A NEW FAMILY OF ¢-HYPERGEOMETRIC CONGRUENCES FROM
ANDREWS’ MULTI-SERIES TRANSFORMATION

VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

ABSTRACT. We deduce a new family of g-hypergeometric congruences modulo the fourth
power of a cyclotomic polynomial from George Andrews’ multi-series extension of the
Watson transformation. A Karlsson—Minton type summation for very-well-poised basic
hypergeometric series due to George Gasper also plays an important role in our proof.
We put forward two relevant conjectures on supercongruences and g-supercongruences
for further study.

1. INTRODUCTION

Let (a), = a(a+1)--- (a+n—1) denote the rising factorial, or the Pochhammer symbol.
In 2016, Long and Ramakrishna [19, Thm. 2| established the following supercongruence:
for any odd prime p,

p-1 Bk —plp(3)? (mod pf), ifp=1 (mod6),
237Kk —
(6k+1) 5 =) ope 1o o (1.1)
k=0 —5=Tp(3)” (mod p°), ifp=5 (mod 6),

where I',(z) denotes the p-adic Gamma function. For p = 1 (mod 6) this result con-
firms Van Hamme’s (D.2) supercongruence [24], which is a congruence modulo p*. The
supercongruence (1.1) is now called a Ramanujan-type supercongruence. For more such
supercongruences, we refer the reader to [24,27].

Nowadays, a number of supercongruences have been generalized to g-supercongruences
by different authors (see, for example, [7,9,11,12,16,25]). In particular, the authors [11,
Theorem 2.3 gave a partial g-analogue of (1.1):

n—1 . 3)6 0 (mod [n|), ifn=1 (mod 3),
gy B o [0 0 mod 3
k=0 1k 0 (mod [n]®,(q)), ifn=2 (mod 3).

Shortly afterwards, they [13,14] further proved the following result: for any integers d, r, n
satisfying d > 2, r <d—2,n > d—r, d and r are coprime, and n = —r (mod d), there
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holds

n—1
Z [2dk + ](q—qd)qu(d’l’”k =0 (mod [n]®,(q)?). (1.3)
P (g% ¢
Recently, Wei [25] obtamed the following complete g-analogue of the second supercongru-
ence in (1.1): for any positive integer n =2 (mod 3),

H

Stk B o 510 D erois 0 e, (g1, (14)

0 (2% ¢y (¢*;q )(2n71)/3

He also generalized (1.2) for n = 1 (mod 3) to the modulus [n]®,(q)* case. At this
point, it is appropriate to recall the standard g-notation (see [3]). For any indeterminates
a and q, let (a;q), = (1 —a)(1 — aq)---(1 — ag"™') be the g-shifted factorial. For
brevity, we adopt the notation (a1, as, ..., am;¢)n = (a1;¢)n(a2;q)n - -+ (@m; q)n. Moreover,
n] = [n], =1+ ¢+ -+ ¢ " denotes the g-integer and ®,(q) the n-th cyclotomic
polynomial in ¢, which is irreducible over the integers and may be factorized over the
complex numbers as

B
Il

Ou(q)= J[ (a—¢)
1<k<n
ged(n,k)=1
where ( is any n-th primitive root of unity.
In this paper, we shall establish the following generalization of (1.3).

Theorem 1.1. Let d,r,s,n be integers satisfying d > 2, r < d — 2 (in particular, r is
possibly negative), 0 < s <d—1r —2, and n > d —r, such that ged(d,r) =1 and n = —r
(mod d). Then

M 2. d)2d

(@5 q
;[Qkorr] 2 [2dk + 7] —<q Ty )qu

K
where M = (dn —n—r)/d or M =n — 1.

2dld=r=s=Dk = 0 (mod [n]2®,(¢*)*), (1.5)

Letting n = p™ be a prime power and then taking the limits as ¢ — 1, we get the
following supercongruence from (1.5): for any integers d,r,s with d > 2, r < d — 2
0<s<d—r—2and ged(d,r) =1, and prime p with p™ > d —r and p™ = —r (mod d),
M (Z )2d
Z(Qdk + )2t il L=0 (modp™"?), (1.6)
(1)

where M = (dp™ — p™ —r)/d or M = p™ — 1.

