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1. Introduction

Rodriguez-Villegas [18] investigated hypergeometric families of Calabi–Yau manifolds, and
found (numerically) many possible supercongruences. His simplest supercongruence is as
follows: for any odd prime p,

p−1∑

k=0

(1
2
)2
k

k!2
≡ (−1)(p−1)/2 (mod p2), (1.1)

where (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol. Mortenson [16]
first proved this supercongruence. Guo and Zeng [10] gave a q-analogue of (1.1):

p−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

q2k ≡ (−1)(p−1)/2q(p2−1)/4 (mod [p]2) for any odd prime p. (1.2)

Here and in what follows, (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) is the q-shifted factorial,
and [n] = 1 + q + · · · + qn−1 is the q-integer. For simplicity, we also use the condensed
notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. The author [6] established the
following extension of (1.1): Let d > 2 and r 6 d− 2 be integers such that gcd(r, d) = 1.
Then, for all positive integers n with n ≡ −r (mod d) and n > d− r, we have

n−1∑

k=0

(qr; qd)d
kq

dk

(qd; qd)d
k

≡ 0 (mod Φn(q)2). (1.3)
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Here Φn(q) is the n-th cyclotomic polynomial in q given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. For more recent q-congruences, we refer the
reader to [1, 7–9,11–14,17,22–24].

On the other hand, Deines et al. [2] proved the following interesting generalization of
(1.1): for any integer d > 1 and prime p ≡ 1 (mod d),

p−1∑

k=0

(d−1
d

)d
k

k!d
≡ −Γp(

1
d
)d (mod p2). (1.4)

Here Γp(x) denotes the p-adic Gamma function (for any odd prime p), which may be
defined as follows: for any positive integer n,

Γp(n) := (−1)n
∏

16k6n−1
gcd(k,p)=1

k,

Γp(0) := 1, and for any p-adic integer x 6= 0,

Γp(x) := lim
n→x

Γp(n).

where n ranges over any sequence of positive integers p-adically approaching x.
In this paper, we shall give a q-analogue of (1.4), which is also a generalization of (1.2)

and can be deemed a complement to (1.3).

Theorem 1.1. Let d, n > 1 be integers with n ≡ 1 (mod d). Then, modulo Φn(q)2,

n−1∑

k=0

(qd−1; qd)d
kq

dk

(qd; qd)d
k

≡ (qd; qd)(d−1)(n−1)/d q(d−1)(n−1)(d+n−1)/(2d)

(qd; qd)d−1
(n−1)/d(−1)(d−1)(n−1)/d

. (1.5)

For n prime, letting q → 1 in Theorem 1.1, we get the following supercongruence: For
any integer d > 1 and prime p ≡ 1 (mod d),

p−1∑

k=0

(d−1
d

)d
k

k!d
≡ (−1)(d−1)(p−1)/d

( (d−1)(p−1)
d

)
!

(p−1
d

)!d−1
(mod p2). (1.6)

Since p − 1 is even, we have (−1)(p−1)/d = (−1)(d−1)(p−1)/d. Moreover, by [2, (18) with
y = −1], there holds

(p− 1)!

(1− p)(p−1)/d(
p−1

d
)!d−1

≡ −Γp(
1
d
)d (mod p2). (1.7)
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It is clear that

(p− 1)!

(1− p)(p−1)/d

= (−1)(p−1)/d
( (d−1)(p−1)

d

)
!. (1.8)

Thus, the supercongruence (1.6) is equivalent to (1.4).
We shall also give the following supercongruence similar to (1.4).

Theorem 1.2. Let d > 1 be an integer and let p ≡ 1 (mod d) be a prime. Then

p−1∑

k=0

k(d−1
d

)d
k

k!d
≡ (d− 1)Γp(

1
d
)d

2d
(mod p2). (1.9)

Since Γp(
1
2
)2 = (−1)(p+1)/2, for d = 2, the supercongruence (1.9) reduces to

p−1∑

k=0

k(1
2
)2
k

k!2
≡ (−1)(p+1)/2

4
(mod p2), (1.10)

which was generalized to the modulus p3 case for p > 3 by Sun [19, Theorem 1.2, Equations
(1.8) and (1.10)].

One of the referees found that the following supercongruence related to (1.10) seems
to be true.

