—q)(1 —ag®*)(a —¢*")) ifn=3 (mod4).

Proof. For a = ¢, the left-hand side of (3.1) can be written as

(n+1)/2+s _ _ _ _
3 1+ ¢ ) ag 2 N r—s (a5 0" ks (2 /a3 a7,

— (1+a)(a* ¢ r—s(q*/a; ") k+s(ag; ¢*)k
(n+1)/2+s 1

S (O ) [ T 0 S Ut O L Ul
= (T (45 s (072 V) a (@27 )5

(n+1)/2 ~ _ _ _
3 (1+ g 1R ) (72727 M) (%5 ¢ ) ip2s (g 2+2n§q4)k+sq7k+7s

= (L + @) a)r(@* "¢ ) kr2s (@27 ¢ ) krs

242n. 4
+n7Q)k} 7k

(3.2)

Performing the parameter substitutions ¢ +— ¢*, a — ¢ 278 b s ¢2%4%/q and

¢+ agq 2 in (2.1), we obtain

—2+8€ 3+4€ —2+44s

0 4
Z(q —q /a,aq” 7Q)k 7k
(q4, —1+4s aq4+4s 4+85/a’ q4)k
_
- (

%, aq®, @ Ja, O ) oo

aq4+45 4+85/a’ q3—5-457 q7; q4)oo

Putting a = ¢~2" in (3.3), we obtain

(n+1)/2 _ _9_ _ _
(1+q 1+4k+4s)(q 2 2n’q 2+85’q 2+4s+2n;q4)k -

k

= (1 +q—1+4s)(q47q4+85+2n,q4+4s—2n;q4)
_ @@ “U/24s (3.4)
(@7, 45720 %) (1) j2ts
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Substituting (3.4) into (3.2), we get

(n+1)/2+4s - o o
S R I [ T N T [ C Bt
P (1 + @) (g% a") s (@2 g rts (@2 g
7 L+ a7 (72 ¢ 2s (a2 ¢ s (2, 5% %) (1) 24
(1 +g)(@* 25 ¢%)25(¢*250%) s (47, @472 44 (n—1) /245
(@50 (1) 2= (@45 4" =1y 2(® 2", 72125 ¢4) (D) n=)2,

(45 4*) (n—3)2(47; ¢*) (n—1) j24s (1 + @) (g7 1H4s — 1)

This proves that the g-congruence (3.1) is true modulo 1 — ag?".
Similarly, for a = ¢°, the left-hand side of (3.1) can be written as

(n+1)/2+4s _ _ — —
Z (L4 ¢ ) (aq™% ¢ —s (a2 ¢ rts (026" k 7
(1+ ) (g% ¢")k—s(q*/a; q*)krs(ag*; )

k=s
(n+1)/2+4s _ _ _ o
-y L+a ) (a2 g ) i—s (@ aN ks (@20 )k 7
o (T (@ no (@2 a2 )
(n+1)/2 _ _ _ o
S (14 g ") (72127 )i (g5 ¢ has (g2 2”;q4)k+sq7k+7s
=0 (1 +a) (g% q")r(@* "5 4" rr2s (027 ¢ hss
(3.5)

We now put a = ¢*" in (3.3) to get the following identity:

(n+1)/2 (14 g 1+ktes)(=242n (=248s (=2Hds—2n. )
) ) b
Z (1 + g~ 1+45) (g4, g*F8s—2n_ga+astan, o4), q

k=0
5+4s—2n ,6-+4s. 4
(q 4 34 )(nfl)/2. (36)

(g7, 35720 g1) (1)

Substituting (3.6) into (3.5), we get

(n+1)/2+s _ _ ~ _
3 (L4 ¢ ") (aq™ % ¢k (% irs (@2 /a;q") i 7,
(14 ) (g% ¢*)k—s(q*/a; ¢ ers(ag?; ¢*)k

k=s
7o (L7149 (72 ¢ 25 (g 7272 ¢") s (@452, ¢5T4% %) (1) 2

(14 g)(@* 275 ¢%)2s (4275 %) (¢7, ¢T3 72 ¢ ) (n-1) /2
(@50 -1)/2-5(@ 750 1) 2(6° " 72710 (2D n=)2

(45 4% (n—3)2(47; 4*) (n—1) j24s(1 + @) (g7 1+ = 1)

This shows that the g-congruence (3.1) is true modulo a — ¢*".
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In light of Lemma 2.1, we can verify that, form = (n+1)/2 and s < k < m—s,

(L4 g% N (ag % ¢ ) mr—s(@ %0 mbrs(02/0G ) m—k 7(m—1)
(L + @) (q* ¢ m—r—s(a*/a; ¢*)m—k+s(aq*; ¢*) m—r 1
(1+¢* ) (ag % ¢"r—s(a % ¢ rrs(a 2 /a; 4k o,
(1+q)(g* q*)k—s(a*/a; ¢*)k+s (agh; ¢*)k
(mod ®,(¢?)) ifn=1 (mod 4),
(mod @,(—q)) ifn=3 (mod4).

Moreover, for (n+1)/2—s < k < (n+1)/2, the summand indexed k on the left-hand
side of (3.1) is congruent to 0 modulo ®,,(¢?). This proves that

(n+1)/2+s _ _ — —
3 (L +¢* ) (ag™ % q")r—s(a7% ¢ rs(@ /a5 4k 7
R () P P Py N P
(mod ®,(¢?)) ifn=1 (mod4),
=0

(mod ®,(—q)) ifn=3 (mod4).

Namely, the g-congruence (3.1) is true modulo ®,,(¢?) if n = 1 (mod 4), and is true
modulo ®,(—q) if n =3 (mod 4). Since ®,,(¢)?, 1 — aqg®*, and a — ¢*" are pairwise
coprime polynomials, we complete the proof. O

Proof of Theorem 1.4. Letting a = 1 in (3.1) and making some simplifications,
we finish the proof. O
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