A bijective proof of the Shor recurrence

Victor J. W. Guo
School of Mathematical Sciences, Huaiyin Normal University, Huai’an, Jiangsu 223300, People's Republic of China
jwguo@hytc.edu.cn

Abstract

In an approach to the Cayley formula for counting trees, Shor discovered a refined recurrence relation concerning the number of improper edges. Chen and the author gave a bijection for the Shor recurrence based on the combinatorial interpretations of Zeng, answering a question of Shor. In this paper, we present a new bijective proof of the Shor recurrence by applying Shor's formula for counting forests of rooted trees with roots $1, \ldots, r$ and with a given number of improper edges.

Keywords: Cayley's formula; bijection; tree; forest; improper edge.
MR Subject Classifications: 05A15, 05C05

1 Introduction

The famous Cayley's formula for counting trees states that the number of labeled trees on n nodes is n^{n-2}. Various proofs of Cayley's formula are known (see [1, 2, 5, 6, 8-10, 12$15,17]$). Shor [16] presented a new proof of Cayley's formula. His proof is based on a difficult combinatorial identity. Define a function $Q(i, j)$ as

$$
Q(1,0)=1, \quad Q(i,-1)=0, \quad i \geqslant 1, \quad Q(1, j)=0, \quad j \geqslant 1,
$$

and

$$
Q(i, j)=(i-1) Q(i-1, j)+(i+j-2) Q(i-1, j-1), \quad \text { otherwise. }
$$

Then

$$
\begin{equation*}
\sum_{j=0}^{i-1} Q(i, j)=i^{i-1} \tag{1.1}
\end{equation*}
$$

The above identity (1.1) is a special case $(k=0)$ of the following identity due to Meir [11, p. 259]. Define a function $Q(i, j, k)$ as

$$
Q(1,0, k)=1, \quad Q(i,-1, k)=0, \quad i \geqslant 1, \quad Q(1, j, k)=0, \quad j \geqslant 1,
$$

and

$$
\begin{equation*}
Q(i, j, k)=(i+k-1) Q(i-1, j, k)+(i+j-2) Q(i-1, j-1, k), \quad \text { otherwise. } \tag{1.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{j=0}^{i-1} Q(i, j, k)=(i+k)^{i-1} \tag{1.3}
\end{equation*}
$$

Introducing the concept of improper edges (defined in the next section), Shor [16] established the following results.

Theorem 1.1 (Shor) The number of labeled rooted trees on n nodes with k improper edges is $Q(n, k)$.

Theorem 1.2 (Shor) The number of forests of r rooted trees on n labeled nodes with k improper edges and with roots $1, \ldots, r$ is $r Q(n-r, k, r)$.

Note that Dumont and Ramamonjisoa [7] used the grammatical method introduced by Chen in [3] to obtain the same combinatorial interpretation in Theorem 1.1. At the end of his paper, Shor [16] mentioned that besides the recurrence (1.2), the function $Q(i, j, k)$ also satisfies the following recurrence

$$
\begin{equation*}
Q(i, j, k)=(k-j+1) Q(i-1, j, k+1)+(i+j-2) Q(i-1, j-1, k+1), \tag{1.4}
\end{equation*}
$$

from which one can easily deduce the identity (1.3), and asked for a combinatorial interpretation of this recurrence. A bijective proof of the recurrence (1.4) has been found by Chen and Guo [4] based on the interpretations of Zeng [18]. The aim of this paper is to give a new bijective proof of (1.4) with the help of Theorems 1.1 and 1.2.