Conjecture 1.3. Let p ≡ 1 (mod 4) be a prime and r > 1. Then

pr−1∑

k=0

(
k − p2r − 1

4

)
(1

2
)2
k

k!2
≡ 0 (mod p2r+1). (1.11)

Note that the r = 1 case of (1.11) follows directly from [19, Theorem 1.2, Equations
(1.7)–(1.10)].

The rest of the paper is arranged as follows. We shall prove Theorems 1.1 and 1.2 in
Sections 2 and 3, respectively. Two similar q-supercongruence will be given in Section 4.
Finally, we put forward three related conjectures in Section 5.

2. Proof of Theorem 1.1

We will utilize a Karlsson–Minton type summation due to Gasper (see [5, (1.9.9)]; and
see also [4, (5.13)] for a more general form): for nonnegative integers n1, . . . , nm,

N∑

k=0

(q−N , b1q
n1 , . . . , bmqnm ; q)k

(q, b1, . . . , bm; q)k

qk = (−1)N (q; q)Nbn1
1 · · · bnm

m

(b1; q)n1 · · · (bm; q)nm

q(
n1
2 )+···+(nm

2 ), (2.1)

where N = n1 + · · ·+ nm.
We first establish the following parametric generalization of Theorem 1.1 by using the

method of ‘creative microscoping’ introduced in [11].
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Theorem 2.1. Let d, n > 1 be integers with n ≡ 1 (mod d). Then, modulo (1− aqn)(a−
qn),

n−1∑

k=0

(ad−1qd−1, ad−3qd−1, . . . , a3−dqd−1, a1−dqd−1; qd)kq
dk

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)k(qd; qd)k

≡ (−1)(d−1)(n−1)/d(qd; qd)(d−1)(n−1)/d q(d−1)(n−1)(d+n−1)/(2d)

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)(n−1)/d

. (2.2)

Proof. Since gcd(d, n) = 1, none of the numbers d, 2d, . . . (n − 1)d are multiples of n.
This implies that the denominators of the left-hand side of (2.2) do not contain the factor
1 − aqn nor 1 − a−1qn. Hence, for a = q−n or a = qn, the left-hand side of (2.2) can be
written as

(d−1)(n−1)/d∑

k=0

(q−(d−1)(n−1), qd−1−(d−3)n, . . . , qd−1+(d−3)n, q(d−1)(n+1); qd)kq
dk

(qd−(d−2)n, qd−(d−4)n, . . . , qd+(d−4)n, qd+(d−2)n; qd)k(qd; qd)k

, (2.3)

where we have used the fact that (q−(d−1)(n−1); qd)k = 0 for k > (d− 1)(n− 1)/d. Letting
q 7→ qd, N = (d−1)(n−1)/d, m = d−1, bj = qd−(d−2j)n and nj = (n−1)/d (1 6 j 6 d−1)
in (2.1), we see that (2.3) is equal to

(−1)(d−1)(n−1)/d(qd; qd)(d−1)(n−1)/dq
(d−1)(n−1)+(d−1)((n−1)/d

2 )

(qd−(d−2)n, qd−(d−4)n, . . . , qd+(d−4)n, qd+(d−2)n; qd)(n−1)/d

,

which is just the a = q−n or a = qn case of (2.2). Namely, the congruence (2.2) holds. 2

Proof of Theorem 1.1. It is well known that Φn(q) is a factor of 1 − qm if and only if n
divides m. Therefore, when a = 1, the denominators of (2.2) are relatively prime to Φn(q).
On the other hand, when a = 1, the polynomial (1 − aqn)(a − qn) = (1 − qn)2 contains
the factor Φn(q)2. Thus, the congruence (1.5) immediately follows from the a = 1 case of
(2.2). 2

3. Proof of Theorem 1.2

Let n > 1 be an integer with n ≡ 1 (mod d). Making the substitution q 7→ q−1 in (1.5),
we obtain its dual form: Modulo Φn(q)2,

n−1∑

k=0

(qd−1; qd)d
k

(qd; qd)d
k

≡ (qd; qd)(d−1)(n−1)/d q−(d−1)(n−1)(dn−n+1)/(2d)

(qd; qd)d−1
(n−1)/d(−1)(d−1)(n−1)/d

. (3.1)

Subtracting (1.5) from (3.1) and dividing both sides by 1− q, we arrive at

n−1∑

k=0

(qd−1; qd)d
k(1− qdk)

(qd; qd)d
k(1− q)
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≡ (qd; qd)(d−1)(n−1)/d q−(d−1)(n−1)(dn−n+1)/(2d)(1− q(d−1)(n2−1)/2)

(qd; qd)d−1
(n−1)/d(−1)(d−1)(n−1)/d(1− q)

(mod Φn(q)2).

