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Abstract. In an approach to the Cayley formula for counting trees, Shor discovered
a refined recurrence relation concerning the number of improper edges. Chen and the
author gave a bijection for the Shor recurrence based on the combinatorial interpretations
of Zeng, answering a question of Shor. In this paper, we present a new bijective proof of
the Shor recurrence by applying Shor’s formula for counting forests of rooted trees with
roots 1, . . . , r and with a given number of improper edges.
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1 Introduction

The famous Cayley’s formula for counting trees states that the number of labeled trees
on n nodes is nn−2. Various proofs of Cayley’s formula are known (see [1,2,5,6,8–10,12–
15, 17]). Shor [16] presented a new proof of Cayley’s formula. His proof is based on a
difficult combinatorial identity. Define a function Q(i, j) as

Q(1, 0) = 1, Q(i,−1) = 0, i > 1, Q(1, j) = 0, j > 1,

and
Q(i, j) = (i− 1)Q(i− 1, j) + (i+ j − 2)Q(i− 1, j − 1), otherwise.

Then
i−1∑
j=0

Q(i, j) = ii−1. (1.1)

The above identity (1.1) is a special case (k = 0) of the following identity due to Meir [11,
p. 259]. Define a function Q(i, j, k) as

Q(1, 0, k) = 1, Q(i,−1, k) = 0, i > 1, Q(1, j, k) = 0, j > 1,

and

Q(i, j, k) = (i+ k − 1)Q(i− 1, j, k) + (i+ j − 2)Q(i− 1, j − 1, k), otherwise. (1.2)
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Then
i−1∑
j=0

Q(i, j, k) = (i+ k)i−1. (1.3)

Introducing the concept of improper edges (defined in the next section), Shor [16]
established the following results.

Theorem 1.1 (Shor) The number of labeled rooted trees on n nodes with k improper
edges is Q(n, k).

Theorem 1.2 (Shor) The number of forests of r rooted trees on n labeled nodes with k
improper edges and with roots 1, . . . , r is rQ(n− r, k, r).

Note that Dumont and Ramamonjisoa [7] used the grammatical method introduced by
Chen in [3] to obtain the same combinatorial interpretation in Theorem 1.1. At the end
of his paper, Shor [16] mentioned that besides the recurrence (1.2), the function Q(i, j, k)
also satisfies the following recurrence

Q(i, j, k) = (k − j + 1)Q(i− 1, j, k + 1) + (i+ j − 2)Q(i− 1, j − 1, k + 1), (1.4)

from which one can easily deduce the identity (1.3), and asked for a combinatorial inter-
pretation of this recurrence. A bijective proof of the recurrence (1.4) has been found by
Chen and Guo [4] based on the interpretations of Zeng [18]. The aim of this paper is to
give a new bijective proof of (1.4) with the help of Theorems 1.1 and 1.2.

2 The interpretation under Shor

We follow most notation in Zeng [18] and Chen and Guo [4]. The sets of rooted trees
and rooted trees with root 1 on [n] := {1, . . . , n} are denoted by Rn and Tn, respectively.
If T ∈ Rn and x is a node of T , then we denote by Tx the subtree rooted at x. We let
β(x), or βT (x) be the smallest node on Tx. We call a node z of T a descendant of x, if
z is a node of Tx, and is denoted by z ≺ x. If (x, y) is an edge of a tree T and y is a
node of Tx, then we say that x is the father of y, and y is a child of x. Suppose that
e = (x, y) is an edge of a tree T , and y is a child of x, we say that e is a proper edge, if
x < βT (y). Otherwise, e is called an improper edge. Denote by Rn,k and Tn,k the sets
of rooted trees and rooted trees with root 1 on [n] having k improper edges, respectively.
Denote by F r

n,k the set of forests of r rooted trees on [n] having k improper edges with
roots 1, . . . , r. The degree of a node x in a rooted tree T is the number of children of x,
and is denoted by deg(x), or degT (x). In addition, we may put some conditions on the
set F r

n,k (or Tn,k) to denote the subset of forests (or trees) that satisfy these conditions.
For instance, F r

n,k[n ≺ 1] represents the subset of F r
n,k subject to the condition n ≺ 1.

If we write (k − j + 1)Q(i− 1, j, k + 1) as

(i+ k)Q(i− 1, j, k + 1)− (i+ j − 1)Q(i− 1, j, k + 1),
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then from (1.2) we see that (1.4) is equivalent to

Q(i, j, k) = Q(i, j, k + 1)− (i+ j − 1)Q(i− 1, j, k + 1).

