A new proof of the ¢-Dixon identity
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Abstract. We give a new and elementary proof of Jackson’s terminating g-analogue of Dixon’s
identity by using recurrences and induction.
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1. Introduction

Jackson’s terminating g-analogue of Dixon’s identity [2, 8]:
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where the g-binomial coefficients are defined by
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0, otherwise,

if0<k<n,

is an important identity in combinatorics and number theory. Note that Dixon’s identity
(see [8], [12, p. 43, (IV)], or [9, p. 11, (2.6)]) is the ¢ = 1 case of (1.1). Several short proofs
of the Dixon or ¢-Dixon identity can be found in [4-7]. The ¢-Dixon identity can also be
deduced from the g-Pfaff-Saalschiitz identity (see [7,13]).

Recently, Mickic [10,11] gave an elementary proof of Dixon’s identity and some other
binomial coefficient identities by using recurrences and induction. The aim of this note is
to give a new proof of (1.1) by generalizing the argument of [10, 11].



2. Proof of (1.1)

1—

For any integer n, let [n] Denote the left-hand side of (1.1) by S(a,b,c)
introduce two auxiliary sums as follows:
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It is easy to see that [k [ ] [ ] and so, for a,b,c > 1,
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Similarly, we have
Q(a,b,c) = [a+b][b+ c]S(a,b—1,c). (2.4)
It follows from (2.1) and (2.2) that
P(a,b,c) — Q(a,b,c)q" " = [a+ b][a — b]S(a, b, c). (2.5)
If a # b, then from (2.3)—(2.5) we deduce that

S(a,b,c) = ’ i i (Ja+c]S(a—1,b,¢c) — [b+S(a,b—1,¢)g*"). (2.6)

We need to consider the case when a = b = ¢ separately. Noticing the well known
relations (see, for example [1, (3.3.3) and (3.3.4)])
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By the symmetry of ¢-binomial coefficients, it is clear that
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Therefore, (2.7) implies that
S(a,a,a) = (1+ ¢+ ¢**)S(a,a,a —1). (2.8)

We now give a proof of (1.1) by induction on a + b+ c. It is clear that (1.1) is true
for a = b = ¢ = 1. Assume that (1.1) holds for all non-negative integers a, b and ¢ with
a+b+c=n. Let a, b and ¢ be non-negative integers satisfying a +b+c =n+ 1. We
consider three cases:

e If at least one of the numbers a, b and ¢ is equal to 0, then (1.1) is obviously true.

e If a = b = ¢, then by the induction hypothesis, we have

S(a,a,a—1) = {36‘ - 1} [2“] |
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Therefore, by (2.8), we obtain
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e If a # b, then by (2.6) and the induction hypothesis, we get
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as desired. If a = b, then a # ¢, and we can do similarly as before by noticing the
symmetry of a, b and ¢ in S(a, b, ¢).

Hence, (1.1) holds for a + b+ ¢ = n + 1, and by induction, it holds for all non-negative
integers a, b and c.
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