The proof of Theorem 1.1 is similar to that of (1.3). Namely, we need to make a
careful use of Andrews’ multi-series generalization (2.2) of Watson’s s @7 transformation [1,
Theorem 4], along with Gasper’s very-well-poised Karlsson-Minton type summation [2,
Eq. (5.13)]. We remark that Andrews’ transformation plays an important part in number
theory and combinatorics. For instance, Zudilin [26] utilized Andrews’ transformation to
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solve a problem of Schmidt. Krattenthaler and Rivoal [18] applied it to give an alternative
proof of a result of Zudilin relating a very-well-poised hypergeometric series to a Vasilenko—
Vasilev-type multiple integral, an important tool in the study of the arithmetic behavior
of values of the Riemann zeta function at integers. The couple Hessami Pilehrood [17]
also employed this transformation to provide a short proof of a theorem of Zagier. For the
application of Andrews’ multi-series transformation in g-congruences, see [4-9,12,15,23].

We shall prove the g-congruence (1.5) modulo ®,,(¢*)* in Section 2, and prove it is also
true modulo [n],2 in Section 3. The combination of these two congruences results in a con-
gruence modulo the least common multiple of ®,,(¢*)* and [n],z, i.e., modulo [n] 2P, (¢*)?,
which full establishes Theorem 1.1. Finally, we propose two related conjectures in Section
4.

2. PROOF OF (1.5) MODULO ®,(¢%)*

We need a simple g-congruence modulo ®,,(¢)?, which is intrinsically the same as [13,
Lemma 1]. For the reader’s convenience, we give a new proof here.

Lemma 2.1. Let o, v be integers and n a positive integer. Then
(q2r—2an,q2r+2an; q2d)k = (q2r;q2d>i (mod q)n(q2>2)' (2.1>
Proof. 1t is easy to see that
(aq” ,b¢*"; ¢*D e — (¢*, abg®: >N, =0 (mod (1 — a)(1 —b)).

—2an

Since 1—¢**" = 0 (mod ®,(¢?)), putting a = ¢ and b = ¢?*™ in the above congruence,
we immediately get the desired g-congruence (2.1). O

We will make use of a wonderful transformation formula due to Andrews [1, Theorem 4],
which can be written as follows:

Z (CI/, Q\/aa _q\/au b17 Cly---, bmu Cm, q_N7 Q)k ( amqm+N )k

<Q7 \/_7 _\/au a’q/b17 G’Q/Ch s 7GQ/bm7 G’Q/Cma an+1; Q)k blcl e bmcm
k>0

_ (ag, aq/bmem; )N 3 (aq/bic1; @), - - (a9/bm—16m—1; D)

(aq/bm, aq/cm; Q)N ;<= (@ Dy (€ D

(b2, ¢2;0)j1 - - (bins Cmi @) jyteeetjon
(aq/bb G’Q/Cl; Q)jl s (CLQ/bm—h aq/cm—l; Q)j1+~~'+jm71
(@5 @ jr+tmn (ag)im-2tHm=2ghvttim
(bmcmq_N/a; Q)j1+~--+jm71 (1)2@2)j1 R (bm_lcm_l)j1+..-+jm—2 .

This transformation can be deemed a multi-series generalization of Watson’s g¢; trans-
formation formula (see [3, Appendix (III.18)]) which we state below in standard notation

X

(2.2)
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for g-series [3, Section 1] (n being a non-negative integer):

8¢7

a, qaéa _qa%7 ba C, d7 €, an . a2qn+2
a¥, —ab, aq/b, agfc, aq/d, agle, ag"t' T Thede

_ (ag,aq/de; q)n aq/be, d, e, q- 1 (2.3)