Replacing (i, j, k) by (n− r, k, r − 1), we get

Q(n− r, k, r − 1) = Q(n− r, k, r)− (n+ k − r)Q(n− 1− r, k, r). (2.1)

In order to give a combinatorial interpretation of the recurrence (2.1), we need the
following lemmas. From now on, we assume that r 6 n− 1.

Lemma 2.1 The number of forests of r rooted trees on [n] having k improper edges with
roots 1, . . . , r for which n is a descendant of the node 1 is Q(n− r, k, r), i.e., we have

|F r
n,k[n ≺ 1]| = Q(n− r, k, r) =

1

r
|F r

n,k|. (2.2)

Proof. The case r = 1 reduces to Theorem 1.2. For any 2 6 p 6 r, exchanging the labels
of nodes 1 and p, we establish a bijection between F r

n,k[n ≺ 1] and F r
n,k[n ≺ p]. The

proof then follows from Theorem 1.2. �
Moreover, set F 0

n,k[n ≺ 1] = Rn,k. Then by Theorem 1.1, the first equality of (2.2)
also holds for r = 0.

Lemma 2.2 For r > 1, we have

|F r
n,k+1[n ≺ 1, deg(n) > 0]| = (n+ k − r)Q(n− 1− r, k, r).

Proof. It follows from the proof of Theorem 1.2 that

|F r
n,k+1[deg(n) > 0]| = (n+ k − r)|F r

n−1,k|.

Exactly in the same way as for Lemma 2.1, we complete the proof. �

Lemma 2.3 For r > 1, we have

|F r−1
n−1,k[n− 1 ≺ 1]| = |F r

n,k[n ≺ 1, deg(r + 1) = 0]|.

Proof. Suppose r > 2, F ∈ F r−1
n−1,k[n − 1 ≺ 1]. First, relabel a node i by i + 1, for any

r 6 i 6 n− 1. Second, introduce a node r as a new root of F and move all the subtrees
of r + 1 and make them as subtrees of r. Third, if n is not a descendant of 1 in the new
forest, then n must be a descendant of r, and in this case we exchange the labels 1 and r.
Note that the third step happens if and only if r+1 is a descendant of r in the new forest.
It is clear that the construction is reversible. Thus we establish the desired bijection (see
Figure 1). For r = 1, the proof is analogous, and is left to the interested reader. �

It follows from Lemmas 2.1–2.3 that the recurrence (2.1) is equivalent to the following
identity.

Theorem 2.4 For r > 1, we have

|F r
n,k[n ≺ 1, deg(r + 1) > 0]| = |F r

n,k+1[n ≺ 1, deg(n) > 0]|. (2.3)

We will give a bijective proof of (2.3) in the next section.
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Figure 1: Examples of Lemma 2.3 for n = 9 and r = 3.

3 The Bijections

The case r = 1 of (2.3) reduces to the following statement.

Theorem 3.1 For 0 6 k 6 n− 3, we have the following bijection:

Tn,k[deg(2) > 0]←→ Tn,k+1[deg(n) > 0]. (3.1)

Note that a proof of a refined version of (3.1) has been given in [4, Theorem 3.8]. Here
we shall give a new proof of (3.1).

Lemma 3.2 For 0 6 k 6 n− 3, we have the following bijection:

Tn,k[deg(2) > 0]←→ Tn,k[deg(1) > 1]. (3.2)

Proof. Suppose that T ∈ Tn,k[deg(2) > 0]. The set of subtrees of 1 that do not contain
the node 2 is denoted by R, and the set of subtrees of 2 is denoted by S. Exchanging R
and S, we obtain a tree T ′ ∈ Tn,k[deg(1) > 1]. This sets up the desired bijection. �

It is clear that (3.1) may be deduced from (3.2) and the following statement.

Theorem 3.3 For 0 6 k 6 n− 3, we have the following bijection:

Tn,k[deg(1) > 1]←→ Tn,k+1[deg(n) > 0]. (3.3)

Let T (i)
n,k be the set of trees in Tn,k such that there are i proper edges on the path from

1 to n. We need to consider two cases in the construction of a bijection for (3.3).

Theorem 3.4 For i > 2, we have the following bijection:

T (i)
n,k [deg(1) > 1]←→ T (i−1)

n,k+1 [deg(1) > 1, deg(n) > 0]. (3.4)
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Figure 2: An example of Theorem 3.4 for n = 9, i = 2, k = 4.

