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1. Introduction

Jackson’s terminating q-analogue of Dixon’s identity [2, 8]:

a∑
k=−a

(−1)kq
3k2+k

2

[
a + b

a + k

][
b + c

b + k

][
c + a

c + k

]
=

[
a + b + c

a + b

][
a + b

a

]
, (1.1)

where the q-binomial coefficients are defined by

[
n

k

]
=


(1− q)(1− q2) · · · (1− qn)

(1− q)(1− q2) · · · (1− qk)(1− q)(1− q2) · · · (1− qn−k)
, if 0 6 k 6 n,

0, otherwise,

is an important identity in combinatorics and number theory. Note that Dixon’s identity
(see [8], [12, p. 43, (IV)], or [9, p. 11, (2.6)]) is the q = 1 case of (1.1). Several short proofs
of the Dixon or q-Dixon identity can be found in [4–7]. The q-Dixon identity can also be
deduced from the q-Pfaff-Saalschütz identity (see [7, 13]).

Recently, Mickic [10,11] gave an elementary proof of Dixon’s identity and some other
binomial coefficient identities by using recurrences and induction. The aim of this note is
to give a new proof of (1.1) by generalizing the argument of [10,11].
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2. Proof of (1.1)

For any integer n, let [n] = 1−qn

1−q
. Denote the left-hand side of (1.1) by S(a, b, c). We

introduce two auxiliary sums as follows:

P (a, b, c) :=
a∑

k=−a

(−1)kq
3k2+k

2 [a− k][a + k]

[
a + b

a + k

][
b + c

b + k

][
c + a

c + k

]
, (2.1)

Q(a, b, c) :=
a∑

k=−a

(−1)kq
3k2+k

2 [b− k][b + k]

[
a + b

a + k

][
b + c

b + k

][
c + a

c + k

]
. (2.2)

It is easy to see that [k]
[
n
k

]
= [n]

[
n−1
k−1

]
, and so, for a, b, c > 1,

P (a, b, c) = [a + b][a + c]
a−1∑

k=−a+1

(−1)kq
3k2+k

2

[
a− 1 + b

a− 1 + k

][
b + c

b + k

][
c + a− 1

c + k

]
,

= [a + b][a + c]S(a− 1, b, c). (2.3)

Similarly, we have

Q(a, b, c) = [a + b][b + c]S(a, b− 1, c). (2.4)

It follows from (2.1) and (2.2) that

P (a, b, c)−Q(a, b, c)qa−b = [a + b][a− b]S(a, b, c). (2.5)

If a 6= b, then from (2.3)–(2.5) we deduce that

S(a, b, c) =
1

[a− b]

(
[a + c]S(a− 1, b, c)− [b + c]S(a, b− 1, c)qa−b

)
. (2.6)

We need to consider the case when a = b = c separately. Noticing the well known
relations (see, for example [1, (3.3.3) and (3.3.4)])[

n

k

]
=

[
n− 1

k

]
qk +

[
n− 1

k − 1

]
=

[
n− 1

k

]
+

[
n− 1

k − 1

]
qn−k,

we have

S(a, a, a)

=
a∑

k=−a

(−1)kq
3k2+k

2

([
2a− 1

a + k

]
qa+k +

[
2a− 1

a + k − 1

])([
2a− 1

a + k

]
+

[
2a− 1

a + k − 1

]
qa−k

)2

=
a∑

k=−a

(−1)kq
3k2+k

2

([
2a− 1

a + k

]3
qa+k +

[
2a− 1

a + k − 1

]3
q2a−2k

+

[
2a

a + k

][
2a− 1

a + k

][
2a− 1

a + k − 1

]
(1 + qa−k + q2a)

)
. (2.7)
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By the symmetry of q-binomial coefficients, it is clear that

a∑
k=−a

(−1)kq
3k2+k

2

[
2a− 1

a + k

]3
qk =

a−1∑
k=−a

(−1)kq
3k2+3k

2

[
2a− 1

a + k

]3
= 0,

a∑
k=−a

(−1)kq
3k2+k

2

[
2a− 1

a + k − 1

]3
q−2k =

a∑
k=−a+1

(−1)kq
3k2−3k

2

[
2a− 1

a + k − 1

]3
= 0,

and
a∑

k=−a

(−1)kq
3k2+k

2

[
2a

a + k

][
2a− 1

a + k

][
2a− 1

a + k − 1

]
qa−k

=
a−1∑

k=1−a

(−1)kq
3k2−k

2

[
2a

a + k

][
2a− 1

a + k

][
2a− 1

a + k − 1

]
qa

= qaS(a, a, a− 1).

Therefore, (2.7) implies that

S(a, a, a) = (1 + qa + q2a)S(a, a, a− 1). (2.8)

We now give a proof of (1.1) by induction on a + b + c. It is clear that (1.1) is true
for a = b = c = 1. Assume that (1.1) holds for all non-negative integers a, b and c with
a + b + c = n. Let a, b and c be non-negative integers satisfying a + b + c = n + 1. We
consider three cases:

• If at least one of the numbers a, b and c is equal to 0, then (1.1) is obviously true.

• If a = b = c, then by the induction hypothesis, we have

S(a, a, a− 1) =

[
3a− 1

2a

][
2a

a

]
.

Therefore, by (2.8), we obtain

S(a, a, a) = (1 + qa + q2a)

[
3a− 1

2a

][
2a

a

]
=

[
3a

2a

][
2a

a

]
.

• If a 6= b, then by (2.6) and the induction hypothesis, we get

S(a, b, c) =
[a + c]

[a− b]

[
a + b + c− 1

a + b− 1

][
a + b− 1

a− 1

]
− [b + c]

[a− b]

[
a + b + c− 1

a + b− 1

][
a + b− 1

a

]
qa−b

=

[
a + b + c

a + b

][
a + b

a

]
,
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as desired. If a = b, then a 6= c, and we can do similarly as before by noticing the
symmetry of a, b and c in S(a, b, c).

Hence, (1.1) holds for a + b + c = n + 1, and by induction, it holds for all non-negative
integers a, b and c.
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