SOME ¢-SUPERCONGRUENCES MODULO THE SQUARE AND CUBE
OF A CYCLOTOMIC POLYNOMIAL

VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

ABSTRACT. Two g-supercongruences of truncated basic hypergeometric series contain-
ing two free parameters are established by employing specific identities for basic hyper-
geometric series. The results partly extend two g-supercongruences that were earlier
conjectured by the same authors and involve g-supercongruences modulo the square and
the cube of a cyclotomic polynomial. One of the newly proved g¢-supercongruences is
even conjectured to hold modulo the fourth power of a cyclotomic polynomial.

1. INTRODUCTION

In 1914, Ramanujan [25] listed a number of representations of 1/7, including

i(ﬁk‘ +1) @i _ i3 (1.1)

kl34k
k=0

where (a), = a(a+1) --- (a+n—1) denotes the Pochhammer symbol. Ramanujan’s formu-
las gained unprecedented popularity in the 1980’s when they were discovered to provide
fast algorithms for calculating decimal digits of 7. See, for instance, the monograph [2]
by the Borwein brothers.

In 1997, Van Hamme [29] conjectured 13 intriguing p-adic analogues of Ramanujan-type
formulas, such as

(p—1)/2
" (3)7

(6k + 1)/€!234k =p(=1)P=D/2" (mod p?), (1.2)

k=0
where p > 3 is a prime. Van Hamme himself supplied proofs for three of them. Supercon-
gruences like (1.2) are called Ramanujan-type supercongruences (see [33]). The proof of
the supercongruence (1.2) was first given by Long [22]. As of today, all of Van Hamme’s
13 supercongruences have been confirmed by various techniques (see [24,28]).

In recent years, g-congruences and g-supercongruences have been established by differ-
ent authors (see, for example, [5-13,15-21,23,27,30-32,34]). In particular, the present
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authors [9] proved that, for any odd integer d > 5,

ol 2 : —
S [2dk+ 1] _? i aa-srr _ ] (mod ®,(¢)*), ifn=-1 (modd),
: 0 (mod ®,(¢)%), ifn=-1/2 (mod d).

k=0 g k

(1.3)

Here and in what follows, we adopt the standard g-notation: [n] =1+ ¢+ -+ ¢" ! is
the g-integer; (a;q), = (1 —a)(1 —aq)--- (1 — aq™') is the g-shifted factorial, with the
compact notation (ay, ag, ..., am; @)n = (a1;q)n(a2; Q)n - - - (am; @)n used for their products;
and ®,,(q) denotes the n-th cyclotomic polynomial in g, which may be defined as

()= J] (a—¢)
1<k<n
ged(k,n)=1
where ( is an n-th primitive root of unity.
We should point out that the g-congruence (1.3) does not hold for d = 3. The present
authors [9] also established the following companion of (1.3): for any odd integer d > 3
and integer n > 1,

5 _lahai s Dk/2 — 0 (mod @,(¢)*), ifn=1 (modd),
> [2dk — 1] (g% ¢ {0 (mod @,(q)?), ifn=1/2 (mod d).

k=0 k

(1.4)

They also proposed the following conjectures [9, Conjectures 1 and 2], which are general-
izations of (1.3) and (1.4).

Conjecture 1. Let d > 5 be an odd integer. Then
3 T
2k + 1] (4D sz _ 0 (mod ®,(¢q)?), ifn=-1 (modd),
- (g% q%)3 0 (mod ®,(q)%), ifn=—1/2 (mod d).

Conjecture 2. Let d > 5 be an odd integer and let n > 1. Then

[y

3

i

n—1

[2dk — 1 g )kqd(d Dk/2 0 (mod ®,(¢q)*), ifn=1 (modd),
k=0 ’qd)z 0 (mod @,(q)*), ifn=1/2 (modd).

g-Supercongruences such as those above (modulo a third and even fourth power of a
cyclotomic polynomial) are rather special. In fact, concrete results for truncated basic
hypergeometric sums being congruent to 0 modulo a high power of a cyclotomic polyno-
mial are very rare. See [8,10-12,14,18] for recent papers featuring such results. The main
goal of this paper is to add two complete two-parameter families of g-supercongruences
to the list of such g-supercongruences (see Theorems 1 and 2).

