Some congruences related to hypergeometric polynomials

Song Guo and Victor J. W. Guo

School of Mathematical Sciences, Huaiyin Normal University, Huai’an, Jiangsu 223300, People’s Republic of China

Abstract. We prove that, for any odd prime p, the following congruence holds modulo p:

$$\sum_{k=0}^{p-1} \binom{2k}{k} d_k \left(-\frac{1}{4}\right)^k \equiv \begin{cases} 2(-1)^{p-1} x, & \text{if } p = x^2 + y^2 \text{ with } x \equiv 1 \pmod{4}, \\ 0, & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

where $d_n(x) = \sum_{k=0}^{n} \binom{n}{k} \binom{x}{k} 2^k$. The $p \equiv 3 \pmod{4}$ case confirms a conjecture of Z.-W. Sun. We also give three similar congruences, including a special case of another conjecture of Z.-W. Sun.

Keywords: Delannoy number; congruence; prime; Fermat’s little theorem

MR Subject Classifications: 33C05, 11A07

1 Introduction

It is well known that the Delannoy number

$$\sum_{k=0}^{n} \binom{n}{k} \binom{m}{k} 2^k = \sum_{k=0}^{n} \binom{n}{k} \binom{n + m - k}{n}$$

counts lattice paths from $(0, 0)$ to (m, n) using only single steps east $(1, 0)$, north $(0, 1)$, or northeast $(1, 1)$. Recently, Z.-W. Sun [1] introduced the following polynomials

$$d_n(x) = \sum_{k=0}^{n} \binom{n}{k} \binom{x}{k} 2^k.$$

and established some interesting supercongruences involving $d_n(x)$, such as

$$\sum_{k=0}^{p-1} (-1)^k d_k(x)^2 \equiv (-1)^{(x)_p} (\text{mod } p^2),$$

1 Corresponding author.
where \(p \) is an odd prime and \(\langle x \rangle_p \) denotes the least non-negative integer \(r \) with \(r \equiv x \pmod{p} \). He also made several interesting conjectures on congruences involving \(d_n(x) \), such as (see [1, Conjecture 6.2])

\[
\sum_{k=0}^{p-1} \frac{(2k)}{4^k} d_k \left(-\frac{1}{6} \right)^2 \equiv \frac{p}{3} \left(\frac{p}{3} \right) \left(4 \left(-\frac{2}{p} \right) - 1 \right) \pmod{p^2},
\]

(1.1)

where \(p > 3 \) is a prime and \(\left(\cdot \right)_p \) is the Legendre symbol.

In this paper, we shall prove the following result.

Theorem 1.1 Let \(p \) be an odd prime. Then modulo \(p \),

\[
\sum_{k=0}^{p-1} \frac{(2k)}{4^k} d_k \left(-\frac{1}{4} \right)^2 \equiv \begin{cases} 2(-1)^{\frac{p+1}{2}} x, & \text{if } p = x^2 + y^2 \text{ with } x \equiv 1 \pmod{4}, \\ 0, & \text{if } p \equiv 3 \pmod{4}, \end{cases}
\]

(1.2)

\[
\sum_{k=0}^{p-1} \frac{(2k)}{4^k} d_k \left(-\frac{1}{6} \right)^2 \equiv 0, \quad \text{if } p > 3,
\]

(1.3)

\[
\sum_{k=0}^{p-1} \frac{(2k)}{4^k} d_k \left(\frac{1}{4} \right)^2 \equiv \begin{cases} 0, & \text{if } p \equiv 1 \pmod{4}, \\ (-1)^{p+1} \left(\frac{p+1}{p-1} \right), & \text{if } p \equiv 3 \pmod{4}. \end{cases}
\]

(1.4)

\[
\sum_{k=0}^{p-1} \frac{(2k)}{4^k} d_k \left(\frac{1}{6} \right)^2 \equiv 0, \quad \text{if } p > 5.
\]

(1.5)

The \(p \equiv 3 \) case of (1.2) was originally conjectured by Z.-W. Sun (see [1, Conjecture 6.3]), and the congruence (1.3) confirms the congruence (1.1) modulo \(p \).

2 Proof of Theorem 1.1

In a previous paper, the second author [2, Lemma 3.1] gives the following identity:

\[
d_n(x)^2 = \sum_{k=0}^{n} \binom{n+k}{2k} \frac{x(x+k)}{k} 4^k,
\]

which is a special case of [3, p. 80, (2.5.32)] by noticing [3, p. 31, (1.7.1.3)] (pointed out by Wadim Zudilin).

