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Abstract. Recently, Z.-W. Sun proposed the following conjecture: for any odd
prime p and positive odd integer m,
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In this note, employing the “creative microscoping” method, introduced by the
first author and Zudilin, we confirm the above conjecture of Sun, as well as another
four similar supercongruences conjectured by Sun.

1. Introduction

Let p be an odd prime and let (a
b
) denote the Kronecker symbol. Mortenson [16,17]

proved the following four supercongruences:
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which were originally conjectured by Rodriguez-Villegas [22, (36)]. Note that the
sum in (1.1) can be truncated at (p− 1)/2, since

(
2k
k

) ≡ 0 (mod p) for (p− 1)/2 <
k 6 p − 1. For a simple proof of (1.1)–(1.4), we refer the reader to [23]. Some
q-analogues of (1.1)–(1.4) are given in [2, 6, 9, 19]. More recent q-supercongruences
can be found in [3–5,7, 8, 10,11,13–15,18,20,21,27–31].
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Recently, Sun [25, Conjecture 11(i)] made the following conjecture: For any prime
p > 3 and positive odd integer m,
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where En is the n-th Euler number. It is clear that (1.5) is a generalization of (1.1),
and the m = 1 case was already proved by Sun himself [24].

In this paper, we shall prove the supercongruence (1.5) modulo p2 by establishing
the following q-counterpart.

Theorem 1.1. Let m and n be positive odd integers with n > 1. Then
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≡ 0 (mod Φn(q)2). (1.6)

Moreover, the denominator of (the reduced form of ) the left-hand side of (1.6) is
relatively prime to Φnj(q) for any index j > 2.

Here and in what follows, the q-integer is defined by [n]q = 1+q+· · ·+qn−1, the q-
shifted factorial is defined by (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) for n = 0, 1, . . . ,
and the q-binomial coefficient is defined as

[
m
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]

q

=





(q; q)m
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, if 0 6 n 6 m,

0, otherwise.

Moreover, Φn(q) is the n-th cyclotomic polynomial in q given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
It is easy to see that Φn(1) = p if n = pr (r > 1) is a prime power and Φn(1) = 1

otherwise. Meanwhile, the denominator of (1.6) is clearly a product of cyclotomic
polynomials. This implies that the supercongruence (1.5) modulo p2 immediately
follows from (1.6) by putting n = p and taking q → 1, since limq→1(q; q

2)k/(q
2; q2)k =(

2k
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)
/4k.

Sun (see [26, Conjecture 5.4]) also proposed the following generalizations of (1.1)–
(1.4): For any prime p > 3 and positive integer m,
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Note that the supercongruences (1.7)–(1.10), without the fractions before the brack-
ets, have been obtained by Liu [12]. Moreover, in the case where m = pr−1, the
supercongruence (1.7) was proved by the first author and Zudilin [11], and the su-
percongruences (1.8)–(1.10) were confirmed by the second author [18].

Let 〈x〉n denote the least nonnegative residue of x modulo n. In this paper, we
shall prove (1.7)–(1.10) by establishing the following q-supercongruence.

Theorem 1.2. Let s, d, m be positive integers with s < d. Let n > 1 be an odd
integer with n ≡ ±1 (mod d). Then, modulo Φn(q)2,
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Moreover, the denominator of (the reduced form of ) the left-hand side of (1.11) is
relatively prime to Φnj(q) for any index j > 2.

It is easy to see that, for any odd prime p,
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.

For d = 2, 3, 4, 6, and any prime p > 3, we always have p ≡ ±1 (mod d). Thus, for
d = 2, 3, 4, 6, s = 1, letting n be a prime and then taking q → 1 in Theorem 1.2, we
obtain the supercongruences (1.7)–(1.10).

Moreover, for general d and s, letting n = p and q → 1 in Theorem 1.2, we are
led to the following result, which confirms the first part of [25, Conjecture 10].

Corollary 1.3. Let s, d, m be positive integers with s < d. Let p be an odd prime
with p ≡ ±1 (mod d). Then
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We shall prove Theorem 1.1 in the next section by using the ‘creative microscoping’
method devised by the first author and Zudilin [10]. More precisely, we shall first
give a generalization of Theorem 1.1 with an additional parameter a, and then we
deduce Theorem 1.1 from this generalization by choosing a = 1. Finally, we shall
prove Theorem 1.2 in Section 3 using the same method.

2. Proof of Theorem 1.1

We need the following result, which was proved by the first author [2, Corollary
1.4].

Lemma 2.1. Let d, n, and s be positive integers with gcd(d, n) = 1 and n odd.
Then, modulo (1− aqs+d〈−s/d〉n)(a− qd−s+d〈(s−d)/d〉n),
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We have the following parametric generalization of Theorem 1.1.
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for k > ((2j + 1)n − 1)/2. In view of (2.5), the left-hand side of (2.4) is equal to( −1

(2j+1)n

)
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where
(−1

1

)
is understood to be 1. This establishes the identity (2.4), and so the

q-congruence (2.3) holds. ¤

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is well known that

qN − 1 =
∏

d|N
Φd(q).