2 The interpretation under Shor

We follow most notation in Zeng [18] and Chen and Guo [4]. The sets of rooted trees and rooted trees with root 1 on $[n]:=\{1, \ldots, n\}$ are denoted by \mathscr{R}_{n} and \mathscr{T}_{n}, respectively. If $T \in \mathscr{R}_{n}$ and x is a node of T, then we denote by T_{x} the subtree rooted at x. We let $\beta(x)$, or $\beta_{T}(x)$ be the smallest node on T_{x}. We call a node z of T a descendant of x, if z is a node of T_{x}, and is denoted by $z \prec x$. If (x, y) is an edge of a tree T and y is a node of T_{x}, then we say that x is the father of y, and y is a child of x. Suppose that $e=(x, y)$ is an edge of a tree T, and y is a child of x, we say that e is a proper edge, if $x<\beta_{T}(y)$. Otherwise, e is called an improper edge. Denote by $\mathscr{R}_{n, k}$ and $\mathscr{T}_{n, k}$ the sets of rooted trees and rooted trees with root 1 on [n] having k improper edges, respectively. Denote by $\mathscr{F}_{n, k}^{r}$ the set of forests of r rooted trees on [n] having k improper edges with roots $1, \ldots, r$. The degree of a node x in a rooted tree T is the number of children of x, and is denoted by $\operatorname{deg}(x)$, or $\operatorname{deg}_{T}(x)$. In addition, we may put some conditions on the set $\mathscr{F}_{n, k}^{r}$ (or $\mathscr{T}_{n, k}$) to denote the subset of forests (or trees) that satisfy these conditions. For instance, $\mathscr{F}_{n, k}^{r}[n \prec 1]$ represents the subset of $\mathscr{F}_{n, k}^{r}$ subject to the condition $n \prec 1$.

If we write $(k-j+1) Q(i-1, j, k+1)$ as

$$
(i+k) Q(i-1, j, k+1)-(i+j-1) Q(i-1, j, k+1)
$$

then from (1.2) we see that (1.4) is equivalent to

$$
Q(i, j, k)=Q(i, j, k+1)-(i+j-1) Q(i-1, j, k+1) .
$$

Replacing (i, j, k) by ($n-r, k, r-1$), we get

$$
\begin{equation*}
Q(n-r, k, r-1)=Q(n-r, k, r)-(n+k-r) Q(n-1-r, k, r) . \tag{2.1}
\end{equation*}
$$

In order to give a combinatorial interpretation of the recurrence (2.1), we need the following lemmas. From now on, we assume that $r \leqslant n-1$.

Lemma 2.1 The number of forests of r rooted trees on $[n]$ having k improper edges with roots $1, \ldots, r$ for which n is a descendant of the node 1 is $Q(n-r, k, r)$, i.e., we have

$$
\begin{equation*}
\left|\mathscr{F}_{n, k}^{r}[n \prec 1]\right|=Q(n-r, k, r)=\frac{1}{r}\left|\mathscr{F}_{n, k}^{r}\right| . \tag{2.2}
\end{equation*}
$$

Proof. The case $r=1$ reduces to Theorem 1.2. For any $2 \leqslant p \leqslant r$, exchanging the labels of nodes 1 and p, we establish a bijection between $\mathscr{F}_{n, k}^{r}[n \prec 1]$ and $\mathscr{F}_{n, k}^{r}[n \prec p]$. The proof then follows from Theorem 1.2.

Moreover, set $\mathscr{F}_{n, k}^{0}[n \prec 1]=\mathscr{R}_{n, k}$. Then by Theorem 1.1, the first equality of (2.2) also holds for $r=0$.

Lemma 2.2 For $r \geqslant 1$, we have

$$
\left|\mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]\right|=(n+k-r) Q(n-1-r, k, r) .
$$

Proof. It follows from the proof of Theorem 1.2 that

$$
\left|\mathscr{F}_{n, k+1}^{r}[\operatorname{deg}(n)>0]\right|=(n+k-r)\left|\mathscr{F}_{n-1, k}^{r}\right| .
$$

Exactly in the same way as for Lemma 2.1, we complete the proof.
Lemma 2.3 For $r \geqslant 1$, we have

$$
\left|\mathscr{F}_{n-1, k}^{r-1}[n-1 \prec 1]\right|=\left|\mathscr{F}_{n, k}^{r}[n \prec 1, \operatorname{deg}(r+1)=0]\right| .
$$

Proof. Suppose $r \geqslant 2, F \in \mathscr{F}_{n-1, k}^{r-1}[n-1 \prec 1]$. First, relabel a node i by $i+1$, for any $r \leqslant i \leqslant n-1$. Second, introduce a node r as a new root of F and move all the subtrees of $r+1$ and make them as subtrees of r. Third, if n is not a descendant of 1 in the new forest, then n must be a descendant of r, and in this case we exchange the labels 1 and r. Note that the third step happens if and only if $r+1$ is a descendant of r in the new forest. It is clear that the construction is reversible. Thus we establish the desired bijection (see Figure 1). For $r=1$, the proof is analogous, and is left to the interested reader.

It follows from Lemmas 2.1-2.3 that the recurrence (2.1) is equivalent to the following identity.

