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ABSTRACT. We establish a family of g-supercongruences modulo the cube of a cyclo-
tomic polynomial for truncated basic hypergeometric series. This confirms a weaker form
of a previous conjecture of the present authors. Our proof employs a very-well-poised
Karlsson—Minton type summation due to Gasper, together with the ‘creative microscop-
ing” method introduced by the first author in recent joint work with Zudilin.

1. INTRODUCTION

In 1914, Ramanujan [11] mysteriously stated some representations of 1/7, such as

Z(% +1 )1513)4kk - é’ (1.1)

™
k=0

where (a), = a(a+1)---(a+n—1) denotes the rising factorial. In 1997, Van Hamme [13]
conjectured 13 interesting p-adic analogues of Ramanujan-type formulas. For example,

(r-1)/2
! (3)i

=p(~1)"2 (mod p*) (1.2)

where p > 3 is a prime. Van Hamme himself gave proofs for three of them. Supercon-
gruences of the form (1.2) are now called Ramanujan-type supercongruences (see [16]).
The proof of (1.2) was first provided by Long [9]. See [10] for historical remarks of Van
Hamme’s 13 supercongruences.

Recently, g-supercongruences have been investigated by different authors (see, for ex-
ample, [3-8,14,15]). In particular, the present authors [3] proved that, for odd integers
d>5,

n—1

d 0 (mod ®,(q)?), ifn=-1 (mod d),
Qdkﬁ—l— 1 q; d)lcdqd(d—3)k/2 = ( ( ) ) ( ) (13)
P q%; q) 0 (mod ®,(¢q)%), ifn=-1/2 (modd).
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Here, we adopt the standard g-notation: [n] = 1+¢+---+¢"" ! is the g-integer; (a;q), =
(1 —a)(1 —aq)---(1 —aq™?') is the g-shifted factorial, with the abbreviated notation
(a1,a9, ... am; Q)n = (a1;¢)n(a2;@)n -+ (am; q)n; and P, (q) stands for the n-th cyclotomic
polynomial in ¢, which may be defined as

1<k<n
ged(k,n)=1
where ( is an n-th primitive root of unity.
It is worth mentioning that the g-congruence (1.3) is not true for d = 3. The present
authors [3] also gave the following companion of (1.3): for odd integers d > 3 and integers
n>1,

n—1 —1. ,d\d
Z[Qdk —1] (¢ 5q )dk;qd(dfl)k/Q =
(¢4 q?)f

k=0

(1.4)

{0 (mod ®,(¢)?), ifn=1 (mod d),
0 (mod ®,(¢q)*), ifn=1/2 (mod d).

In this paper, we shall prove the following g-supercongruence, which is a generalization
of the respective second cases of (1.3) and (1.4).

Theorem 1.1. Let d and r be odd integers satisfying d > 3, r < d — 4 (in particular,
r may be negative) and ged(d,r) = 1. Let n be an integer such that n > (d —r)/2 and
n = —r/2 (mod d). Then

M

(@5 aME gaere
Z[Qdk + r]—(qd. qd>§qd<d /2 =0 (mod ®,(q)%), (1.5)
k=0 1k

where M = (dn —2n —r)/d orn — 1.

Note that the present authors [5, Theorem 2] already proved that (1.5) is true modulo
®,(q)?, and further conjectured that it is also true modulo ®,(q)* for d > 5 (see [5,
Conjecture 3]). We believe that the full conjecture is rather difficult to prove.

In this paper we apply the method of creative microscoping, recently introduced in a
paper by the first author with Zudilin [6], to prove Theorem 1.1. In our application of
this method here we suitably introduce the parameter a (such that the series satisfies
the symmetry a <> a~!) into the terms of the series and prove that the congruence holds
modulo ®,(g), modulo 1 — ag”, and modulo a — ¢”. Thus, by the Chinese remainder
theorem for coprime polynomials, the congruence holds modulo the product ®,(q)(1 —
aq™)(a — q"). By letting a = 1 the congruence is established modulo @, (q)3.

Our paper is organized as follows: In Section 2 we list some tools we require in our proof
of Theorem 1.1. These consist of a Lemma about an elementary g-congruence modulo a
cyclotomic polynomial ®,(q), and a very-well-poised Karlsson-Minton type summation
by Gasper of which we need a special case. In Section 3 we first prove Theorem 3.1, a
parametric generalization of Theorem 1.1 that involves the insertion of different powers of
the parameter a, appearing in geometric sequences, in the respective g-shifted factorials.
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Afterwards we show how Theorem 1.1 follows from Theorem 3.1. We conclude with Sec-
tion 4 where we elaborate on the merits and limits of the method of creative microscoping
employed here in the quest of proving [5, Conjecture 3] (which remains open).

