NEW QUADRATIC IDENTITIES FOR BASIC HYPERGEOMETRIC SERIES AND q-CONGRUENCES

Victor J. W. Guo, Michael J. Schlosser & Wadim Zudilin

ABSTRACT. We derive new quadratic summations and transformations for basic hypergeometric series. These are applied to prove several biparametric q-congruences for truncated basic hypergeometric series modulo the square of a cyclotomic polynomial. We also prove a couple of q-congruences of a different type for truncated sums involving q-binomial coefficients.

1. INTRODUCTION

2. New congruences modulo the square of a cyclotomic polynomial

Theorem 1. Let $d \ge 2$ be an integer, r an arbitrary integer coprime to d, and s and n positive integers satisfying n > r + d and $n \equiv r + d \pmod{2d}$. Then

$$\sum_{k=0}^{M} \frac{(q^r; q^d)_k^2}{(q^d; q^d)_k^2} \frac{(q^{-d}; q^{2d})_k}{(q^{2r+3d}; q^{2d})_k} q^{3dk} \equiv 0 \pmod{\Phi_n(q)^2},$$
(2.1)

where $(s-1)n + (n-r)/d \leq M \leq sn-1$.

3. New basic hypergeometric identities

4. Proofs of the New q-congruences

5. CONCLUSION

Conjecture 1. Let n be a positive integer and r an arbitrary integer. Then

$$\sum_{k=0}^{n-1} q^{r(n-k)^2 + (r-1)k} \left[\frac{n+k}{k} \right]^{2r} \left[\frac{n-1}{k} \right]^{2r}$$
$$\equiv q^{(r-1)n+1}[n] - \frac{r(2r-1)(n-1)^2 q(1-q)^2}{4} [n]^3 \pmod[n] \Phi_n(q)^3). \tag{5.1}$$

Date: April 9, 2021.

¹⁹⁹¹ Mathematics Subject Classification. 11A07, 11B65, 11F33, 11Y60, 33D15.

Key words and phrases. basic hypergeometric series; quadratic identities; congruences; supercongruences; *q*-analogue; cyclotomic polynomials.

The first author was partially supported by the National Natural Science Foundation of China (grant 11771175). The second author was partially supported by Austrian Science Fund grant P32305.

