New q-analogues of a congruence of Sun and Tauraso

Victor J. W. Guo
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu,
People's Republic of China
jwguo@math.ecnu.edu.cn

Abstract

Recently, by making use of a formula of Carlitz, the author confirmed a q-congruence conjectured by Tauraso. In this note we use Carlitz's formula again to establish two new q-analogues of a congruence of Sun and Tauraso. We also give another generalization of Sun and Tauraso's congruence, along with its q-analogue.

Keywords: congruence; q-congruence; cyclotomic polynomial; Carlitz's formula.
AMS Subject Classifications: 33D15; 11A07; 11B65

1. Introduction

In 2010, Sun and Tauraso [13] proved that, for any odd prime p and positive integer r,

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{1}{2^{k}}\binom{2 k}{k} \equiv(-1)^{\left(p^{r}-1\right) / 2} \quad(\bmod p) . \tag{1.1}
\end{equation*}
$$

In the same year, Sun [12] showed that the above congruence is also true modulo p^{2}, i.e.,

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{1}{2^{k}}\binom{2 k}{k} \equiv(-1)^{\left(p^{r}-1\right) / 2} \quad\left(\bmod p^{2}\right) \tag{1.2}
\end{equation*}
$$

In 2019, using a q-identity of Carlitz [1], the author [3] established the following q analogue of (1.2): for any positive odd integer n,

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}}{(q ; q)_{k}} q^{k} \equiv(-1)^{(n-1) / 2} q^{\left(n^{2}-1\right) / 4} \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.3}
\end{equation*}
$$

where $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ denotes the q-shifted factorial and $\Phi_{n}(q)$ stands for the n-th cyclotomic polynomial in q, which may be defined as

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity. The q-congruence (1.3) was observed by Tauraso [14] for n being an odd prime, and its weaker form modulo $\Phi_{n}(q)$ was due to the author and Zeng [6, Corollary 4.2]. Some q-congruences related to (1.3) were given in $[2,15,16]$, and some other recent progress on q-congruences can be found in $[4,5,7,8,10,11,17]$.

In this note we shall give the following two new q-analogues of (1.1).

Theorem 1. Let n be a positive odd integer. Then

$$
\begin{align*}
& \sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} \equiv(-1)^{(n-1) / 2} \quad\left(\bmod \Phi_{n}(q)\right), \tag{1.4}\\
& \sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k+1} \equiv(-1)^{(n-1) / 2} \quad\left(\bmod \Phi_{n}(q)\right) . \tag{1.5}
\end{align*}
$$

Let $(a)_{m}=a(a+1) \ldots(a+m-1)$ be the rising factorial. For any positive integer n and rational number x such that the denominator of x is coprime with n, we let $\langle x\rangle_{n}$ denote the least non-negative residue of x modulo n. We shall also give the following congruence: for all positive integers d, r, arbitrary integer s, and any prime p coprime with d,

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1} \frac{\left(\frac{s}{d}\right)_{k} 2^{k}}{k!} \equiv(-1)^{\langle-s / d\rangle_{p^{r}}} \quad(\bmod p) \tag{1.6}
\end{equation*}
$$

It is clear that the $(d, s)=(2,1)$ case of (1.6) reduces to (1.1).
More generally, the following q-analogue of (1.6) is true.
Theorem 2. Let d, n and r be positive integers such that $\operatorname{gcd}(d, n)=1$, and let s be an arbitrary integer. Then

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 s} ; q^{2 d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}} q^{-(k+1)((k-2) d / 2+2 s)}=(-1)^{\langle-s / d\rangle_{n}} q^{(s-d)\langle(s-d) / d\rangle_{n}} \quad\left(\bmod \Phi_{n}(q)\right) \tag{1.7}
\end{equation*}
$$

It is easy to see that (1.6) follows from (1.7) by taking $n=p^{r}$ and $q \rightarrow 1$.
We shall prove Theorems 1 and 2 in Sections 2 and 3 by making use of the aforementioned q-identity due to Carlitz [1]. In Section 4, we propose two conjectures on generalizations of (1.4) and (1.5) modulo $\Phi_{n}(q)^{2}$.

2. Proof of Theorem 1

Proof of (1.4). Letting $q \mapsto q^{-1}$, we see that the congruence (1.4) can be written as

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-k^{2}} \equiv(-1)^{(n-1) / 2} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2.1}
\end{equation*}
$$

Moreover, taking $q \mapsto q^{2}, a=q, b=-1$, and $n \mapsto n-1$ in Carlitz's formula (see [1]):

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(a ; q)_{k}(b ; q)_{k}}{(q ; q)_{k}}(-a b)^{n-k} q^{(n-k)(n+k-1) / 2}=\sum_{k=0}^{n} \frac{(a ; q)_{n+1}(-b)^{k} q^{\binom{k}{2}}}{(q ; q)_{k}(q ; q)_{n-k}\left(1-a q^{n-k}\right)}, \tag{2.2}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{(n-1)^{2}-k^{2}}=\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{n} q^{k^{2}-k}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{n-k-1}\left(1-q^{2 n-2 k-1}\right)} \tag{2.3}
\end{equation*}
$$