Theorem 2.4 For $r \geqslant 1$, we have

$$
\begin{equation*}
\left|\mathscr{F}_{n, k}^{r}[n \prec 1, \operatorname{deg}(r+1)>0]\right|=\left|\mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]\right| . \tag{2.3}
\end{equation*}
$$

We will give a bijective proof of (2.3) in the next section.

Figure 1: Examples of Lemma 2.3 for $n=9$ and $r=3$.

3 The Bijections

The case $r=1$ of (2.3) reduces to the following statement.
Theorem 3.1 For $0 \leqslant k \leqslant n-3$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}[\operatorname{deg}(2)>0] \longleftrightarrow \mathscr{T}_{n, k+1}[\operatorname{deg}(n)>0] . \tag{3.1}
\end{equation*}
$$

Note that a proof of a refined version of (3.1) has been given in [4, Theorem 3.8]. Here we shall give a new proof of (3.1).

Lemma 3.2 For $0 \leqslant k \leqslant n-3$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}[\operatorname{deg}(2)>0] \longleftrightarrow \mathscr{T}_{n, k}[\operatorname{deg}(1)>1] \tag{3.2}
\end{equation*}
$$

Proof. Suppose that $T \in \mathscr{T}_{n, k}[\operatorname{deg}(2)>0]$. The set of subtrees of 1 that do not contain the node 2 is denoted by R, and the set of subtrees of 2 is denoted by S. Exchanging R and S, we obtain a tree $T^{\prime} \in \mathscr{T}_{n, k}[\operatorname{deg}(1)>1]$. This sets up the desired bijection.

It is clear that (3.1) may be deduced from (3.2) and the following statement.
Theorem 3.3 For $0 \leqslant k \leqslant n-3$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}[\operatorname{deg}(1)>1] \longleftrightarrow \mathscr{T}_{n, k+1}[\operatorname{deg}(n)>0] . \tag{3.3}
\end{equation*}
$$

Let $\mathscr{T}_{n, k}^{(i)}$ be the set of trees in $\mathscr{T}_{n, k}$ such that there are i proper edges on the path from 1 to n. We need to consider two cases in the construction of a bijection for (3.3).

Theorem 3.4 For $i \geqslant 2$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}^{(i)}[\operatorname{deg}(1)>1] \longleftrightarrow \mathscr{T}_{n, k+1}^{(i-1)}[\operatorname{deg}(1)>1, \operatorname{deg}(n)>0] . \tag{3.4}
\end{equation*}
$$

Figure 2: An example of Theorem 3.4 for $n=9, i=2, k=4$.
Proof. Let T be a tree in $\mathscr{T}_{n, k}^{(i)}[\operatorname{deg}(1)>0]$. We assume that $\left(n=v_{1}, v_{2}, \ldots, v_{s}=1\right)$ is the path from n to 1 , and v_{j} is the first node on this path such that $\left(v_{j-1}, v_{j}\right)$ is a proper edge of T. Let $X\left(T_{v_{j}}\right)$ be the rooted tree obtained from $T_{v_{j}}$ by just taking n as the new root. We then obtain a rooted tree T^{\prime} by replacing the subtree $T_{v_{j}}$ by $X\left(T_{v_{j}}\right)$. It is easy to see that T^{\prime} has one more improper edge than T because of the edge $\left(v_{j}, v_{j-1}\right)$. Moreover, we have $\operatorname{deg}_{T^{\prime}}(n)=\operatorname{deg}_{T}(n)+1$ (see Figure 2).

Conversely, for any tree T^{\prime} in $\mathscr{T}_{n, k+1}^{(i-1)}[\operatorname{deg}(1)>1, \operatorname{deg}(n)>0]$, we may recover the tree T as follows. Assume that ($n=u_{1}, u_{2}, \ldots, u_{t}=\beta(n)$) is the path from n to $\beta(n)$. Let $u_{h} \neq n$ be the first node on this path such that every node in $T_{n}^{\prime}-T_{u_{h}}^{\prime}$ is greater than u_{h}. It is not difficult to see that such a node u_{h} can always be found because the node $\beta(n)$ is a candidate satisfying the above condition. Let $Y\left(T_{n}^{\prime}\right)$ be the rooted tree obtained from T_{n}^{\prime} by taking u_{h} as the new root. Replacing the subtree T_{n}^{\prime} by $Y\left(T_{n}^{\prime}\right)$ in T^{\prime}, we obtain the tree T.