Let bxc stand for the integral part of a real number x. For any positive integer
j, there exist bm/nj−1c − b(m − 1)/(2nj−1)c multiples of nj−1 in the arithmetic
progression 1, 3, . . . , m. Thus, the a = 1 case of (2.2) has the factor

∞∏
j=1

Φnj(q)2bm/nj−1c−2b(m−1)/(2nj−1)c.

On the other hand, the least common denominator of the left-hand side of (2.3)
is a multiple of that of the right-hand side of (2.3). The former is at most equal to
(q2; q2)2

(mn−1)/2(−q2; q2)(mn−1)/2 and its factor related to Φn(q), Φn2(q), . . . is just

∞∏
j=1

Φnj(q)2b(mn−1)/(2nj)c,

since (−q2; q2)(mn−1)/2 is relatively prime to Φnj(q) for any j > 1.
Furthermore, writing [m]q = (q; q)m/((1− q)(q; q)m−1), the central q-binomial co-

efficient
[

m−1
(m−1)/2

]
as a product of different cyclotomic polynomials (see [1]), and then

utilizing the fact Φnj(qn) = Φnj+1(q), we see that the polynomial [m]2qn

[
m−1

(m−1)/2

]2

qn

only has the following factor

∞∏
j=2

Φnj(q)2bm/nj−1c−4b(m−1)/(2nj−1)c

related to Φn(q), Φn2(q), . . . .
It is clear that

2bm/nj−1c − 2b(m− 1)/(2nj−1)c − 2b(mn− 1)/(2nj)c = 2 for j = 1,

and

b(mn− 1)/(2nj)c = b(m− 1)/(2nj−1)c for j > 1.

Therefore, letting a = 1 in (2.3), we conclude that the q-congruence (1.6) holds,
and the denominator on the left-hand side of (1.6) is not divisible by Φnj(q) for any
index j > 2. This completes the proof. ¤
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3. Proof of Theorem 1.2

We first establish the following parametric generalization of Theorem 1.2 for n ≡ 1
(mod d).

Theorem 3.1. Let s, d, m be positive integers with s < d. Let n > 1 be an odd
integer with n ≡ 1 (mod d). Then, modulo

m−1∏
j=0

(1− aqn(dj+s))(a− qn(dj+d−s)), (3.1)

we have

mn−1∑

k=0

2(aqs; qd)k(q
d−s/a; qd)kq

dk

(qd; qd)2
k(1 + qdk)

≡ (−1)〈−s/d〉n
m−1∑

k=0

2(aqsn; qdn)k(q
(d−s)n/a; qdn)kq

dnk

(qdn; qdn)2
k(1 + qdnk)

.

(3.2)

Proof. We need to show that both sides of (3.2) are equal for a = q−(dj+s)n and
a = qn(dj+d−s) (j = 0, 1, 2, . . . , m− 1). Namely,

mn−1∑

k=0

2(qs−n(dj+s); qd)k(q
d−s+n(dj+s); qd)kq

dk

(qd; qd)2
k(1 + qdk)

= (−1)〈−s/d〉n
m−1∑

k=0

2(qsn−n(dj+s); qdn)k(q
(d−s)n+n(dj+s); qdn)kq

dnk

(qdn; qdn)2
k(1 + qdnk)

, (3.3)

and

mn−1∑

k=0

2(qs+n(dj+d−s); qd)k(q
d−s−n(dj+d−s); qd)kq

dk

(qd; qd)2
k(1 + qdk)

= (−1)〈−s/d〉n
m−1∑

k=0

2(qsn+n(dj+d−s); qdn)k(q
(d−s)n−n(dj+d−s); qdn)kq

dnk

(qdn; qdn)2
k(1 + qdnk)

. (3.4)

It is clear that mn − 1 > nj + s(n − 1)/d and mn − 1 > nj + (d − s)(n − 1)/d
for j = 0, 1, 2, . . . , m − 1. Since n ≡ 1 (mod d), we get 〈−s/d〉n = s(n − 1)/d and
〈(s− d)/d〉n = (d− s)(n− 1)/d. By Lemma 2.1, the left-hand side of (3.3) is equal
to

(−1)nj+s(n−1)/d.