2. PRELIMINARIES

We need the following result, which is due to the present authors [4, Lemma 2.1]. In
order to make the paper self-contained, we include its short proof here.

Lemma 2.1. Let d, m and n be positive integers with m < n — 1. Let r be an integer

satisfying dm = —r (mod n). Then, for 0 < k < m and any indeterminate a, we have
(aq”; q")m—r —2k (aq"; ¢“)w (dm—d+2r) /2+(d—r)k
- = (—a)" ™" " " mod ®,(q)).
(/a5 0D (/i) mod ala)

If ged(d,n) = 1, then the above q-congruence also holds for a = 1.

Proof. We first assume that a is an indeterminate. Since ¢¢™*" = ¢" = 1 (mod ®,(q)),
we have

(aq";qMm (1 —ag’)(1 —ag®)--- (1 — agdm—d+n)

(¢%/a; q*)m (1—q%/a)(1 —q*?/a)--- (1 — q¥m/a)

(1—aq")(1 —ag™")--- (1 — agim—d+n)
(1 — gd=dm=r/q)(1 — g2d=dm=7/q) .- (1 — ¢~ /a)
(—a)mqm(dm_dﬂrm (mod ®,(q))- (2.1)

Moreover, modulo ®,(¢q), we get

(aq"; 4" m—

(¢%/a; %) m—k

_ (ag"3¢N)m (1 = g™ " a)(1 = g™ "2 /a) .- (1 — ¢""/a)
- (qd/a; qd)m (1 _ aqdm—dk+r)(1 _ aqdm—dkz+d+r) .. (1 _ aqdm—d+r)

(aq";¢")m (1 =q* " " /a) 1 =% "/a)--- (1 —q"/a)
(¢?/a;q)m (1 —ag®)(1 = ag=@)--- (1 — ag~?)
_ (@q5qm (aq"5 4k o (a-r

(¢%/a; q%)m (¢%/a; %)k '

Substituting (2.1) into the above g-congruence, we obtain the desired g-congruence.
We now assume that ged(d,n) = 1 and @ = 1. Then the desired result follows from the
same argument. ([l
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We will further utilize a very-well-poised Karlsson—Minton type summation due to
Gasper [1, Eq. (5.13)] (see also [2, Ex. 2.33 (i)]):

f: (CL,Q\/E, _Q\/av b7 a/b7 d7 617aqn1+1/617 s 76m7aqnm+1/€m;q)k (ql_l/>k
k=0 (Q7 \/aa _\/aa CZQ/b, bqa QQ/d: GQ/ela equnl’ cey GQ/em, emqinm; Q)k d
(¢,aq,aq/bd,bq/d; q)ss 7 (aq/bej,bq/e55 )0,

- . (22
(bg, aq/b,aq/d, q/d; @)oo -5 (ag/e;, a/ej; q)n, .

where nq,...,n,, are non-negative integers, v = n; + --- + n,,, and the convergence
condition |¢'7/d| < 1 is needed when the series does not terminate. We point out that
an elliptic extension of the terminating d = ¢~ case of (2.2) was given by Rosengren and
the second author [12, Eq. (1.7)].

In particular, we notice that the right-hand side of (2.2) vanishes for d = bq. Further
taking b = ¢~V we get the following summation formula:

(2.3)

)

N n . —
Z (CL’ Q\/_7 _Q\/a7 €1, aq 1+1/61a <oy Em,aq m+1/6m7 q N; Q)k‘ (N-v)k =0
(g, v/a,—va,ag/er,e1q™, ... aq/eqm, eng ", agN 1l q)s ’
provided that N > v =mny + -+ 4+ n,,.

3. A PARAMETRIC GENERALIZATION AND PROOF OF THEOREM 1.1
We now give a parametric generalization of Theorem 1.1.

Theorem 3.1. Let d and r be odd integers satisfying d > 3, r < d — 4 (in particular,
r may be negative) and ged(d,r) = 1. Let n be an integer such that n > (d —r)/2 and
n = —r/2 (mod d). Then modulo ®,,(q)(1 — aq™)(a — q"),

M -2 7 —4 7 r
(ad 2q 7ad 4q yoe-,aq 7qd)k:

2dk
kz:%[ o (a%=2q% a?~4q?, ..., aq?; q")i

(a® ", 0" ", ... ,a7'q"; q)(q"; 4" d(d—r-2)k/2 — )

(a2dqd, a g a gt q?) (g% ¢
where (dn —2n —1r)/d < M <n —1.