Letting n = p be a prime and taking the limit as q → 1 in the above q-supercongruence,
we are led to the following result: for any integer d > 1 and prime p ≡ 1 (mod d),

p−1∑

k=0

(d−1
d

)d
k

k!d
dk ≡

( (d−1)(p−1)
d

)
!(d− 1)(p2 − 1)

2(−1)(d−1)(p−1)/d(p−1
d

)!d−1

≡ −( (d−1)(p−1)
d

)
!(d− 1)

2(−1)(p−1)/d(p−1
d

)!d−1
(mod p2).

The proof of (1.9) then follows from (1.7) and (1.8).

4. Two similar q-supercongruences

In this section, we give two more q-supercongruences using Gasper’s Karlsson–Minton
type summation (2.1) and the ‘creative microscoping’ method.

Theorem 4.1. Let d > 3 be an odd integer. Let n be a positive integer with n ≡ −1
(mod d) and n > 2d− 1. Then, modulo Φn(q)2,

n−1∑

k=0

(qd+1; qd)d−1
k (q1−d; qd)kq

dk

(qd; qd)d
k

≡ −(1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d

(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2−2d)/(2d). (4.1)

Proof. We first prove the following parametric congruence: modulo (1− aqn)(a− qn),

n−1∑

k=0

(ad−1qd+1, ad−3qd+1, . . . , a2qd+1, q1−d, a−2qd+1, . . . , a3−dqd+1, a1−dqd+1; qd)kq
dk

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)k(qd; qd)k

≡ − (1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)(n+1)/d

q(d(d+n)(n+1)−(n+1)2−2d)/(2d). (4.2)

In fact, for a = q−n or a = qn, the left-hand side of (4.2) can be written as

n−1∑

k=0

(qd+1−(d−1)n, qd+1−(d−3)n, . . . , qd+1−2n, q1−d, qd+1+2n, . . . , qd+1+(d−3)n, qd+1+(d−1)n; qd)k

(qd−(d−2)n, qd−(d−4)n, . . . , qd+(d−4)n, qd+(d−2)n; qd)k(qd; qd)kq−dk
.

(4.3)

Note that (qd+1−(d−1)n; qd)k = 0 for k > n − 1 − (n + 1)/d. Letting q 7→ qd, N =
n−1− (n+1)/d, m = d−1, bj = qd−(d−2j)n (1 6 j 6 d−1), n(d−1)/2 = (n+1)/d−2, and
nj = (n + 1)/d (1 6 j 6 d− 1 and j 6= (d− 1)/2) in (2.1), we see that (4.3) is equal to

(qd; qd)n−1−(n+1)/d q(d−1)(n+1)−2(d−n)+d(d−2)((n+1)/d
2 )+d((n+1)/d−2

2 )

(qd−(d−2)n, qd−(d−4)n, . . . , qd−3n, qd+n, qd+3n, . . . , qd+(d−4)n, qd+(d−2)n; qd)(n+1)/d
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× 1

(qd−n; qd)(n+1)/d−2

=
−(1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d q(d(d+n)(n+1)−(n+1)2−2d)/(2d)

(qd−(d−2)n, qd−(d−4)n, . . . , qd−3n, qd−n, qd+n, qd+3n, . . . , qd+(d−4)n, qd+(d−2)n; qd)(n+1)/d

,

which is just the a = q−n or a = qn case of (4.2), thus establishing the expected congruence
(4.2).

The proof of (4.1) then follows by letting a = 1 in (4.2). 2

We have the following conclusion.

Corollary 4.2. For any odd integer d > 3 and prime p ≡ −1 (mod d) with p > 2d− 1,

p−1∑

k=0

(d+1
d

)d−1
k (1−d

d
)k

k!d
≡ d− 1

d2
Γp(−1

d
)d (mod p2).