We shall prove that the respective first cases of Conjectures 1 and 2 are true by estab-
lishing the following more general result.
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Theorem 1. Let d and r be odd integers satisfying d > 3, r < d — 4 (in particular, r
may be negative) and ged(d,r) = 1. Let n be an integer such that n > d —r and n = —r
(mod d). Then

M rgd)d
> [2dk + r] g IR = 0 (mod [0]@,(q)°), (1.5)
k=0 7q )k
where M = (dn —n —r)/d or n — 1.
We shall also prove the following g-supercongruences.
Theorem 2. Let d and r be odd integers satisfying d = 3, r < d—4 (in particular, r may

be negative) and ged(d,r) = 1. Let n be an integer such that n>z(d-r)/2andn=—r/2
(mod d). Then

Z [2dk +r ;k dd=—r=2k/2 = () (mod [n]®,(q)), (1.6)
k=0

where M = (dn —2n —r)/d orn — 1.

The following generalization of the respective second cases of Conjectures 1 and 2 should
be true.

Conjecture 3. The q-supercongruence (1.6) holds modulo [n]®,(q)® ford > 5

We shall prove Theorems 1 and 2 in Sections 2 and 3, respectively, by making use of
Andrews’ multiseries extension (2.2) of the Watson transformation [1, Theorem 4], along
with Gasper’s very-well-poised Karlsson-Minton type summation [3, Eq. (5.13)]. It should

be pointed out that Andrews’ transformation plays an important part in combinatorics
and number theory (see [7] and the introduction of [12] for more such examples).

2. PROOF OF THEOREM 1

We need a simple g-congruence modulo ®,,(¢)?, which was already used in [10,12].

Lemma 1. Let o, v be integers and n a positive integer. Then

(@ gk = (0759Y); (mod @, (q)°). (2.1)
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We will further utilize a powerful transformation formula due to Andrews [1, Theo-
rem 4], which may be stated as follows:

Z (CL, Q\/_v _q\/aa b17 Ciyevny bma Cm, qu’ Q)k: < amqm+N >k

~ (q,Va,—Va,aq/by,aq/cr, ..., aq /by, aq/cm, agN Tt q)r \bicy - - - bnCm

~ (agq,aq/bmcm; )N 3 (aq/bici; @)y -~ (aq/bm-16m—1;Q)j,

~ (aq/bm,aq/cm; Q)N it (G D (6D jons

(b2, 25 @)jy - - - (b Cons @) oot
(aq/bi,aq/c1;q)j - - (aq/bm—1,0q/Cn—15 Q) jy - tjm s
(@™ Djirtins (ag)m—>+ =21 ghttim
(bmCm@™N /@3 Q) jy4gjns (b2C2)7t -+ (b1 Gy )1 T FIm—2

This transformation is a multiseries generalization of Watson’s g¢7 transformation formula
(listed in [4, Appendix (IIL.18)]; cf. [4, Chapter 1] for the notation of a basic hypergeo-
metric ¢4 series we are using),

X

(2.2)

1 1 — 2 n+42
a, qaz, —qaz, ba ¢, d7 €, q " a~q 1

at, —at, ag/t, agle, agq/d, agfe, agt T Thede

8¢7

(ag, ag/de; g)n ag/be, d, e, ¢"
B 1o, de ) 2.3
(ag/d,aq/e; q)n 493 aq/b, aq/c, deqg " Ja " 1| (2.3)

to which it reduces for m = 2.
Next, we require a very-well-poised Karlsson-Minton type summation due to Gasper [3,
Eq. (5.13)] (see also [4, Ex. 2.33 (i)]):

io: (a7Q\/_a _Q\/a7 b7 (l/b, d7 61,(lqn1+1/61, s 76m7a’qnm+1/em;Q)k (qll/)k
k=0 <Qa \/aa _\/av GQ/ba bQ7 GQ/d7 GQ/ela elq_nlv sy CLQ/GWM emq_nm; Q)k d
(¢,aq,aq/bd, bq/d; q)os 1 (aq/bej; ba/ej; q)n,

_ . (24
(bg, aq/b, aq/d, q/d; @)oo ;-5 (aq/€j,q/€5; q)n, 24)

where nq,...,n,, are non-negative integers, v = n; + --- + n,,, and the convergence
condition |¢'7"/d| < 1 is required if the series does not terminate. We point out that an
elliptic extension of the terminating d = ¢~ case of (2.4) can be found in [26, Eq. (1.7)].