X

(3.1)

Proof. 1t is easy to see that gcd(d,n) = 1 and thereby none of the numbers d,2d, ..., (n—
1)d are multiples of n. This means that the denominators of the left-hand side of (3.1) do
not contain the factor 1 — ag™ nor 1 — a~'¢". Thus, for a = ¢~" or a = ¢, the left-hand
side of (3.1) can be written as

(dn—2n—r)/d

Z [Qdk N T] (qr—(d—Q)n’ qr—(d—4)n’ o ’qr—n; qd)k
k=0 (qdi(d72)n7 qdi(d74)n7 R qdin; qd)k
(d—2)n+r (d—4)n+r n+r. d r. d

% (q g yeor( g )k(q 4 )k qd(d_r_z)k/z’ (32)

(q(de)n+d’ q(d74)n+d’ . 7anrd; qd)k(qd; qd)k
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where we have used (¢"~(@=2"; ¢4), = 0 for k > (dn — 2n — r)/d. Specializing the param-
eters in (2.3) by N = (dn —2n —r)/d, a = ¢", ¢ — ¢*, m = (d — 1)/2, ¢; = ¢"~(4=%=2n
(1<i<m—1),e,=q¢*2 n =...=n,_; = (2n+r—d)/dand n,, = (2n+r—d)/(2d)
and noticing N — (ny + -+ +ny,) = (d —r — 2)/2 > 0, we see that (3.2) is equal to 0.
This proves that (3.1) holds modulo (1 — a¢™)(a — q").

For M = (dn — 2n —r)/d, by Lemma 2.1, we can easily check that

(a™¢",a"*q", ... aq"; ") m—x
2d(M — k
[2d( )+ 7] (@ 2¢%, a®3q . . aq®; q?) a—r
(a2_dq7~’ at~dgr L a g qd)M—k(qré qd)M*k d(d—r=2)(M—k)/2
(azqud7 a4*dqd, R aflqu qd)M*k(qd; qd)Mik
(ad_qua ad_4qT, o, aq qd)k
= —[2dk
[2dk + 7] (@82¢%, ad4g2, .., ag?; qd);
@t R 0 ok (mod ®,,(q))
(a2=dq? a*=dq?, ... a=q% q)k(q%; q%)k ' |

It now becomes evident that the k-th and (M — k)-th summands on the left-hand side of
(3.1) cancel each other modulo ®,,(q). Therefore, the left-hand side of (3.1) is congruent
to 0 modulo ®,(q) for M = (dn — 2n — r)/d. Furthermore, for any k in the range
(dn —2n —7)/d < k <n—1, we have (¢";¢*)x/(¢% ¢*)r = 0 (mod ®,(q)). Hence, the
g-congruence (3.1) also holds modulo ®,,(¢) for (dn —2n —r)/d < M < n — 1. O

Proof of Theorem 1.1. Since ged(n,d) =1 and 0 < k < n — 1, the factors related to a in
the denominators of the left-hand side of (3.1) are relatively prime to ®,,(¢) when a = 1.
On the other hand, the polynomial (1 — aq™)(a — ¢") has the factor ®,,(¢)? when a = 1.
Thus, letting a = 1 in (3.1), we see that (1.5) holds modulo ®,(q)3. O

4. CONCLUDING REMARKS

We have inserted different powers of the parameter a, appearing in geometric sequences,
in the respective ¢-shifted factorials on the left-hand side of (1.5), in order to establish
the desired generalized congruence modulo (1 — ag¢™)(a — ¢"). The proof of Theorem 1.1
is similar to the proofs in the paper [3] but is quite different from those in [6], where the
parameter a is inserted in a more standard way (without higher powers of a).

While the method of creative microscoping enabled us to strengthen [5, Theorem 2]
to the congruence modulo ®,(q)® in Theorem 1.1, we believe that it is rather unlikely
to prove that (1.5) is true modulo ®,(q)* for d > 5 [5, Conjecture 3] by the method of
creative microscoping, since the parametric generalization in (3.1) does not hold modulo
®,,(¢)*(1—ag™)(a—g") in general. For this reason, the proof of (1.5) modulo ®,,(¢)? given
in [5] still has its virtue. Recall that the present authors [5] wrote the left-hand side of
(1.5) as a product of two rational functions X and Y, and showed that X is congruent
to 0 modulo ®,(¢)?. Hence, to prove [5, Conjecture 3], it remains to prove that Y is also
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congruent to 0 modulo ®,(q)?. We hope that an interested reader can shed light on this
problem and settle the conjecture.
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