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Abstract. We establish a family of q-supercongruences modulo the cube of a cyclo-
tomic polynomial for truncated basic hypergeometric series. This confirms a weaker form
of a previous conjecture of the present authors. Our proof employs a very-well-poised
Karlsson–Minton type summation due to Gasper, together with the ‘creative microscop-
ing’ method introduced by the first author in recent joint work with Zudilin.

1. Introduction

In 1914, Ramanujan [11] mysteriously stated some representations of 1/π, such as

∞∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
=

4

π
, (1.1)

where (a)n = a(a+1) · · · (a+n−1) denotes the rising factorial. In 1997, Van Hamme [13]
conjectured 13 interesting p-adic analogues of Ramanujan-type formulas. For example,

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ p(−1)(p−1)/2 (mod p4), (1.2)

where p > 3 is a prime. Van Hamme himself gave proofs for three of them. Supercon-
gruences of the form (1.2) are now called Ramanujan-type supercongruences (see [16]).
The proof of (1.2) was first provided by Long [9]. See [10] for historical remarks of Van
Hamme’s 13 supercongruences.

Recently, q-supercongruences have been investigated by different authors (see, for ex-
ample, [3–8, 14, 15]). In particular, the present authors [3] proved that, for odd integers
d > 5,

n−1∑

k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

qd(d−3)k/2 ≡
{

0 (mod Φn(q)2), if n ≡ −1 (mod d),

0 (mod Φn(q)3), if n ≡ −1/2 (mod d).
(1.3)
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Here, we adopt the standard q-notation: [n] = 1+ q + · · ·+ qn−1 is the q-integer; (a; q)n =
(1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial, with the abbreviated notation
(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n; and Φn(q) stands for the n-th cyclotomic
polynomial in q, which may be defined as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
It is worth mentioning that the q-congruence (1.3) is not true for d = 3. The present

authors [3] also gave the following companion of (1.3): for odd integers d > 3 and integers
n > 1,

n−1∑

k=0

[2dk − 1]
(q−1; qd)d

k

(qd; qd)d
k

qd(d−1)k/2 ≡
{

0 (mod Φn(q)2), if n ≡ 1 (mod d),

0 (mod Φn(q)3), if n ≡ 1/2 (mod d).
(1.4)

In this paper, we shall prove the following q-supercongruence, which is a generalization
of the respective second cases of (1.3) and (1.4).

Theorem 1.1. Let d and r be odd integers satisfying d > 3, r 6 d − 4 (in particular,
r may be negative) and gcd(d, r) = 1. Let n be an integer such that n > (d − r)/2 and
n ≡ −r/2 (mod d). Then

M∑

k=0

[2dk + r]
(qr; qd)d

k

(qd; qd)d
k

qd(d−r−2)k/2 ≡ 0 (mod Φn(q)3), (1.5)

where M = (dn− 2n− r)/d or n− 1.

Note that the present authors [5, Theorem 2] already proved that (1.5) is true modulo
Φn(q)2, and further conjectured that it is also true modulo Φn(q)4 for d > 5 (see [5,
Conjecture 3]). We believe that the full conjecture is rather difficult to prove.

In this paper we apply the method of creative microscoping, recently introduced in a
paper by the first author with Zudilin [6], to prove Theorem 1.1. In our application of
this method here we suitably introduce the parameter a (such that the series satisfies
the symmetry a ↔ a−1) into the terms of the series and prove that the congruence holds
modulo Φn(q), modulo 1 − aqn, and modulo a − qn. Thus, by the Chinese remainder
theorem for coprime polynomials, the congruence holds modulo the product Φn(q)(1 −
aqn)(a− qn). By letting a = 1 the congruence is established modulo Φn(q)3.

Our paper is organized as follows: In Section 2 we list some tools we require in our proof
of Theorem 1.1. These consist of a Lemma about an elementary q-congruence modulo a
cyclotomic polynomial Φn(q), and a very-well-poised Karlsson–Minton type summation
by Gasper of which we need a special case. In Section 3 we first prove Theorem 3.1, a
parametric generalization of Theorem 1.1 that involves the insertion of different powers of
the parameter a, appearing in geometric sequences, in the respective q-shifted factorials.
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Afterwards we show how Theorem 1.1 follows from Theorem 3.1. We conclude with Sec-
tion 4 where we elaborate on the merits and limits of the method of creative microscoping
employed here in the quest of proving [5, Conjecture 3] (which remains open).

