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Abstract. Recently, by making use of a formula of Carlitz, the author confirmed a
g-congruence conjectured by Tauraso. In this note we use Carlitz’s formula again to
establish two new g-analogues of a congruence of Sun and Tauraso. We also give another
generalization of Sun and Tauraso’s congruence, along with its g-analogue.
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1. Introduction
In 2010, Sun and Tauraso [13] proved that, for any odd prime p and positive integer 7,

P12k
> 5 (3)

k=0

(=)@ =D/2" (mod p). (1.1)

In the same year, Sun [12] showed that the above congruence is also true modulo p?, i.e.,

) 2_1k<2:> = ()7 V2 (mod ). (12)
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In 2019, using a g-identity of Carlitz [1], the author [3] established the following g¢-
analogue of (1.2): for any positive odd integer n,

3

—
—~

2
q;q n— n2_
D b = (L1) D200 DA (mmod @ (q)?), (1.3)
“ (@9

B
Il

where (a;q), = (1 —a)(1 —aq)--- (1 —ag"') denotes the g-shifted factorial and ®,,(q)
stands for the n-th cyclotomic polynomial in ¢, which may be defined as

()= J] (a—¢)
1<k<n
ged(k,n)=1
where ( is an n-th primitive root of unity. The ¢g-congruence (1.3) was observed by Tauraso
[14] for n being an odd prime, and its weaker form modulo ®,(q) was due to the author
and Zeng [6, Corollary 4.2]. Some g-congruences related to (1.3) were given in [2,15,16],
and some other recent progress on g-congruences can be found in [4,5,7,8,10,11,17].
In this note we shall give the following two new g-analogues of (1.1).
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Theorem 1. Let n be a positive odd integer. Then
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Let (a),, = a(a+1)...(a +m — 1) be the rising factorial. For any positive integer
n and rational number = such that the denominator of x is coprime with n, we let (),
denote the least non-negative residue of x modulo n. We shall also give the following

congruence: for all positive integers d,r, arbitrary integer s, and any prime p coprime
with d,

> o = (1) (mod p). (1.6)

It is clear that the (d,s) = (2,1) case of (1.6) reduces to (1.1).
More generally, the following g-analogue of (1.6) is true.

Theorem 2. Let d, n and r be positive integers such that ged(d,n) = 1, and let s be an
arbitrary integer. Then
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It is easy to see that (1.6) follows from (1.7) by taking n = p” and ¢ — 1.

We shall prove Theorems 1 and 2 in Sections 2 and 3 by making use of the afore-
mentioned g¢-identity due to Carlitz [1]. In Section 4, we propose two conjectures on
generalizations of (1.4) and (1.5) modulo ®,(¢)%.

2. Proof of Theorem 1

Proof of (1.4). Letting q — ¢!, we see that the congruence (1.4) can be written as

n—1
(@ P(=1:¢")k 42 -
@ = (-)"V2 (mod @, (q)). (2.1)
k=0
Moreover, taking g — ¢?, a = ¢, b= —1, and n — n — 1 in Carlitz’s formula (see [1]):
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we obtain
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It is clear that the g-shifted factorial (q; ¢*),, contains the factor 1 —¢™ and is therefore
divisible by ®,,(q). Moreover, the product (¢?; ¢*)x(¢?; ¢*)n_k_1 is coprime with ®,,(q) for
k in the range 0 < k < n — 1. Thus, each summand on the right-hand side of (2.3)
is congruent to 0 modulo ®,(q) except for & = (n — 1)/2. Namely, modulo ®,(q), the
identity (2.3) reduces to
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where the g-binomial coefficients [Z]q are defined by

. ‘ (q;q?n o< k<n,
L= (@3 Dk @)nr
1 0 otherwise.
Now, a special case of a g-analogue of Morley’s congruence [9, (1.5)] gives
n=1 e aendya 2 2
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(we only need the modulus ®,,(¢) case here), and, in view of ¢" =1 (mod D,(q)),
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Substituting the above two g-congruences into (2.4), we are led to (2.1). a

Proof of (1.5). The proof is similar to that of (1.4). Replacing ¢ by ¢!, we can write
the congruence (1.5) as
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Then we substitute ¢ — ¢, a = ¢, b= —¢* and n+— n — 1 in (2.2) to get
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As before, the g-shifted factorial (gq;¢?), has the factor 1 — ¢", and 1 — ¢?"=2F+1 £ (
(mod ®,,(q)) for 0 < k <n—1andk # (n—1)/2. Thus, modulo ®,(q), the 1dentity (2.8)
reduces to
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The proof of (2.7) then follows from (2.5) and (2.6). O

3. Proof of Theorem 2

Taking ¢ — ¢, a = ¢°, b= —¢*, and n — n — 1 in (2.2), we have
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Since ged(d, n) = 1, the g-shifted factorial (¢%; ¢%), contains a factor of the form 1 —¢** (a
is an integer) and is thus divisible by ®,,(q). Meanwhile, the product (¢%; ¢*)r(¢% ¢%)n_r_1
is coprime with ®,,(¢) for 0 < k < n — 1. Hence, each summand on the right-hand side
of (3.1) is congruent to 0 modulo ®,,(q) except for k = ((s — d)/d),. This means that,
modulo ®,,(q), the identity (3.1) reduces to
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where we have used the fact that
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Note that (—s/d),, = ((s — d)/d), (mod 2). The proof then follows from (3.2) and
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with & = ((s — d)/d),.




4. Open problems

Numerical calculation implies that the following generalizations of the g-congruences in
Theorem 1 should be true.

Conjecture 1. Let n be a positive odd integer. Then, modulo ®,(q)?,

k=0

n—1 (q; q2)k(_1; q2)k ok _ (_1)(71—1)/2q(2>’ f[,fn =1 (mod 4)’ (4 1)
k=0 (4% %) (—1)(”*1)/2(](7?1), ifn=3 (mod 4).
Conjecture 2. Let n be a positive odd integer. Then, modulo ®,(q)?,
n— n—1)/2 ("t . —
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Note that these two conjectures also give new g-analogues of (1.1). Although the
g-congruences (4.1) and (4.2) are very similar to (1.3), the method of proving (1.3) given
in [3] does not work here. Therefore, to prove (4.1) and (4.2) we need a new technique,
which is left to the interested reader.
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