Proof. For n = p, letting q → 1 in Theorem 4.1, we obtain

p−1∑

k=0

(d+1
d

)d−1
k (1−d

d
)k

k!d
≡ −(d− 1)

(
p− 1− p+1

d

)
!

d2(p+1
d

)!d−1
(mod p2).

It remains to show that
(
p− 1− p+1

d

)
!

(p+1
d

)!d−1
= −Γp(−1

d
)d.

Let Zp be the ring of all p-adic integers. For x ∈ Zp, the function Γp(x) has the following
properties (see [15, Theorem 14]):

(i) Γp(x + 1)/Γp(x) = −x unless x ∈ pZp in which case the quotient equals −1;

(ii) Γp(x)Γp(1− x) = (−1)a0(x), where a0(x) denotes the least positive residue of x;

(iii) For any prime p > 5, there exists G1(x) ∈ Zp such that for any y ∈ Zp,

Γp(x + yp) ≡ Γp(x)(1 + G1(x)yp) (mod p2).

Set m = p+1
d

. Then m is even. By (i), we have Γp(−m) = 1/m! and Γp(−p) = −1/(p−1)!.
Moreover, by (i) and (ii),

1

(1− p)m

=
(−1)mΓp(1− p)

Γp(1− p + p+1
d

)
=

(−1)m−1Γp(−p)

Γp(1 + 1
d

+ p
d
− p)

= Γp(−1
d

+ (1− 1
d
)p)Γp(−p).

It follows that
(
p− 1− p+1

d

)
!

(p+1
d

)!d−1
=

(p− 1)!

(1− p)mm!d−1
= −Γp(−p+1

d
)d−1Γp(−1

d
+ (1− 1

d
)p)
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≡ −Γp(−1
d
)d(1−G1(−1

d
)1

d
p)d−1(1 + G1(−1

d
)(1− 1

d
)p)

≡ −Γp(−1
d
)d (mod p2), (4.4)

as desired. 2

Theorem 4.3. Let d > 4 be an even integer and let n be a positive integer with n ≡ −1
(mod d). Then, modulo Φn(q)2,

n−1∑

k=0

(qd+1; qd)d−2
k (q; qd)2

kq
dk

(qd; qd)d
k

≡ (−1)(n+1)/d (1− q)2(qd; qd)n−1−(n+1)/d

(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2−4d)/(2d). (4.5)

Proof. This time we need to prove the following parametric generalization of (4.5): mod-
ulo (1− aqn)(a− qn),

n−1∑

k=0

(ad−1qd+1, ad−3qd+1, . . . , a3qd+1, aq, a−1q, a−3qd+1, . . . , a3−dqd+1, a1−dqd+1; qd)kq
dk

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)k(qd; qd)k

≡ (−1)(n+1)/d (1− aq)(1− q/a)(qd; qd)n−1−(n+1)/d q(d(d+n)(n+1)−(n+1)2−4d)/(2d)

(ad−2qd, ad−4qd, . . . , a4−dqd, a2−dqd; qd)(n+1)/d(qd; qd)(n+1)/d

. (4.6)

It is equivalent to say that both sides are equal for a = q−n and a = qn. But this follows
from the q 7→ qd, N = n − 1 − (n + 1)/d, m = d − 1, bj = qd−(d−2j)n (1 6 j 6 d − 1),
n(d−2)/2 = nd/2 = (n+1)/d−1, and nj = (n+1)/d (1 6 j 6 d−1 and j 6= (d−2)/2, d/2)
case of (2.1) and the relations

(qd−2n; qd)(n+1)/d−1 = (qd−2n; qd)(n+1)/d/(1− q1−n),

(qd; qd)(n+1)/d−1 = (qd; qd)(n+1)/d/(1− q1+n).

Like before, letting a = 1 in (4.6), we are led to (4.5). 2

Similarly, we have the following supercongruences.

Corollary 4.4. For any even integer d > 4 and prime p ≡ −1 (mod d),

p−1∑

k=0

(d+1
d

)d−2
k (1

d
)2
k

k!d
≡ −Γp(−1

d
)d

d2
(mod p2). (4.7)

Proof. For n = p, taking q → 1 in Theorem 4.3, we get

p−1∑

k=0

(d+1
d

)d−2
k (1

d
)2
k

k!d
≡ (−1)(p+1)/d

(
p− 1− p+1

d

)
!

d2(p+1
d

)!d−1
(mod p2).
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This time ((p + 1)/d is not necessarily even), we have

(
p− 1− p+1

d

)
!