N (aq/d7 GQ/e; q>n 4¢3 GQ/b7 GQ/C, deq_”/a 4, 9 -

Next, we require the following very-well-poised Karlsson—-Minton type summation due
to Gasper [2, Eq. (5.13)] (see also [3, Ex. 2.33 (i)]):

i (CL7Q\/_, _Q\/a7 b7 a/b7 d7 el,aq”1+1/el, s 7€m)aqnm+1/€m;Q)k (ql—y>k
k=0 <Q7 \/aa _\/aa (IQ/b, bQ7 (IQ/d) G/Q/ela elq_nla EIRCI) CLQ/e’m) emq_nm; Q)k d
(¢, aq, aq/bd,bq/d; q)ss 1 (aq/be; ba/es; q)n,

_ . (24
(bg, aq/b, aq/d, q/d; @)oo ;-5 (aq/€j,4/€5; q)n, 24)

where ny,...,n,, are non-negative integers, v = n; + -+ + n,,, and |¢*7"/d| < 1 if the
series does not terminate. An elliptic extension of the terminating d = ¢~ case of (2.4)
was given by Rosengren and the second author [22, Eq. (1.7)].

It is worth mentioning that the right-hand side of (2.4) vanishes for d = bg. Addition-
ally, putting b = ¢~ we get the following terminating summation:

N _
Z (CL, q\/_7 _Q\/a, €1, aqn1+1/617 <y Emy aqnm+1/€m7 q Na Q)k q(Nfl,)k

k=0 (Q7 \/aa _\/57 GQ/elu elq_n17 ) GQ/e'ﬂw emq_nma an+1; Q)k

=0,  (25)

which is valid for N > v =n; + -+ 4+ n,,.
By properly combining (2.2) with (2.5), we can establish the following multi-series
summation formula, which is a generalization of [13, Lemma 2].

Lemma 2.2. Let m > 2 and 0 < s < m—1. Let q, a and esyq,...,eps1 be arbitrary
parameters with €,,11 = €11, and let ny, ..., n,, and N be non-negative integers satisfying
N>ni+---+n,,. Then

0— Z (q

J15ee5Jm—120

ng+1 na+1 nstl et
(Vag™ " Vag™ ) - (Vaa"™ 7 Vag"™ 7 3 q)jeng s

1-ng_1 1-ng_q

1-n 1-n
(Vag =", vag =" 5q); - (Vag 2 Vag 3 @),

(ag™ " esin, esr2 @ity - - (A0 €y it Qb

(€sq7™,aq/ €541 Q) jr4etjs - - - (Em—1G7""=1,0G/ € @) jrtotjom 1

—Nni.

Q) (@750) 5, (es107 ™ S esra; Qgury - (€me1q7 " € @) gy
(q; Q)]d T (q; Q)jm—l

(@™ @) j1 4t

X - - -
(elqnm_N+1/em; q)]1++‘]m71 (aqTLQ )]1 e (aqns)]l"!‘""i‘]sfl
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(ag)im-2tHm=2)1 gir-+in-a

. ; : — 2.6
(aqns+1+1€S+2/es+1)]1+”'+]3 e (aqnmf1+1€m/em_1)]1+"'+]m72 ( )

Proof. Performing the parameter substitutions b; = ¢; = v/a q = for 1 <i< s, and
by — aq" /ey, ¢; — e, for s+1 <1 < m (Where €mi1l = €sy41) IN the multisum
transformation (2.2), and dividing both sides by the prefactor of the multisum, we see
that the series on the right-hand side of (2.6) is equal to

(emq ™™, aq/€s11; Q)N
(aqa emqinm/eerl; Q)N

XZ (a,9va, —qv/a,er,ag™ M fer, . em ad™  Jem, N Ok (v

q
Q) \/— \/au CLQ/€17 elq_n17 R (IQ/Gm, emq_nm7 an—i-l; Q)k ’

with e; = \/_q 7% for I1<i<sandv=n;+---+n,. Now the last sum vanishes by
the special case (2.5) of Gasper s summation. O

We have gathered enough ingredients and are able to prove the g-congruence (1.5)

modulo ®,,(¢?)%.