For any odd prime \(p \) and \(0 \leq k \leq p - 1 \), it is easy to see that

\[
\frac{(2k)}{4^k} \equiv \begin{cases} (-1)^k \left(\frac{p-1}{2} \right) \pmod{p}, & \text{if } 0 \leq k \leq \frac{p-1}{2}, \\ 0 \pmod{p}, & \text{if } \frac{p+1}{2} \leq k \leq p - 1. \end{cases}
\]
It follows that, for any p-adic integer x,

$$
\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{4^k} d_k(x)^2 \equiv \sum_{k=0}^{\frac{p-1}{2}} (-1)^k \binom{\frac{p-1}{2}}{k} \sum_{j=0}^{k} \binom{k+j}{2j} \binom{x}{k} \binom{x+j}{j} 4^j \equiv (-1)^{\frac{p-1}{2}} \sum_{j=0}^{\frac{p-1}{2}} \binom{x}{j} \binom{x+j}{j} \binom{p-1}{2} - j \binom{p-1}{2} 4^j \pmod{p} \tag{2.1}
$$

by noticing the Chu-Vandermonde identity

$$
\sum_{k=j}^{\frac{p-1}{2}} (-1)^k \binom{\frac{p-1}{2}}{k} \binom{k+j}{2j} = (-1)^{\frac{p-1}{2}} \binom{p-1}{2} - j \binom{p-1}{2}.
$$

It is not difficult to see that

$$\binom{-\frac{1}{3}}{j} \binom{-\frac{1}{4} + j}{j} = (-1)^j \frac{\binom{4j}{2j} \binom{2j}{j}}{64^j} \equiv 0 \text{ for } \frac{p}{4} \leq j \leq \frac{p-1}{2},$$

$$\binom{-\frac{1}{6}}{j} \binom{-\frac{1}{4} + j}{j} = (-1)^j \frac{\binom{6j}{3j} \binom{3j}{j}}{432^j} \equiv 0 \text{ for } \frac{p}{6} \leq j \leq \frac{p-1}{2},$$

$$\binom{\frac{1}{3}}{j} \binom{\frac{1}{4} + j}{j} = (-1)^{j-1} \frac{\binom{4j+1}{2j} \binom{4j}{2j}}{(4j-1)64^j} \equiv 0 \text{ for } j = \frac{p-1}{4} \text{ or } \frac{p+3}{4} \leq j \leq \frac{p-1}{2},$$

$$\binom{\frac{1}{6}}{j} \binom{\frac{1}{4} + j}{j} = (-1)^{j-1} \frac{\binom{6j+1}{3j} \binom{3j}{j}}{(6j-1)432^j} \equiv 0 \text{ for } \frac{p+3}{6} \leq j \leq \frac{p-1}{2},$$

and $\binom{-\frac{1}{2} - j}{j} = 0$ for $0 \leq j < \frac{p-1}{4}$. Letting $x = \pm \frac{1}{6}$ in (2.1), we immediately obtain (1.3) and (1.5). Letting $x = \pm \frac{1}{4}$ in (2.1), we get

$$
\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{4^k} d_k \left(-\frac{1}{4}\right)^2 \equiv \begin{cases} (-1)^{\frac{p-1}{2}} \frac{\binom{p-1}{2}}{4p+1} & \text{ (mod p), if } p \equiv 1 \pmod{4}, \\
0 & \text{ (mod p), if } p \equiv 3 \pmod{4}, \end{cases}
$$

$$
\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{4^k} d_k \left(\frac{1}{4}\right)^2 \equiv \begin{cases} 0 & \text{ (mod p), if } p \equiv 1 \pmod{4}, \\
(-1)^{\frac{p+1}{4}} \frac{\binom{p+1}{4} \binom{p+1}{2}}{4p+1} & \text{ (mod p), if } p \equiv 3 \pmod{4}. \end{cases}
$$

We now suppose that p is a prime such that $p \equiv 1 \pmod{4}$ and $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$. Then by the Beukers-Chowla-Dwork-Evans congruence [4,5],

$$
\binom{p-1}{2} \equiv \frac{2^{p-1} + 1}{2} \left(2x - \frac{p}{2x}\right) \pmod{p^2},
$$
and Fermat’s little theorem, we have \(\left(\frac{p-1}{2} \right) \equiv 2x \pmod{p} \). Moreover, we have

\[
\left(\frac{p-1}{2} \right) \equiv 16^{\frac{p-1}{4}} \equiv 1 \pmod{p}.
\]

This proves (1.2). Finally, suppose that \(p \) is a prime with \(p \equiv 3 \pmod{4} \). Then

\[
\frac{(4p+2)(\frac{p+1}{2})(\frac{p+1}{4})}{4p \cdot 16^{\frac{p+1}{4}}} \equiv \left(\frac{p-1}{2} \right) \pmod{p}.
\]

This proves (1.4).

Acknowledgments. The first author was partially supported by the Natural Science Research Project of Ordinary Universities in Jiangsu Province of China (grant no. 13KJB110001). The second author was partially supported by the National Natural Science Foundation of China (grant no. 11371144).

References

[5] Pan H. An elementary approach to \(\left(\frac{p-1}{2} \right) \pmod{p^2} \). Taiwanese J Math. 2012;16:2197–2202.