(p+1
d

)!d−1
≡ −(−1)(p+1)/dΓp(−1

d
)d (mod p2) (4.8)

for p > 5, and (4.7) holds in this case. On the other hand, for d = 4 and p = 3, we can
readily check (4.7). 2

Note that (4.7) also holds for d = 2, which reduces to (1.1).

5. Concluding remarks and open problems

Wang and Pan [21] proved that, for d > 3, the supercongruence (1.4) is also true modulo
p3, which was originally conjectured by Deines–Fuselier–Long–Swisher–Tu [2]. However,
the supercongruence (1.9) does not hold modulo p3 for d > 3 in general. We do not know
whether there is a complete q-analogue of Wang and Pan’s result.

Motivated by Dwork’s work [3] and Swisher’s conjecture [20, (H.3)], we would like to
propose the following Dwork-type supercongruence conjecture.

Conjecture 5.1. Let d > 3 be an integer and let p ≡ 1 (mod d) be a prime. Then, for
r > 1,

pr−1∑

k=0

(d−1
d

)d
k

k!d
≡ −Γp(

1
d
)d

pr−1−1∑

k=0

(d−1
d

)d
k

k!d
(mod p3r), (5.1)

(d−1)(pr−1)/d∑

k=0

(d−1
d

)d
k

k!d
≡ −Γp(

1
d
)d

(d−1)(pr−1−1)/d∑

k=0

(d−1
d

)d
k

k!d
(mod p3r). (5.2)

It should be pointed out that, for d = 2, the supercongruences (5.1) and (5.2) only
hold modulo p2r in general, and this was recently confirmed by the author and Zudilin [12,
Theorem 3.12] through establishing q-analogues of them. Moreover, letting n = pr and
q → 1 in Theorem 1.1, we see that the left-hand sides of (5.1) and (5.2) are congruent to

(−1)(pr−1)/d

( (d−1)(pr−1)
d

)
!

(pr−1
d

)!d−1
(mod p2),

from which we can verify that (5.1) and (5.2) are true modulo p2.
Numerical calculations suggest that the following two conjectures should be true.

Conjecture 5.2. Let d > 4 be an even integer. Let n be a positive integer with n ≡ −1
(mod d) and n > 2d− 1. Then, modulo Φn(q)2,

n−1∑

k=0

(qd+1; qd)d−1
k (q1−d; qd)kq

dk

(qd; qd)d
k
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≡ (−1)n−(n+1)/d (1− q)(1− qd−1)(qd; qd)n−1−(n+1)/d

(qd; qd)d−1
(n+1)/d

q(d(d+n)(n+1)−(n+1)2−2d)/(2d). (5.3)

In particular, for any prime p ≡ −1 (mod d) with p > 2d− 1,

p−1∑

k=0

(d+1
d

)d−1
k (1−d

d
)k

k!d
≡ d− 1

d2
Γp(−1

d
)d (mod p2). (5.4)

Conjecture 5.3. The q-supercongruence (4.5) also holds for any odd integer d > 3. In
particular, for any odd prime p ≡ −1 (mod d),

p−1∑

k=0

(d+1
d

)d−2
k (1

d
)2
k

k!d
≡ −Γp(−1

d
)d

d2
(mod p2). (5.5)

For d = 2, Conjectures 5.2 is true. In fact, noticing that (1−q1−n)(1−q1+n) ≡ (1−q)2

(mod Φn(q)2) (see [8, Section 4]), we see that (5.3) reduces to

n−1∑

k=0

(q3; q2)k(q
−1, q2)k

(q2; q2)2
k

q2k ≡ (−1)(n+1)/2q(n2+3)/4 (mod Φn(q)2),

which is a special case of [17, Theorem 1.1 (see Remark 1.1 with x = q−d)]. Note that the
parametric generalizations of Theorems 4.1 and 4.3 are symmetric in a and a−1. However,
it seems difficult to find such parametric generalizations of the q-supercongruences in
Conjectures 5.2 and 5.3. We hope that an interested reader can make progress on these
two conjectures, at least for the n prime and q → 1 cases (5.4) and (5.5).

Data Availability Statements. Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.
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