References

- G. E. ANDREWS, On q-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (3) (1976), 332–336.
- [2] B. C. BERNDT, Ramanujan's congruences for the partition function modulo 5, 7, and 11. Int. J. Number Theory 3 (3) (2007), 349–354.
- [3] G. GASPER, Summation formulas for basic hypergeometric series, SIAM J. Math. Anal. 12 (1981), 196–200.
- [4] G. GASPER, Rogers' linearization formula for the continuous q-ultraspherical polynomials and quadratic transformation formulas, SIAM J. Math. Anal. 16 (1985), 1061–1071.
- [5] G. GASPER and M. RAHMAN, Basic hypergeometric series, 2nd edition, Encyclopedia Math. Appl. 96 (Cambridge Univ. Press, Cambridge, 2004).
- [6] O. GORODETSKY, q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon, Int. J. Number Theory 15 (2019), 1919–1968.
- [7] A. GRANVILLE, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. in: Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20, Amer. Math. Soc., Providence, RI, 1997; pp. 253–276.
- [8] C.-Y. GU and V. J. W. GUO, q-Analogues of two supercongruences of Z.-W. Sun, Czechoslovak Math. J. 70 (3) (2020), 757–765.
- [9] V. J. W. GUO, Common q-analogues of some different supercongruences, Results Math. 74 (2019), Art. 131.
- [10] V. J. W. GUO, Some q-congruences with parameters, Acta Arith. 190 (2019), 381–393.
- [11] V. J. W. GUO, A q-analogue of a curious supercongruence of Guillera and Zudilin, J. Difference Equ. Appl. 25 (2019), 342–350.
- [12] V. J. W. Guo, A further q-analogue of Van Hamme's (H.2) supercongruence for primes $p \equiv 3 \pmod{4}$, Int. J. Number Theory (2021), DOI: 10.1142/S1793042121500329.
- [13] V. J. W. Guo, Another family of *q*-congruences modulo the square of a cyclotomic polynomial, submitted.
- [14] V. J. W. GUO, H. PAN and Y. ZHANG, The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions, J. Number Theory 174 (2017), 358–368.
- [15] V. J. W. GUO and M. J. SCHLOSSER, Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial, J. Difference Equ. Appl. 25(7) (2019), 921–929.
- [16] V. J. W. GUO and M. J. SCHLOSSER, Some new q-congruences for truncated basic hypergeometric series: even powers, *Results Math.* 75, 1 (2020).
- [17] V. J. W. GUO and M. J. SCHLOSSER, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, *Israel J. Math.* 240 (2020), 821–835.
- [18] V. J. W. GUO and M. J. SCHLOSSER, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155–200.
- [19] V. J. W. GUO and J. ZENG, New congruences for sums involving Apéry numbers or central Delannoy numbers, Int. J. Number Theory 8 (2012), 2003–2016.
- [20] V. J. W. GUO and J. ZENG Some q-supercongruences for truncated basic hypergeometric series, Acta Arith. 171 (2015), no. 4, 309–326.
- [21] V. J. W. GUO and W. ZUDILIN, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329–358.
- [22] V. J. W. GUO and W. ZUDILIN, On a q-deformation of modular forms, J. Math. Anal Appl. 475 (2019), 1636–646.
- [23] R. LANGER, M. J. SCHLOSSER, and S. O. WARNAAR, Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture, *SIGMA* 05 (2009), 055, 20 pp.
- [24] Y. LI, D. KIM, and L. MA, Gaussian binomial coefficients modulo cyclotomic polynomials, J. Number Theory 168 (2016), 154–166.

- [25] J. LIU, H. PAN and Y. ZHANG, A generalization of Morley's congruence, Adv. Differ. Equ. (2015) 2015:254.
- [26] G.-S. MAO and H. PAN, On the divisibility of some truncated hypergeometric series, Acta Arith. 195 (2020), 199–206.
- [27] H.-X. NI and H. PAN, Some symmetric q-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl. 481 (2020), Art. 123372.
- [28] R. OSBURN, A. STRAUB and W. ZUDILIN, A modular supercongruence for $_6F_5$: an Apéry-like story, Ann. Inst. Fourier (Grenoble) **68** (2018), 1987–2004.
- [29] A. STRAUB, Supercongruences for polynomial analogs of the Apéry numbers, Proc. Amer. Math. Soc. 147 (2019), 1023–1036.
- [30] H. SWISHER, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015), Art. 18, 21 pp.
- [31] Z.-W. SUN, On congruences related to central binomial coefficients, J. Number Theory 131 (2011), 2219–2238.
- [32] Z.-W. SUN, On sums of Apéry polynomials and related congruences, J. Number Theory 132 (2012), 2673–2690.
- [33] R. TAURASO, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), 133–143.
- [34] L. VAN HAMME, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997; pp. 223–236.
- [35] W. ZUDILIN, Congruences for q-binomial coefficients, Ann. Comb. 23 (3-4) (2019), 1123–1135.

SCHOOL OF MATHEMATICS AND STATISTICS, HUAIYIN NORMAL UNIVERSITY, HUAI'AN 223300, JIANGSU, PEOPLE'S REPUBLIC OF CHINA

E-mail address: jwguo@hytc.edu.cn

FACULTY OF MATHEMATICS, UNIVERSITY OF VIENNA, OSKAR-MORGENSTERN-PLATZ 1, A-1090 VIENNA, AUSTRIA

E-mail address: michael.schlosser@univie.ac.at

DEPARTMENT OF MATHEMATICS, IMAPP, RADBOUD UNIVERSITY, PO Box 9010, 6500 GL NIJMEGEN, NETHERLANDS

E-mail address: w.zudilin@math.ru.nl