Theorem 3.5 For $n \geqslant 3$ and $m \geqslant 2$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}^{(1)}[\operatorname{deg}(1)=m] \longleftrightarrow \mathscr{T}_{n, k+1}^{(m-1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n)>0] . \tag{3.5}
\end{equation*}
$$

Note that Theorems 3.4 and 3.5 together lead to a refined version of Theorem 3.3. We now focus on the proof of (3.5). The proof of (3.4) actually implies the following assertion:

Lemma 3.6 For $i \geqslant 2$, we have the following bijection:

$$
\begin{equation*}
\mathscr{T}_{n, k}^{(i)}[\operatorname{deg}(1)=1, \operatorname{deg}(n)=m] \longleftrightarrow \mathscr{T}_{n, k+1}^{(i-1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n)=m+1] . \tag{3.6}
\end{equation*}
$$

For any $m \geqslant 2$, by repeatedly using (3.6), we obtain

$$
\begin{equation*}
\mathscr{T}_{n, k+1}^{(m-1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n) \geqslant 1] \longleftrightarrow \mathscr{T}_{n, k+m-1}^{(1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n) \geqslant m-1] . \tag{3.7}
\end{equation*}
$$

By (3.7), we see that Theorem 3.5 is equivalent to the following result.

Theorem 3.7 For $n \geqslant 3$ and $m \geqslant 2$, we have the following bijection:

$$
\mathscr{T}_{n, k}^{(1)}[\operatorname{deg}(1)=m] \longleftrightarrow \mathscr{T}_{n, k+m-1}^{(1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n) \geqslant m-1] .
$$

Proof. Suppose that $T \in \mathscr{T}_{n, k}^{(1)}[\operatorname{deg}(1)=m]$. Let the children of 1 be $a_{1}, a_{2}, \ldots, a_{m}$, and let n be a descendant of a_{m}. Denote by β_{0} the minimum element of $\beta\left(a_{1}\right), \beta\left(a_{2}\right), \ldots, \beta\left(a_{m-1}\right)$.

If $\operatorname{deg}_{T}(n)>0$, assume that the children of n are $b_{1}, b_{2}, \ldots, b_{s}$, and denote by α the maximum element of $\beta\left(b_{1}\right), \beta\left(b_{2}\right), \ldots, \beta\left(b_{s}\right)$. We need to consider two cases (see Figure $3)$:

- $\beta_{0}>\alpha$. Remove the subtrees $T_{a_{i}}(1 \leqslant i \leqslant m-1)$ and attach them to the node n as subtrees.
- $\beta_{0}<\alpha$. Exchange the node n and the subtree T_{α}. Thus the degree of n becomes zero. All edges but the first one on the path from 1 to α are improper, while the first edge on the path from α to n is proper. Then remove the subtrees $T_{a_{i}}(1 \leqslant i \leqslant m-1)$ and attach them to the node n as subtrees.

If $\operatorname{deg}_{T}(n)=0$, then n must be a child of 1 , and deal with the tree T as the first case. Thus, we obtain a tree $T^{\prime} \in \mathscr{T}_{n, k+m-1}^{(1)}[\operatorname{deg}(1)=1, \operatorname{deg}(n) \geqslant m-1]$.

Conversely, for the above tree T^{\prime}, suppose that the children of n are $c_{1}, c_{2}, \ldots, c_{p}$ and $\beta\left(c_{1}\right)>\beta\left(c_{2}\right)>\cdots>\beta\left(c_{p}\right)$. We also have two cases:

- The child of 1 is n, or $\operatorname{deg}_{T^{\prime}}(n) \geqslant m$. Remove the subtrees $T_{c_{i}}^{\prime}(1 \leqslant i \leqslant m-1)$ and attach them back to the node 1 as subtrees.
- The child of 1 is not n, and $\operatorname{deg}_{T^{\prime}}(n)=m-1$. Remove the subtrees $T_{c_{i}}^{\prime}(1 \leqslant i \leqslant m-1)$ and attach them back to the node 1 as subtrees. Suppose that we obtain a tree $T^{\prime \prime}$ and that the path from 1 to n in $T^{\prime \prime}$ is $P:\left(1=y_{1}, y_{2}, \ldots, y_{s}=n\right)$. Let $\left(y_{i}, y_{i+1}\right)$ be the second proper edge on the path P. Assume that $R_{1}, R_{2} \ldots, R_{s}$ are all of the subtrees of y_{i} such that $\beta\left(R_{j}\right)>y_{i}$, and $n \notin R_{j}$ for $j=1,2, \ldots, s$. Attach these subtrees to the node n, and exchange the labels of nodes y_{i} and n.