Proof of (1.5) modulo ®,(q*)*. For M = (dn —n — r)/d, the left-hand side of (1.5) can
be written as the following multiple of a terminating o4, 051402412513 Series:

(dn—n—r)/d
[ZT] Z ((q q2d+r _q2d—&—7‘7 q2d+r, o ’q2d+r’ q2r7 . ,q2r; q2d>k
— (@ =" P PGPk

(q2d+2(d—1)n, q2r—2(d—1)n; q2d)k 2d(d—r—s—1)k

((]27“—2(d—1)n7 q2d+2(d—1)n; q2d>k ’
Here, the ¢?7", ..., ¢** in the numerator means 2s instances of ¢***", the ¢, ..., ¢*
the numerator refers to 2d — 1 instances of ¢?". Similarly, the ¢, ..., ¢" in the denominator
means 2s instances of ¢", and the ¢%¢, ..., ¢*? in the denominator refers to 2d — 1 instances

of q2d
Now, by the m = d + s case of Andrews’ transformation (2.2), we can write the above
expression as

[27"] (q2(d+r)7 q—2(d—1)n; q2d)(dn—n—7")/d
(q2d7 q2r72(d71)n; qu)(dn—n—r)/d
) () (P P (P Y

DY
Srondires >0 (% @0+ (@5 oo
2d+r 2d+r.

2d+r 2d+r.

» q 7q ) ' (q » q 7q ).71+"'+j571
(¢",q" ,q%)jl S UL L ) P

L
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(@, 4% ¢)jitis - (@5 673 ) it o (€7 g g

(CIQd, ?4 q2d)j1+-~+j5 cee (qu’ 4 q2d)j1+"'+jd+s—1
2r—2(d—1)n. q2d)

(q%d+m); g2)

2d
)j1+"'+jd+s—1

(q it tdars—1

X

Jit+tidys—1

Pt Gaps—2t+(d+s=2)71) 21+ +jats-1)

X q2(2d+7“)j1 .. q2(2d+7”)(j1+'~+js)q47“(j1+--~+js+1) .. .q47‘(jl+"'+jd+572) ’ (27>

It is not difficult to see that the g-shifted factorial (¢***"); ¢*®)(41—n—r)/a (appearing in
the prefactor of the multi-sum) has the factor 1 — ¢?@~1" which is divisible by ®,(¢?).
Similarly, the g-shifted factorial (¢=2@=1"; ¢?d) 4, /4 has the factor 1 —¢=2@~1" (being
congruent to 0 modulo ®,,(¢?)) since (dn—n—r)/d > 1 holds in view of the conditions d >
2,7 < d—2, and n > d—r. This shows that the g-factorial (¢*@+7), g=2d=1n; g2d) (g
appearing in the numerator of the prefactor of the multi-sum is congruent to 0 modulo
®,(¢>)%. Moreover, it is clear that the g-factorial (g¢, g? —2(d=1n; ¢2d)
denominator is coprime with ®,,(¢?).

Notice that the non-zero terms in the multi-sum in (2.7) are those with multi-index
(J1,- -+, Jars—1) satisfying the conditions j;+- -+ jgis—1 < (dn—n—r)/d and jq,...,js < 1
because the product (¢—2¢; ¢*%) —2d,

(dn—n—r)/d in the

i (@) (@ )4y, appears as a
factor in the numerator. None of the factors appearing in the denominator of the multi-
sum of (2.7) incorporate a factor of the form 1 — ¢?*" (and are consequently coprime with
@,(¢2)), except for (4; )y, when ji 4+ juser = (dn —n — r)/d. Let
n = ad—r (with a > 1). Consider the case j; +- -+ jirs-1 = (dn—n—r)/d =a(d—1)—r
and ji,...,7s < 1. Then joy1+ -+ jars—1 = a(d—1) —r —s. Since r < d — s — 2, there
must exist an i (s +1 < i < d+ s — 1) such that j; > a. Then (¢*94™);¢?*?);, contains
the factor 1 — g?(@="+2dle=1) — 1 _ 42" which is a multiple of ®,(¢?). Hence, the reduced
denominator of the multi-sum in (2.7) is coprime with ®,(¢?). It remains to prove that
the multi-sum in (2.7), ignoring the prefactor, is congruent to 0 modulo ®,,(¢*)?.