Proof. Let T be a tree in T (i)
n,k [deg(1) > 0]. We assume that (n = v1, v2, . . . , vs = 1) is the

path from n to 1, and vj is the first node on this path such that (vj−1, vj) is a proper edge
of T . Let X(Tvj) be the rooted tree obtained from Tvj by just taking n as the new root.
We then obtain a rooted tree T ′ by replacing the subtree Tvj by X(Tvj). It is easy to see
that T ′ has one more improper edge than T because of the edge (vj, vj−1). Moreover, we
have degT ′(n) = degT (n) + 1 (see Figure 2).

Conversely, for any tree T ′ in T (i−1)
n,k+1 [deg(1) > 1, deg(n) > 0], we may recover the tree

T as follows. Assume that (n = u1, u2, . . . , ut = β(n)) is the path from n to β(n). Let
uh ̸= n be the first node on this path such that every node in T ′

n−T ′
uh

is greater than uh.
It is not difficult to see that such a node uh can always be found because the node β(n) is
a candidate satisfying the above condition. Let Y (T ′

n) be the rooted tree obtained from
T ′
n by taking uh as the new root. Replacing the subtree T ′

n by Y (T ′
n) in T ′, we obtain the

tree T . �

Theorem 3.5 For n > 3 and m > 2, we have the following bijection:

T (1)
n,k [deg(1) = m]←→ T (m−1)

n,k+1 [deg(1) = 1, deg(n) > 0]. (3.5)

Note that Theorems 3.4 and 3.5 together lead to a refined version of Theorem 3.3.
We now focus on the proof of (3.5). The proof of (3.4) actually implies the following
assertion:

Lemma 3.6 For i > 2, we have the following bijection:

T (i)
n,k [deg(1) = 1, deg(n) = m]←→ T (i−1)

n,k+1 [deg(1) = 1, deg(n) = m+ 1]. (3.6)

For any m > 2, by repeatedly using (3.6), we obtain

T (m−1)
n,k+1 [deg(1) = 1, deg(n) > 1]←→ T (1)

n,k+m−1[deg(1) = 1, deg(n) > m− 1]. (3.7)

By (3.7), we see that Theorem 3.5 is equivalent to the following result.
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Theorem 3.7 For n > 3 and m > 2, we have the following bijection:

T (1)
n,k [deg(1) = m]←→ T (1)

n,k+m−1[deg(1) = 1, deg(n) > m− 1].

Proof. Suppose that T ∈ T (1)
n,k [deg(1) = m]. Let the children of 1 be a1, a2, . . . , am, and let

n be a descendant of am. Denote by β0 the minimum element of β(a1), β(a2), . . . , β(am−1).
If degT (n) > 0, assume that the children of n are b1, b2, . . . , bs, and denote by α the

maximum element of β(b1), β(b2), . . . , β(bs). We need to consider two cases (see Figure
3):

• β0 > α. Remove the subtrees Tai(1 6 i 6 m− 1) and attach them to the node n as
subtrees.

• β0 < α. Exchange the node n and the subtree Tα. Thus the degree of n becomes
zero. All edges but the first one on the path from 1 to α are improper, while the first
edge on the path from α to n is proper. Then remove the subtrees Tai(1 6 i 6 m−1)
and attach them to the node n as subtrees.

If degT (n) = 0, then n must be a child of 1, and deal with the tree T as the first case.

Thus, we obtain a tree T ′ ∈ T (1)
n,k+m−1[deg(1) = 1, deg(n) > m− 1].

Conversely, for the above tree T ′, suppose that the children of n are c1, c2, . . . , cp and
β(c1) > β(c2) > · · · > β(cp). We also have two cases:

• The child of 1 is n, or degT ′(n) > m. Remove the subtrees T ′
ci
(1 6 i 6 m− 1) and

attach them back to the node 1 as subtrees.

• The child of 1 is not n, and degT ′(n) = m−1. Remove the subtrees T ′
ci
(1 6 i 6 m−1)

and attach them back to the node 1 as subtrees. Suppose that we obtain a tree T ′′

and that the path from 1 to n in T ′′ is P : (1 = y1, y2, . . . , ys = n). Let (yi, yi+1)
be the second proper edge on the path P . Assume that R1, R2 . . . , Rs are all of the
subtrees of yi such that β(Rj) > yi, and n ̸∈ Rj for j = 1, 2, . . . , s. Attach these
subtrees to the node n, and exchange the labels of nodes yi and n. �

Thus we have proved Theorem 3.1. The essence of Theorem 3.1 is the duality between
the second minimum element and the maximum element in a tree with root 1. It is easy
to understand that the labels of a rooted tree need not to be consecutive integers in order
that the bijection holds. By applying Theorem 3.1, we can construct the main bijection
of this paper, which leads to a combinatorial proof of Theorem 2.4.