2. Preliminaries

We need the following result, which is due to the present authors [4, Lemma 2.1]. In
order to make the paper self-contained, we include its short proof here.

Lemma 2.1. Let d, m and n be positive integers with m 6 n − 1. Let r be an integer
satisfying dm ≡ −r (mod n). Then, for 0 6 k 6 m and any indeterminate a, we have

(aqr; qd)m−k

(qd/a; qd)m−k

≡ (−a)m−2k (aqr; qd)k

(qd/a; qd)k

qm(dm−d+2r)/2+(d−r)k (mod Φn(q)).

If gcd(d, n) = 1, then the above q-congruence also holds for a = 1.

Proof. We first assume that a is an indeterminate. Since qdm+r ≡ qn ≡ 1 (mod Φn(q)),
we have

(aqr; qd)m

(qd/a; qd)m

=
(1− aqr)(1− aqd+r) · · · (1− aqdm−d+r)

(1− qd/a)(1− q2d/a) · · · (1− qdm/a)

≡ (1− aqr)(1− aqd+r) · · · (1− aqdm−d+r)

(1− qd−dm−r/a)(1− q2d−dm−r/a) · · · (1− q−r/a)

= (−a)mqm(dm−d+2r)/2 (mod Φn(q)). (2.1)

Moreover, modulo Φn(q), we get

(aqr; qd)m−k

(qd/a; qd)m−k

=
(aqr; qd)m

(qd/a; qd)m

(1− qdm−dk+d/a)(1− qdm−dk+2d/a) · · · (1− qdm/a)

(1− aqdm−dk+r)(1− aqdm−dk+d+r) · · · (1− aqdm−d+r)

≡ (aqr; qd)m

(qd/a; qd)m

(1− qd−dk−r/a)(1− q2d−dk−r/a) · · · (1− q−r/a)

(1− aq−dk)(1− aqd−dk) · · · (1− aq−d)

=
(aqr; qd)m

(qd/a; qd)m

(aqr; qd)k

(qd/a; qd)k

a−2kq(d−r)k.

Substituting (2.1) into the above q-congruence, we obtain the desired q-congruence.
We now assume that gcd(d, n) = 1 and a = 1. Then the desired result follows from the

same argument. ¤
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We will further utilize a very-well-poised Karlsson–Minton type summation due to
Gasper [1, Eq. (5.13)] (see also [2, Ex. 2.33 (i)]):

∞∑

k=0

(a, q
√

a,−q
√

a, b, a/b, d, e1, aqn1+1/e1, . . . , em, aqnm+1/em; q)k

(q,
√

a,−√a, aq/b, bq, aq/d, aq/e1, e1q−n1 , . . . , aq/em, emq−nm ; q)k

(
q1−ν

d

)k

=
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

m∏
j=1

(aq/bej, bq/ej; q)nj

(aq/ej, q/ej; q)nj

, (2.2)

where n1, . . . , nm are non-negative integers, ν = n1 + · · · + nm, and the convergence
condition |q1−ν/d| < 1 is needed when the series does not terminate. We point out that
an elliptic extension of the terminating d = q−ν case of (2.2) was given by Rosengren and
the second author [12, Eq. (1.7)].

In particular, we notice that the right-hand side of (2.2) vanishes for d = bq. Further
taking b = q−N we get the following summation formula:

N∑

k=0

(a, q
√

a,−q
√

a, e1, aqn1+1/e1, . . . , em, aqnm+1/em, q−N ; q)k

(q,
√

a,−√a, aq/e1, e1q−n1 , . . . , aq/em, emq−nm , aqN+1; q)k

q(N−ν)k = 0, (2.3)

provided that N > ν = n1 + · · ·+ nm.

3. A parametric generalization and proof of Theorem 1.1

We now give a parametric generalization of Theorem 1.1.

Theorem 3.1. Let d and r be odd integers satisfying d > 3, r 6 d − 4 (in particular,
r may be negative) and gcd(d, r) = 1. Let n be an integer such that n > (d − r)/2 and
n ≡ −r/2 (mod d). Then modulo Φn(q)(1− aqn)(a− qn),

M∑

k=0

[2dk + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)k(q
r; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k

qd(d−r−2)k/2 ≡ 0, (3.1)

where (dn− 2n− r)/d 6 M 6 n− 1.