Thus we have proved Theorem 3.1. The essence of Theorem 3.1 is the duality between the second minimum element and the maximum element in a tree with root 1 . It is easy to understand that the labels of a rooted tree need not to be consecutive integers in order that the bijection holds. By applying Theorem 3.1, we can construct the main bijection of this paper, which leads to a combinatorial proof of Theorem 2.4.

Theorem 3.8 For $1 \leqslant r \leqslant n-2$ and $0 \leqslant k \leqslant n-r-2$, we have the following bijection:

$$
\mathscr{F}_{n, k}^{r}[n \prec 1, \operatorname{deg}(r+1)>0] \longleftrightarrow \mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0] .
$$

Proof. The case $r=1$ reduces to Theorem 3.1. We now assume that $r \geqslant 2$. Suppose that $F \in \mathscr{F}_{n, k}^{r}[n \prec 1, \operatorname{deg}(r+1)>0]$, the tree in F with root i is denoted by T_{i}. Assume that $r+1$ is a node of T_{x}. Note that n is a node of T_{1}. We now proceed to construct a forest $F^{\prime} \in \mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]$.

Figure 3: Examples of Theorem 3.7 for $n=12$ and $m=3$.
(i) $x=1$. Then in the tree T_{1}, the second minimum element is $r+1$ and the maximum element n. Applying Theorem 3.1 on T_{1}, we are led to a tree T_{1}^{\prime}. Replacing T_{1} by T_{1}^{\prime} in F, we obtain a forest $F^{\prime} \in \mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]$.
(ii) $x \neq 1$ and $\operatorname{deg}_{T_{1}}(n)>0$. Then applying Theorem 3.1 on T_{x}, we obtain a forest $F^{\prime} \in \mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]$.
(iii) $x \neq 1$ and $\operatorname{deg}_{T_{1}}(n)=0$. Let us relabel the subtrees T_{x} and T_{1}. Suppose T_{x} has nodes x and $r+1=u_{1}<u_{2}<\cdots<u_{i}$ and T_{1} has nodes $1=v_{1}<v_{2}<\cdots<v_{j}$ and n. Let R be the tree obtained from T_{x} relabeled by $1<u_{2}<\cdots<u_{i}$ and n, and let S be the tree obtained from T_{1} relabeled by x and $r+1<v_{2}<\cdots<v_{j}$. Applying Theorem 3.1 on R, we obtain a rooted tree R^{\prime} with $\operatorname{deg}_{R^{\prime}}(n)>0$. Then replacing T_{x} by R^{\prime} and T_{1} by S, we are led to a forest F^{\prime}, which is clearly in $\mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]$.

It is easy to see that all the above steps are reversible. What is left is to classify the cases for a forest $F^{\prime} \in \mathscr{F}_{n, k+1}^{r}[n \prec 1, \operatorname{deg}(n)>0]$. The tree in F^{\prime} with root i is denoted by T_{i}^{\prime}.
(A) If $r+1$ is in the tree T_{1}^{\prime}, then we resort to the reverse of the case (i) to recover the forest $F \in \mathscr{F}_{n, k}^{r}[n \prec 1, \operatorname{deg}(r+1)>0]$.
(B) Suppose that $x \neq 1$ and T_{x}^{\prime} contains $r+1$. If the degree of the maximum element in T_{x}^{\prime} is nonzero, then we may resort to the reverse of the construction in the case
(ii) to recover F. Otherwise, the degree of the maximum element in T_{x}^{\prime} is equal to zero, and we may proceed by the reverse of the case (iii) to recover the desired F.

4 Concluding remarks

At the end of the paper [4], Chen and Guo proposed two open problems and one conjecture for further study. Although we have given a new proof of the Shor recurrence (1.2), finding a short proof of (1.2) under Zeng's interpretations [4, Problem 4.1] still remains open. As far as we know, no one has made any progress in the other two questions [4, Conjecture 4.2 and Problem 4.4] by now. The reader is encouraged to continue to work on these questions.