Theorem 3.8 For 1 6 r 6 n− 2 and 0 6 k 6 n− r− 2, we have the following bijection:

F r
n,k[n ≺ 1, deg(r + 1) > 0]←→ F r

n,k+1[n ≺ 1, deg(n) > 0].

Proof. The case r = 1 reduces to Theorem 3.1. We now assume that r > 2. Suppose that
F ∈ F r

n,k[n ≺ 1, deg(r + 1) > 0], the tree in F with root i is denoted by Ti. Assume that
r + 1 is a node of Tx. Note that n is a node of T1. We now proceed to construct a forest
F ′ ∈ F r

n,k+1[n ≺ 1, deg(n) > 0].
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Figure 3: Examples of Theorem 3.7 for n = 12 and m = 3.

(i) x = 1. Then in the tree T1, the second minimum element is r+1 and the maximum
element n. Applying Theorem 3.1 on T1, we are led to a tree T ′

1. Replacing T1 by
T ′
1 in F , we obtain a forest F ′ ∈ F r

n,k+1[n ≺ 1, deg(n) > 0].

(ii) x ̸= 1 and degT1
(n) > 0. Then applying Theorem 3.1 on Tx, we obtain a forest

F ′ ∈ F r
n,k+1[n ≺ 1, deg(n) > 0].

(iii) x ̸= 1 and degT1
(n) = 0. Let us relabel the subtrees Tx and T1. Suppose Tx has

nodes x and r + 1 = u1 < u2 < · · · < ui and T1 has nodes 1 = v1 < v2 < · · · < vj
and n. Let R be the tree obtained from Tx relabeled by 1 < u2 < · · · < ui and n,
and let S be the tree obtained from T1 relabeled by x and r + 1 < v2 < · · · < vj.
Applying Theorem 3.1 on R, we obtain a rooted tree R′ with degR′(n) > 0. Then
replacing Tx by R′ and T1 by S, we are led to a forest F ′, which is clearly in
F r

n,k+1[n ≺ 1, deg(n) > 0].

It is easy to see that all the above steps are reversible. What is left is to classify the
cases for a forest F ′ ∈ F r

n,k+1[n ≺ 1, deg(n) > 0]. The tree in F ′ with root i is denoted
by T ′

i .

(A) If r + 1 is in the tree T ′
1, then we resort to the reverse of the case (i) to recover the

forest F ∈ F r
n,k[n ≺ 1, deg(r + 1) > 0].

(B) Suppose that x ̸= 1 and T ′
x contains r + 1. If the degree of the maximum element

in T ′
x is nonzero, then we may resort to the reverse of the construction in the case
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(ii) to recover F . Otherwise, the degree of the maximum element in T ′
x is equal to

zero, and we may proceed by the reverse of the case (iii) to recover the desired F .
�

4 Concluding remarks

At the end of the paper [4], Chen and Guo proposed two open problems and one conjecture
for further study. Although we have given a new proof of the Shor recurrence (1.2), finding
a short proof of (1.2) under Zeng’s interpretations [4, Problem 4.1] still remains open. As
far as we know, no one has made any progress in the other two questions [4, Conjecture
4.2 and Problem 4.4] by now. The reader is encouraged to continue to work on these
questions.

Shor’s Theorem 1.2 gives

|F r
n,k| = (n− 1)|F r

n−1,k|+ (n+ k − r − 2)|F r
n−1,k−1|. (4.1)

The following problem is concerned with a refined version of (4.1). Suppose that F is a
forest, n is the maximum node of F , deg(n) > 0, and n is contained in the tree T . Let
λ(F ) = uh ̸= n be the first node on the path from n to β(n) such that every node in
Tn − Tuh

is greater than uh (this node plays an important role in the proof of Theorem
3.4). Motivated by [4, Conjecture 4.2], we have the following conjecture.

Conjecture 4.1 For n > r + 3 and r + 1 6 i 6 n− 2, we have the recurrence relation

|F r
n,k[λ = i]| = (n− 2)|F r

n−1,k[λ = i]|+ (n+ k − r − 3)|F r
n−1,k−1[λ = i]|. (4.2)

It is clear that

|F r
n,k[λ = n− 1]| = |F r

n−1,k−1|, 1 6 k 6 n− r − 1. (4.3)

If Conjecture 4.1 is true, then we can use induction to derive the recurrence (4.1) from
(4.2), (4.3), and the obvious relation

|F r
n,k[deg(n) = 0]| = (n− 1)|F r

n−1,k|.
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