Proof. It is easy to see that gcd(d, n) = 1 and thereby none of the numbers d, 2d, . . . , (n−
1)d are multiples of n. This means that the denominators of the left-hand side of (3.1) do
not contain the factor 1− aqn nor 1− a−1qn. Thus, for a = q−n or a = qn, the left-hand
side of (3.1) can be written as

(dn−2n−r)/d∑

k=0

[2dk + r]
(qr−(d−2)n, qr−(d−4)n, . . . , qr−n; qd)k

(qd−(d−2)n, qd−(d−4)n, . . . , qd−n; qd)k

× (q(d−2)n+r, q(d−4)n+r, . . . , qn+r; qd)k(q
r; qd)k

(q(d−2)n+d, q(d−4)n+d, . . . , qn+d; qd)k(qd; qd)k

qd(d−r−2)k/2, (3.2)
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where we have used (qr−(d−2)n; qd)k = 0 for k > (dn− 2n− r)/d. Specializing the param-
eters in (2.3) by N = (dn − 2n − r)/d, a = qr, q 7→ qd, m = (d − 1)/2, ei = qr−(d−2i−2)n

(1 6 i 6 m−1), em = q(d+r)/2, n1 = · · · = nm−1 = (2n+r−d)/d and nm = (2n+r−d)/(2d)
and noticing N − (n1 + · · · + nm) = (d − r − 2)/2 > 0, we see that (3.2) is equal to 0.
This proves that (3.1) holds modulo (1− aqn)(a− qn).

For M = (dn− 2n− r)/d, by Lemma 2.1, we can easily check that

[2d(M − k) + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)M−k

(ad−2qd, ad−4qd, . . . , aqd; qd)M−k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)M−k(q
r; qd)M−k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)M−k(qd; qd)M−k

qd(d−r−2)(M−k)/2

≡ −[2dk + r]
(ad−2qr, ad−4qr, . . . , aqr; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dqr, a4−dqr, . . . , a−1qr; qd)k(q
r; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k

qd(d−r−2)k/2 (mod Φn(q)).

It now becomes evident that the k-th and (M − k)-th summands on the left-hand side of
(3.1) cancel each other modulo Φn(q). Therefore, the left-hand side of (3.1) is congruent
to 0 modulo Φn(q) for M = (dn − 2n − r)/d. Furthermore, for any k in the range
(dn − 2n − r)/d < k 6 n − 1, we have (qr; qd)k/(q

d; qd)k ≡ 0 (mod Φn(q)). Hence, the
q-congruence (3.1) also holds modulo Φn(q) for (dn− 2n− r)/d < M 6 n− 1. ¤

Proof of Theorem 1.1. Since gcd(n, d) = 1 and 0 6 k 6 n− 1, the factors related to a in
the denominators of the left-hand side of (3.1) are relatively prime to Φn(q) when a = 1.
On the other hand, the polynomial (1− aqn)(a − qn) has the factor Φn(q)2 when a = 1.
Thus, letting a = 1 in (3.1), we see that (1.5) holds modulo Φn(q)3. ¤

4. Concluding remarks

We have inserted different powers of the parameter a, appearing in geometric sequences,
in the respective q-shifted factorials on the left-hand side of (1.5), in order to establish
the desired generalized congruence modulo (1− aqn)(a− qn). The proof of Theorem 1.1
is similar to the proofs in the paper [3] but is quite different from those in [6], where the
parameter a is inserted in a more standard way (without higher powers of a).

While the method of creative microscoping enabled us to strengthen [5, Theorem 2]
to the congruence modulo Φn(q)3 in Theorem 1.1, we believe that it is rather unlikely
to prove that (1.5) is true modulo Φn(q)4 for d > 5 [5, Conjecture 3] by the method of
creative microscoping, since the parametric generalization in (3.1) does not hold modulo
Φn(q)2(1−aqn)(a−qn) in general. For this reason, the proof of (1.5) modulo Φn(q)2 given
in [5] still has its virtue. Recall that the present authors [5] wrote the left-hand side of
(1.5) as a product of two rational functions X and Y , and showed that X is congruent
to 0 modulo Φn(q)2. Hence, to prove [5, Conjecture 3], it remains to prove that Y is also
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congruent to 0 modulo Φn(q)2. We hope that an interested reader can shed light on this
problem and settle the conjecture.
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