In particular, we note that for d = bq the right-hand side of (2.4) vanishes. Putting in
addition b = ¢~ we get the following terminating summation formula:

N n n _
Z (aaQ\/av _Q\/a>elaaq 1—H/ela <y Em,aq m+1/€m7q NaQ)k (N-v)k

q =0, 2.5
(¢, va,—Va,aq/er, exq™™, ..., aq/em, eng"m, agN i ) (25)

which is valid for N >v=n;+ -+ n,,.
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A suitable combination of (2.2) and (2.5) yields the following multi-series summation
formula, derived in [12, Lemma 2] (whose proof we nevertheless give here, to make the
paper self-contained):

Lemma 2. Let m > 2. Letq, a and ey, ..., e,11 be arbitrary parameters with e,,.1 = eq,
and let ny,...,n, and N be non-negative integers such that N > ny + ---+n,,. Then
0= Z (elqinl /62; Q)jl U (em—lqinmil/em; q)jm—l
= (@ @js - (@6 D
L ad  en e5iq)ji - (g™ e, Emit; @it bines
(e1q™™,aq/e2;q)jy - - (€m—1q7™"™1, 4G/ €m; Q) jy -t
R C AR e (ag)/m-2ttm=2ght+im (2.6)

(erq™ NH e Q)i (g™ egfe2)t - - (agim=1F ey, €y )Tt FHim-2

Proof. By specializing the parameters in the multi-sum transformation (2.2) by b; —
aq®itt/e;, ¢; v~ ey, for 1 < i < m (where e,,11 = e1), and dividing both sides of the
identity by the prefactor of the multi-sum, we obtain that the series on the right-hand
side of (2.6) equals

(emq™ "™, aq/e1;q)n

(aq, emq=™m/e1;q)N
N n _
Z (G, q\/aa —Q\/a, €1, &qn1+1/€1, <. E6m,aq m+1/em7 q N; Q>k (N=-v)k

(¢, va,—Va,aq/er,exqg™™, ... ag/ep, emg~", ag" )y

)

with v = ny + --- + n,,. Now the last sum vanishes by the special case of Gasper’s
summation stated in (2.5). O

Using [11, Lemma 2.1], we can prove the following result which is similar to [11, Lemma
2.9].

Lemma 3. Let d,n be positive integers with ged(d,n) = 1. Let r be an integer. Then

m

ol (¢34 saron)2 _ d
>k + LK =0 (mod [n]).
k=0 q aq k

n—1

(q"5 998 d(d—r—2)k/2 _
Z[Qdk + =g =0 (mod [n]),
Pt (g% q%)s
where 0 <m <n—1 and dn = —r (mod n).
We have collected enough ingredients which enables us to prove Theorem 1.

Proof of Theorem 1. The g-congruence (1.5) modulo [n] follows from Lemma 3 immedi-
ately. In what follows, we shall prove the modulus ®,,(¢)? case of (1.5).
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For M = (dn —n — r)/d, the left-hand side of (1.5) can be written as the following
multiple of a terminating 4,5¢414 series:

(dn—n—r)/d r r T r r T —1)n r—(d-1)n
(q", q7 /2, —q®r2 g7, g7, g2 g d=ln gr=(d=Dn, gd)

k _d(d—r—2)k/2
[r] Z (¢, G2 —q2, g, gl qdtn/2 gr—(d=Dn_gd+(d—1n, o :

k=0
Here, the ¢",...,q" in the numerator means d — 1 instances of ¢", and similarly, the
¢%,...,q% in the denominator means d — 1 instances of ¢¢. By Andrews’ transformation

(2.2), we may rewrite the above expression as

[7"] (qd—i-r? q(r—d)/Q—(d—l)n; qd)(dn—n—r)/d Z (q
(q(d+7')/2’ qri(dil)n; qd)(dn—n—r)/d

d—r; qd)jl U (C]d—r; qd)jm—l

(g% %), - (g% q%)j,.,

J1yeeesm—1 20

q a9 (@ a0 o (@2 gD gy

o
(qd’ qd; qd)jl SR (qd> qd; qd)j1+"'+jm—1

<qr—(d—1)n.qd>. L ) ) ) )
X Lt timet o (d=r) (2t Hm=2)j1) +d (Gt i) (2.7)
(@B %) it
where m = (d +1)/2.
It is easy to see that the ¢-shifted factorial (qd”; qd)(dn_n_,.) /q contains the factor 1 —
¢~V which is a multiple of 1 — ¢”. Moreover, since none of (r — d)/2, (d +r)/2 and
(d+7r)/2+4 dn —n —r — d are multiples of n, the g-shifted factorials

(gr=2==ndy e and (@2 ¢

have the same number (0 or 1) of factors of the form 1 — ¢*" (« € Z). Besides, the
g-shifted factorial (¢"~“@=Y" ¢%) 4,—p—r)/a is relatively prime to ®,(¢). Thus we conclude
that the fraction before the multi-sum in (2.7) is congruent to 0 modulo ®,,(q).