Shor's Theorem 1.2 gives

$$
\begin{equation*}
\left|\mathscr{F}_{n, k}^{r}\right|=(n-1)\left|\mathscr{F}_{n-1, k}^{r}\right|+(n+k-r-2)\left|\mathscr{F}_{n-1, k-1}^{r}\right| . \tag{4.1}
\end{equation*}
$$

The following problem is concerned with a refined version of (4.1). Suppose that F is a forest, n is the maximum node of $F, \operatorname{deg}(n)>0$, and n is contained in the tree T. Let $\lambda(F)=u_{h} \neq n$ be the first node on the path from n to $\beta(n)$ such that every node in $T_{n}-T_{u_{h}}$ is greater than u_{h} (this node plays an important role in the proof of Theorem 3.4). Motivated by [4, Conjecture 4.2], we have the following conjecture.

Conjecture 4.1 For $n \geqslant r+3$ and $r+1 \leqslant i \leqslant n-2$, we have the recurrence relation

$$
\begin{equation*}
\left|\mathscr{F}_{n, k}^{r}[\lambda=i]\right|=(n-2)\left|\mathscr{F}_{n-1, k}^{r}[\lambda=i]\right|+(n+k-r-3)\left|\mathscr{F}_{n-1, k-1}^{r}[\lambda=i]\right| . \tag{4.2}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\left|\mathscr{F}_{n, k}^{r}[\lambda=n-1]\right|=\left|\mathscr{F}_{n-1, k-1}^{r}\right|, \quad 1 \leqslant k \leqslant n-r-1 . \tag{4.3}
\end{equation*}
$$

If Conjecture 4.1 is true, then we can use induction to derive the recurrence (4.1) from (4.2), (4.3), and the obvious relation

$$
\left|\mathscr{F}_{n, k}^{r}[\operatorname{deg}(n)=0]\right|=(n-1)\left|\mathscr{F}_{n-1, k}^{r}\right| .
$$

References

[1] M. Aigner and G.M. Ziegler, Proofs from The Book, Fourth Ed., Springer-Verlag, Berlin, 2010.
[2] W.Y.C. Chen, A general bijective algorithm for trees, Proc. Natl. Acad. Sci. USA 87 (1990), 9635-9639.
[3] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci. 117 (1993), 113-129.
[4] W.Y.C. Chen and V.J.W. Guo, Bijections behind the Ramanujan polynomials, Adv. Appl. Math. 27 (2001), 336-356.
[5] W.Y.C. Chen and J.F.F Peng, Disposition polynomials and plane trees, European J. Combin. 36 (2014), 122-129.
[6] R.R.X. Du and J. Yin, Counting labelled trees with given indegree sequence, J. Combin. Theory Ser. A 117 (2010), 345-353.
[7] D. Dumont and A. Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Elect. J. Combin. 3 (2) (1996), \#R17.
[8] V.J.W. Guo and J. Zeng, A generalization of the Ramanujan polynomials and plane trees, Adv. Appl. Math. 39 (2007), 96-115.
[9] M. Haiman and W. Schmitt, Incidence algebra antipodes and Lagrange inversion in one and several variables, J. Combin. Theory Ser. A 50 (1989), 172-185.
[10] Q.-H. Hou, An insertion algorithm and leaders of rooted trees, European J. Combin. 53 (2016), 35-44.
[11] M.S. Klamkin (Ed.), Problems and solutions, SIAM Rev. 21 (1979), 256-263, Problem 78-6.
[12] J.W. Moon, Various proofs of Cayley's formula for counting trees, Bull. Amer. Math. Soc. 74 (1968), 92-94.
[13] J. Pitman, Coalescent random forests, J. Combin. Theory, Ser. A 85 (1999), 165-193.
[14] A. Renyi, Új módszerek és eredmények a kombinatorikus analízisben I, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 16 (1966), 77-105.
[15] J. Riordan, Forests of labeled trees, J. Combin. Theory 5 (1968), 90-103.
[16] P. Shor, A new proof of Cayley's formula for counting labeled trees, J. Combin. Theory. Ser. A, 71 (1995), 154-158.
[17] H. Shin and J. Zeng, A bijective enumeration of labeled trees with given indegree sequence, J. Combin. Theory Ser. A 118 (2011), 115-128.
[18] J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J. 3 (1999), 45-54.