By repeatedly applying Lemma 2.1, the multi-sum in (2.7), without the prefactor,
modulo ®,,(¢%)?, is congruent to

Z (72 q20),, - (g2 q20),; (24" g2), - (qB@ ;s PN
(@65, - (P ) jare s

JtseosJdts—120

<q2d+r, q2d+r; q2d)j1 . (q2d+r, q2d+r; q2d>j1+---+js—1
(" q"6*Y)y - (0", 475 ) jrgtgo s
<q2r—2(d—1)n, q27‘+2(d—1)n; q2d)j1+---+js o <q2(r—n)7 q2(r+n); q2d>j1+'"+jd+572

X
2 2 2d—2 .

’qu)jl"l‘""‘l‘js . (q2d+4n, q2d—4n; q2d) .

Jit+idys—2

(q%a q2d+2(d71)n§ q2d)j1+--~+jd+s—1 (q

2d+2n 2d—2n. o2d
(g2d+2n, g2d=2n; g2d)

2r—2(d—1)n. q2d)

(g2(d+7); ¢2d)

JiteHidgs—1

Jittddys—1 Jittidys—1
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q2(d+r)(jd+si2+...+(d+572)j1)qu(]’1+"'+]'d+sfl)
X

q2(2d+T)j1 N q2(2d+T)(jl+"'+jS)q4T(j1+"'+js+1) e q47'(j1+---+jd+s—2) )

However, this sum vanishes in light of the m = d+s, ¢ — ¢*%, a — ¢%", e,4q = ¢>¢T2d-n,

Copi > @THATHFIN (2 i Kd),my = =ng =1, ngyy =0, ngyy — (n+r—d)/d
(2<j<d), N=(dn—n—r)/d, case of Lemma 2.2.

This proves that the g-hypergeometric congruence (1.5) is true modulo ®,(¢*)* for
M = (dn —n —r)/d. Since n > d —r, we have (dn —n —r)/d < n — 1. It is clear that
(@ N/ (% ¢*D) = 0 (mod ®,,(¢?)) for (dn—n—r)/d < k < n—1. Thus, we see that
(1.5) is also true modulo ®,,(¢?)* for M =n — 1. O

3. PROOF OF (1.5) MODULO [n].

We need the following easily proved result, which first appeared in [14, Lemma 2.1].

Lemma 3.1. Let d, m and n be positive integers with m < n — 1. Let r be an integer
satisfying dm = —r (mod n). Then, for 0 < k < 'm,

(aqT;qd)m—k —2k (aqr5qd)k (dm—d+2r) /2+(d—r)k
— " " = (—q m —qm m r r (mod (PH(Q))
(¢%/a;q%)m— (q%/a; q%)k

In order to prove that (1.5) is true modulo [n],2, we shall establish the following more
general result. It is easy to see that the condition n = —r (mod d) guarantees that

m = (dn —n —r)/d is an integer.

Theorem 3.2. Let d,n be positive integers with ged(d,n) = 1. Let r,s be integers with
s>0. Then
2, q2dy2d

Z [2dk + 7]z [2dk + 7] %q dd=r=s=Dk = 0 (mod [n],2), (3.1)
prt (4% ¢*4);,
and
— (@™ ¢*3"
Z[Qdk’ +r]2[2dk + r]%mq dd=r=s=Dk = 0 (mod [n],2), (3.2)
where 0 <m <n—1 and dn = —r (mod n).
Proof. Since ged(d,n) = 1, there exists a non-negative integer m < n — 1 such that
dm = —r (mod n). By the a = 1 and ¢ — ¢* case of Lemma 3.1, we can easily verify

that, for 0 < k < m, the k-th and (m — k)-th terms on the left-hand side of (3.1) cancel
each other modulo ®,(q), i.e.,

2r. 2d\2d
2d(m — k) + r]2[2d(m — k) + T]Qs—gq qzdigé b g2dld=r—s=1)(m—k)
7*%q
0o (67 22

= —[2dk + 1] [2dk + 7] @R (mod @,(%)).