Note that the non-zero terms in the multi-summation in (2.7) are those indexed by
(715 - -+ Jm—1) that satisfy the inequality j; + -+ + Jm-1 < (dn —n — r)/d because the
factor (¢"~(4=Ym;¢4); ;. | appears in the numerator. None of the factors appearing in
the denominator of the multi-sum of (2.7) contain a factor of the form 1 — ¢*" (and are
therefore relatively prime to ®,(q)), except for (¢®*"/2,¢%); y..1;. , when

(dn—d—n—7r)/2d) <j1+ -+ Jma < (dn—n—71)/d.

Since
1 — q(d+r)/2

T 1 = @2 Gt )d

(q(d+r)/2; qd)j1+--~+jm—1

(qBH25 g0 4t
the denominator of the above fraction contains a factor of the form 1 — ¢*" if and only
if j1+ 4 Jm1 = (dn —d—n —r)/(2d) (in this case, the denominator contains the
factor 1 — q@=V™/2). Writing n = ad — r (with @ > 1), we have j; + -+ + jp1 =
a(d —1)/2 — (r+1)/2. Noticing that m — 1 = (d — 1)/2 and r < d — 4, there must exist
an i such that j; > a. Then (¢%";¢%);, has the factor 1 — ¢¢"*4@=b =1 — ¢" which is
divisible by ®,(¢q). Hence the denominator of the reduced form of the multi-sum in (2.7)
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is relatively prime to ®,,(¢). It remains to show that the multi-sum in (2.7), without the
previous fraction, is congruent to 0 modulo ®,(g)?.

By repeated applications of Lemma 1, the multi-sum in (2.7) (without the previous
fraction), modulo ®,,(q)?, is congruent to
AL R VR L
(g% a%)i -~ (g% 4D

Z q(d—”’)(jm—2+~~~+(m—2)j1)+d(j1+"'+jm71)(q

r+(m+1)n —(m+1)n.

7 1% --- (g .
(qdfmn’ qd+mn; qd)j1 . <qd7(2m73)n7 qd+(2m73)n; qd)

r+(2m—2)n T—(Qm—2)n; qd)

(q Jit+tim—2

Ji++im—2

dH(d=Dn_ g (d+1)/2; gd) r=d=bn.gd).

(qBTH/2; ¢

(g jittim (4
(qd7(2m72)n, qd+(2m72)n; qd)

X

)
j1+"'+jrn—1 ]1++]m—1

where m = (d + 1)/2. However, this sum vanishes in light of the m = (d + 1)/2, ¢ — ¢¢,
a=4q, e = q(d+r)/2, em = qr—(Zm—Q)n, e; = qr—(m+i—2)n, ny = (dn —d+n +7,)/(2d)>
Ny =0,n;,=Mn+r—d)/d,2<i<m—1, N=(dn—n—r)/d case of Lemma 2. (It is
easy to verify that N —n; —--- —n,, = d(d —r —2)/2 > 0.) This proves that (1.5) holds
modulo ®,,(¢)? for M = (dn —n —r)/d.

Since (¢"; ¢%)x/(q% ¢, is congruent to 0 modulo ®,,(q) for (dn—n—r)/d < k <n-—1,
we conclude that (1.5) also holds modulo ®,,(q)? for M =n — 1. O

3. PROOF OF THEOREM 2
We first give a simple lemma on a property of certain arithmetic progressions.

Lemma 4. Let d and r be odd integers satisfying d > 3, r < d — 4 and ged(d,r) = 1.

Let n be an integer such that n > (d —r)/2 and n = —r/2 (mod d). Then there are no
multiples of n in the arithmetic progression
d d d

—;—r’ ;r+d,...,%+dn—2n—r—d. (3.1)

Proof. By the condition ged(d,r) = 1, we have ged((d + r)/2,(d — r)/2) = 1. Suppose
that

(d+71)/24+ ad = bn (3.2)

for some integers a and b with a > 0. Then (d+7)/2+ad > (r—d)/2 > —n and so b > 0.
Since n = (d — r)/2 (mod d), we deduce from (3.2) that b = —1 (mod d) and thereby
b>d— 1. But we have

d;r+dn—2n—r—d:dn—2n+d_r

thus implying that no number in the arithmetic progression (3.1) is a multiple of n. [