It is clear that the q-shifted factorial $\left(q ; q^{2}\right)_{n}$ contains the factor $1-q^{n}$ and is therefore divisible by $\Phi_{n}(q)$. Moreover, the product $\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{n-k-1}$ is coprime with $\Phi_{n}(q)$ for k in the range $0 \leqslant k \leqslant n-1$. Thus, each summand on the right-hand side of (2.3) is congruent to 0 modulo $\Phi_{n}(q)$ except for $k=(n-1) / 2$. Namely, modulo $\Phi_{n}(q)$, the identity (2.3) reduces to

$$
\begin{align*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{1-k^{2}} & \equiv \frac{\left(q ; q^{2}\right)_{n} q^{(n-1)(n-3) / 4}}{\left(q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(1-q^{n}\right)} \\
& =\left[\begin{array}{c}
n-1 \\
\frac{n-1}{2}
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right]_{q} \frac{q^{(n-1)(n-3) / 4}}{(-q ; q)_{n-1}^{2}} \tag{2.4}
\end{align*}
$$

where the q-binomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} & \text { if } 0 \leqslant k \leqslant n \\
0 & \text { otherwise }\end{cases}
$$

Now, a special case of a q-analogue of Morley's congruence $[9,(1.5)]$ gives

$$
\left[\begin{array}{c}
n-1 \tag{2.5}\\
\frac{n-1}{2}
\end{array}\right]_{q^{2}} \equiv(-1)^{(n-1) / 2} q^{\left(1-n^{2}\right) / 4}(-q ; q)_{n-1}^{2} \quad\left(\bmod \Phi_{n}(q)^{2}\right)
$$

(we only need the modulus $\Phi_{n}(q)$ case here), and, in view of $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right.$),

$$
\left[\begin{array}{c}
2 n-1 \tag{2.6}\\
n-1
\end{array}\right]_{q}=\prod_{k=1}^{n-1} \frac{1-q^{2 n-k}}{1-q^{k}} \equiv \prod_{k=1}^{n-1} \frac{1-q^{n-k}}{1-q^{k}}=1 \quad\left(\bmod \Phi_{n}(q)\right)
$$

Substituting the above two q-congruences into (2.4), we are led to (2.1).
Proof of (1.5). The proof is similar to that of (1.4). Replacing q by q^{-1}, we can write the congruence (1.5) as

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-(k+1)^{2}} \equiv(-1)^{(n-1) / 2} \quad\left(\bmod \Phi_{n}(q)\right) \tag{2.7}
\end{equation*}
$$

Then we substitute $q \mapsto q^{2}, a=q, b=-q^{2}$, and $n \mapsto n-1$ in (2.2) to get

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{n^{2}-(k+1)^{2}}=\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{n} q^{k^{2}+k}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{n-k-1}\left(1-q^{2 n-2 k-1}\right)} \tag{2.8}
\end{equation*}
$$

As before, the q-shifted factorial $\left(q ; q^{2}\right)_{n}$ has the factor $1-q^{n}$, and $1-q^{2 n-2 k+1} \not \equiv 0$ $\left(\bmod \Phi_{n}(q)\right)$ for $0 \leqslant k \leqslant n-1$ and $k \neq(n-1) / 2$. Thus, modulo $\Phi_{n}(q)$, the identity (2.8) reduces to

$$
\begin{aligned}
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-(k+1)^{2}} & \equiv \frac{\left(q ; q^{2}\right)_{n} q^{\left(n^{2}-1\right) / 4}}{\left(q^{2} ; q^{2}\right)_{(n-1) / 2}^{2}\left(1-q^{n}\right)} \\
& =\left[\begin{array}{c}
n-1 \\
\frac{n-1}{2}
\end{array}\right]_{q^{2}}\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right]_{q} \frac{q^{\left(n^{2}-1\right) / 4}}{(-q ; q)_{n-1}^{2}}
\end{aligned}
$$

The proof of (2.7) then follows from (2.5) and (2.6).

3. Proof of Theorem 2

Taking $q \mapsto q^{d}, a=q^{s}, b=-q^{s}$, and $n \mapsto n-1$ in (2.2), we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(q^{2 s} ; q^{2 d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}} q^{(n-k-1)((n+k-2) d / 2+2 s)}=\sum_{k=0}^{n-1} \frac{\left(q^{s} ; q^{d}\right)_{n} q^{s k+d\binom{k}{2}}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{n-k-1}\left(1-q^{d n-d k-d+s}\right)} \tag{3.1}
\end{equation*}
$$