Similarly, the right-hand side of (3.3) is equal to

(−1)(sn−s)/d(−1)j = (−1)j+s(n−1)/d,

thus establishing (3.3). In the same way, we can also prove that both sides of (3.4)
are equal to (−1)j+(d−s)(n−1)/d. This proves the q-congruence (3.2). ¤

We now give a parametric generalization of Theorem 1.2 for n ≡ −1 (mod d).
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Theorem 3.2. Let s, d, m be positive integers with s < d. Let n > 1 be an odd
integer with n ≡ −1 (mod d). Then, modulo (3.1),

mn−1∑

k=0

2(qs/a; qd)k(aqd−s; qd)kq
dk

(qd; qd)2
k(1 + qdk)

≡ (−1)〈−s/d〉n
m−1∑

k=0

2(aqsn; qdn)k(q
(d−s)n/a; qdn)kq

dnk

(qdn; qdn)2
k(1 + qdnk)

.

(3.5)

Proof. For a = q−n(dj+s) with 0 6 j 6 m − 1, by Lemma 2.1, the left-hand side of
(3.5) is equal to

mn−1∑

k=0

2(qs+n(dj+s); qd)k(q
d−s−n(dj+s); qd)kq

dk

(qd; qd)2
k(1 + qdk)

= (−1)j−1+s(n+1)/d,

Similarly, the right-hand side of (3.5) is equal to

(−1)〈−s/d〉n(−1)j = (−1)n−(n+1)s/d+j = (−1)j−1+s(n+1)/d,

where we have used the fact that 〈−s/d〉n = n− s(n + 1)/d since n ≡ −1 (mod d).
Hence, the q-congruence (3.5) is true modulo

∏m−1
j=0 (1− aqn(dj+s)).

For a = qn(dj+d−s) with 0 6 j 6 m− 1, the left-hand side of (3.5) is equal to

mn−1∑

k=0

2(qs−n(dj+d−s); qd)k(q
(d−s)+n(dj+d−s); qd)kq

dk

(qd; qd)2
k(1 + qdk)

= (−1)j−1+s(n+1)/d,

which is the same as the right-hand side of (3.5). This proves (3.5) modulo
∏m−1

j=0 (a−
qn(dj+d−s)). ¤

Proof of Theorem 1.2. We first consider the n ≡ 1 (mod d) case. For any positive
integer j, there exist exactly

⌊
(m− 1)− s(nj−1 − 1)/d

nj−1

⌋
+ 1

multiples of nj−1 in the set {dj + s : j = 0, . . . , m− 1}, and there exist exactly
⌊

(m− 1)− (d− s)(nj−1 − 1)/d

nj−1

⌋
+ 1

multiples of nj−1 in the set {dj + d− s : j = 0, . . . , m− 1}. Thus, the a = 1 case of
(3.1) has the factor

∏
j>1

Φnj(q)

⌊
(m−1)−s(nj−1−1)/d

nj−1

⌋
+

⌊
(m−1)−(d−s)(nj−1−1)/d

nj−1

⌋
+2

.

Similarly, using the fact Φnj(qn) = Φnj+1(q), we conclude that the denominator
of the reduced form of the fraction

(qdn; qdn)2
m

[m]2qn(qsn; qdn)m(q(d−s)n; qdn)m
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only has the following factor

∏
j>2

Φnj(q)

⌊
(m−1)−s(nj−1−1)/d

nj−1

⌋
+

⌊
(m−1)−(d−s)(nj−1−1)/d

nj−1

⌋
+2−2b m−1

nj−1 c

related to Φn(q), Φn2(q), . . . .
On the other hand, the least common denominator of the left-hand side of (3.2)

is divisible by that of the right-hand side of (3.2). The former is at most equal to
(qd; qd)2

mn−1

∏mn−1
k=1 (1 + qdk) and its factor related to Φn(q), Φn2(q), . . . is just

∞∏
j=1

Φnj(q)2b(mn−1)/njc.

It is clear that

2
⌊
(m− 1)/nj−1

⌋
+ 2− 2

⌊
(mn− 1)/nj

⌋
= 2 for j = 1, (3.6)

and ⌊
(m− 1)/nj−1

⌋
=

⌊
(mn− 1)/nj

⌋
for j > 1. (3.7)

Thus, taking a = 1 in (3.2), we see that the n ≡ 1 (mod d) case of (1.11) is true
modulo Φn(q)2, and the denominator of (the reduced form of) the left-hand side of
(1.11) is relatively prime to Φnj(q) for any index j > 2.

We now consider the n ≡ −1 (mod d) case. The proof is similar to that of the
n ≡ 1 (mod d) case (firstly let a = 1 in (3.5) and finally employ (3.6) and (3.7)).
However, there is no need to give the factor of the a = 1 case of (3.1) related to
Φn(q), Φn2(q), . . . (it is not so easy as before). This is because the a = 1 case of (3.1)
is just (qsn; qdn)m(q(d−s)n; qdn)m, which appears in the denominator of the fraction
before the summation in (1.11). ¤

Data availability. All data generated during this study are included in the pub-
lished article.
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