—d<(d—1)n—d,

Proof of Theorem 2. As before, the g-congruence (1.6) modulo [n] can be deduced from
Lemma 3. It remains to prove the modulus ®,(q)? case of (1.6).
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For M = (dn — 2n — r)/d, the left-hand side of (1.6) can be written as the following
multiple of a terminating 445¢4.4 series (this time we changed the position of ¢(4+7)/2):

[ ] (dnir)/d (qr, qd+r/2’ _qd+r/2’ q(d+r)/2’ qr, o ’qr’ qd+(d—2)n’ qr—(d—2)n; qd)k dd—r—2)/2
r g
k=0 (g%, /%, —q7/2,q 2, qd, g, g dmn, g2 gd),,

Here, the ¢",...,q" in the numerator stands for d — 1 instances of ¢", and similarly, the
¢%,...,q"% in the denominator stands for d—1 instances of ¢¢. By Andrews’ transformation
(2.2), we may rewrite the above expression as

m(q g~ g (dn—an—r)/a 3 (¢“72:9M, (¢ qY) g - (59

(¢4, a7~ q) an—2n-r)ja (a4 995 (a% 4% - - (0% 4%

d+r
)

JiseeesJm—120

(" a0 - (@05 4N g (@7 @D ) s

(@72, g% %) (0% a% qD) juvgs - - (0% 4% 4N jito s

—(d-2)n. ,d
(¢ (d-2) 4 )j1+-~-+jm_1q(d—r)(jm_2+~~+(m—2)j1)+d(j1+~~~+jm—1)
(qurT; qd)j1+---+jm—1

Y

(3.3)

where m = (d + 1)/2.
dtr. qd)(dn_gn_r)/d has the factor 1 —¢(¢=2)"

It is easily seen that the g-shifted factorial (¢
which is a multiple of 1 — ¢". Clearly, the g-shifted factorial (¢=“@=2"; ¢%)(gn—2—r)/4 has
the factor 1 — ¢~(@~1" (again being a multiple of 1 — ¢") since (dn — 2n —r)/d > 1 holds
according to the conditions d > 3, r < d — 4, and n > (d — r)/2. This indicates that the
g-factorial (g@t7, g~ (@=2)n; q")(dn—2n—r)/a in the numerator of the fraction before the multi-
sum in (3.3) is divisible by ®,,(¢)?. Further, it is not difficult to see that the g-factorial
(¢, g~ (d=2m, qd)(dn,gn,r)/d in the denominator is relatively prime to ®,(q).

Like the proof of Theorem 1, the non-zero terms in the multi-sum in (3.3) are those
indexed by (j1,...,Jm-1) satisfying the inequality j; + -+ + jm—1 < (dn —2n —1)/d
because of the appearance of the factor (¢"~(4=2";¢%); ., | in the numerator. By
Lemma 4, the g-shifted factorial (g(@+m/ 2,qd)j1 in the denominator does not contain a
factor of the form 1 — ¢®" for j; < (dn — 2n — r)/d (and are therefore relatively prime
to ®,(¢)). In addition, none of the other factors appearing in the denominator of the
multi-sum of (3.3) contain a factor of the form 1 — ¢*", except for (¢7";q%) 1+ tjm 1
when j; + -+ jm—1 = (dn —2n —r)/d (in this case the denominator contains the factor
1— q(d—2)n>.

Letting n = ad+(d—r)/2 (with a > 0), we get ji+- -+ jm-1 = a(d—2)+(d—r)/2—1.
If j; > a+ 1, then (¢'*"/2;¢%);, contains the factor 1 — ¢(4="/2+ed = 1 — g 1If j, < a,
then jo + -+ + jm—1 > a(d—3)+(d—r)/2—1. Sincem —2 = (d —3)/2, d > 3, and
r < d — 4, there must be an ¢ with 2 < i < m —1 and j; > 2a+ 1. Then (¢*";¢%),,
contains the factor 1 — ¢4=7+2e¢ = 1 — ¢®" which is a multiple of ®,(q). Therefore, the
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denominator of the reduced form of the multi-sum in (3.3) is relatively prime to ®,(q).
This proves that (3.3) is congruent to 0 modulo ®,(¢).

For M =n — 1, since (¢"; ¢*)r/(q%; q?)y is congruent to 0 modulo ®,(q) for (dn — 2n —
r)/d < k < n—1, we conclude that (1.6) is also true modulo ®,(¢)? in this case. O
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