Since $\operatorname{gcd}(d, n)=1$, the q-shifted factorial $\left(q^{s} ; q^{d}\right)_{n}$ contains a factor of the form $1-q^{a n}(a$ is an integer) and is thus divisible by $\Phi_{n}(q)$. Meanwhile, the product $\left(q^{d} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{n-k-1}$ is coprime with $\Phi_{n}(q)$ for $0 \leqslant k \leqslant n-1$. Hence, each summand on the right-hand side of (3.1) is congruent to 0 modulo $\Phi_{n}(q)$ except for $k=\langle(s-d) / d\rangle_{n}$. This means that, modulo $\Phi_{n}(q)$, the identity (3.1) reduces to

$$
\begin{align*}
& \sum_{k=0}^{n-1} \frac{\left(q^{s} ; q^{d}\right)_{k}\left(-q^{s} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}} q^{-(k+1)(k-2)(d / 2+2 s)} \\
& \equiv \frac{\left.\left(q^{s} ; q^{d}\right)_{n} q^{s(s-d) / d\rangle_{n}+d\left(\langle(s-d) / d\rangle_{n}\right.}\right)}{\left(q^{d} ; q^{d}\right)_{\langle(s-d) / d\rangle_{n}}\left(q^{d} ; q^{d}\right)_{n-\langle(s-d) / d\rangle_{n}-1}\left(1-q^{\left.d n-d\langle(s-d) / d\rangle_{n}-d+s\right)}\right.} \\
& \quad=\left[\begin{array}{c}
n-1 \\
\left.\left.\langle(s-d) / d\rangle_{n}\right]_{q^{d}} q^{s((s-d) / d\rangle_{n}+d\left(\langle(s-d) / d\rangle_{n}\right.}\right)
\end{array}\right. \tag{3.2}
\end{align*}
$$

where we have used the fact that

$$
\frac{\left(q^{s} ; q^{d}\right)_{n}}{1-q^{d n-d(s-d) / d\rangle_{n}-d+s}} \equiv(q ; q)_{n-1} \equiv\left(q^{d} ; q^{d}\right)_{n-1} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Note that $\langle-s / d\rangle_{n} \equiv\langle(s-d) / d\rangle_{n}(\bmod 2)$. The proof then follows from (3.2) and

$$
\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q^{d}}=\prod_{j=1}^{k} \frac{1-q^{d(n-j)}}{1-q^{d j}} \equiv \prod_{j=1}^{k} \frac{1-q^{-d j}}{1-q^{d j}}=(-1)^{k} q^{-d\binom{k+1}{2}} \quad\left(\bmod \Phi_{n}(q)\right)
$$

with $k=\langle(s-d) / d\rangle_{n}$.

4. Open problems

Numerical calculation implies that the following generalizations of the q-congruences in Theorem 1 should be true.

Conjecture 1. Let n be a positive odd integer. Then, modulo $\Phi_{n}(q)^{2}$,

$$
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-1 ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k} \equiv\left\{\begin{array}{lll}
(-1)^{(n-1) / 2} q^{\binom{n}{2}}, & \text { if } n \equiv 1 & (\bmod 4) \tag{4.1}\\
(-1)^{(n-1) / 2} q^{\binom{n+1}{2}}, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Conjecture 2. Let n be a positive odd integer. Then, modulo $\Phi_{n}(q)^{2}$,

$$
\sum_{k=0}^{n-1} \frac{\left(q ; q^{2}\right)_{k}\left(-q^{2} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{2 k+1} \equiv\left\{\begin{array}{lll}
(-1)^{(n-1) / 2} q^{\binom{n+1}{2}}, & \text { if } n \equiv 1 & (\bmod 4) \tag{4.2}\\
(-1)^{(n-1) / 2} q^{\binom{n}{2}}, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Note that these two conjectures also give new q-analogues of (1.1). Although the q-congruences (4.1) and (4.2) are very similar to (1.3), the method of proving (1.3) given in [3] does not work here. Therefore, to prove (4.1) and (4.2) we need a new technique, which is left to the interested reader.

References

[1] L. Carlitz, A q-identity, Fibonacci Quarterly 12 (1974), 369-372.
[2] C.-Y. Gu and V.J.W. Guo, Two q-congruences from Carlitz's formula, Period. Math. Hungar. 82 (2021), 82-86.
[3] V.J.W. Guo, Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory 15 (2019), 37-41.
[4] V.J.W. Guo and J.-C. Liu, q-Analogues of two Ramanujan-type formulas for $1 / \pi$, J. Difference Equ. Appl. 24 (2018), 1368-1373.
[5] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[6] V.J.W. Guo and J. Zeng, Some congruences involving central q-binomial coefficients, Adv. Appl. Math. 45 (2010), 303-316.
[7] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[8] L. Li and S.-D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), Art. 190.
[9] J. Liu, H. Pan, and Y. Zhang, A generalization of Morley's congruence, Adv. Differ. Equ. (2015), Art. 254.
[10] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math. 116 (2020), Art. 102003.
[11] Y. Liu and X. Wang, Some q-supercongruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
[12] Z.-W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010), 2473-2488.
[13] Z.-W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. Appl. Math. 45 (2010), 125-148.
[14] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), 133-143.
[15] C. Wang and H.-X. Ni, Some q-congruences arising from certain identities, Period. Math. Hungar. (2021); https://doi.org/10.1007/s10998-021-00416-8
[16] X. Wang and M. Yu, Some generalizations of a congruence by Sun and Tauraso, Period. Math. Hungar. (2021); https://doi.org/10.1007/s10998-021-00432-8
[17] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A 182 (2021), Art. 105469.