(q2d7 q2d) zd
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This immediately leads to the g-congruence (3.1) modulo ®,(¢?). Furthermore, since
dm = —r (mod n), for m < k < n—1 the g-shifted factorial (¢*"; ¢°?), contains the factor
1—¢g¥+2%m =1 —¢?™" (g is an integer) and is therefore congruent to 0 modulo ®,(q?). At
the same time, the g-shifted factorial (¢?¢; ¢*?) is coprime with ®,,(¢%) form < k <n—1.
Thus, each summand in (3.2) with & in the range m < k < n—1 is congruent to 0 modulo
®,,(¢?). This, along with (3.1), establishes the g-congruence (3.2) modulo ®,(g?).

Let ¢ # 1 be an n-th root of unity. That is, ( is a primitive root of unity of odd degree
ny such that n; | n. Let ¢,(k) stand for the k-th term on the left-hand side of (3.2).
Specifically,

(¢ )24

2d(d—'r—s—1)k'
<q2d; q2d)%d

c,(k) = [2dk + 7] 2[2dk + r]*

Now the g-congruences (3.1) and (3.2) modulo ®,,(¢*) with n = n; imply that

m1 ny—1
D eclk)y = eclk) =0,
k=0 k=0
and
my ny—1
D (k)= cc(k)=0,
k=0 k=0
where 0 < m; < ny — 1 and dm; = —r (mod n;). Noticing that, for all non-negative

integers ¢ and k,
cc(lny + k) ~ im cq(bny + k) _ ce(k)

c¢(fny) a—C  cq(ln) [rle2[r]Z
we have
n—1 n/ni—1ln;—1 1 n/ni—1 ny—1
> ce(k) = ol + k) = oy cc(tny) Y ec(k)=0,  (3.3)
k=0 =0 k=0 cle =0 k=0
and
zm:c (k) = — (m_mlz)/m_lc (n )nllc (k) + Celm—m) ic (k) =0
£ el & V4T ez = '

This proves that the two sums Y"1 ¢, (k) and 37~} ¢,(k) are congruent to 0 modulo
®,,(q). Along the same lines we may prove that they are also congruent to 0 modulo
®,,, (—q). Letting ny run over all divisors of n greater than 1, we deduce that these two
sums are congruent to 0 modulo

H q)m <Q)(I)n1(_Q) = [n]q27

niln,ni>1

thus establishing (3.1) and (3.2). O
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4. TWO OPEN PROBLEMS

It seems that, for r = —1 and p =1 (mod d), the following stronger version of (1.6) is
true.

Conjecture 4.1. Let d, s be integers satisfyingd > 2 and 0 < s < d—1. Let p be a prime
with p =1 (mod d). Then, form > 1,

> (@2dk — 1)*+ <(_1?>l%§ =0 (mod p'™), (4.1)
k=0

where M = (dp™ — p™ +1)/d or M =p™ — 1.
Furthermore, we believe the following g-analogue of (4.1) should also be true.

Conjecture 4.2. Let d, s be integers satisfyingd > 2 and 0 < s < d—1. Letn>d+1
be an integer with n =1 (mod d). Then, for m > 1,

M -2,

[Qdk’ . 1] [de o 1]25 (q 7C]2d)zd 2d(d—s)k — 0 d D, 4 4.9
¢ (q2d.q2d)2dq =0 (mo | | ni(@)"), (4.2)
' k i=1

k=0
where M = (dn™ —n™ +1)/d or M =n" — 1.

Since ®,i(1) = p for any prime p and positive integer ¢, the supercongruence (4.1)
follows from (4.2) by taking n = p and ¢ — 1. Applying Zeilberger’s algorithm [20] and
its g-analogue, the authors [10] have proved that, for any odd integer n > 1,

M

> olak = I = (13 ) (mod [ 0,(),

where M = (n +1)/2 or M = n — 1. Replacing n by n™ and ¢ by ¢ in the above
g-supercongruence, and noticing that [n™],2 contains the factor [}~ ®,:(g), we see that
Conjecture 4.2 is true for d = 2 and s = 0.
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