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Abstract. Recently, by making use of a formula of Carlitz, the author confirmed a
q-congruence conjectured by Tauraso. In this note we use Carlitz’s formula again to
establish two new q-analogues of a congruence of Sun and Tauraso. We also give another
generalization of Sun and Tauraso’s congruence, along with its q-analogue.
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1. Introduction

In 2010, Sun and Tauraso [13] proved that, for any odd prime p and positive integer r,

pr−1∑

k=0

1

2k

(
2k

k

)
≡ (−1)(pr−1)/2 (mod p). (1.1)

In the same year, Sun [12] showed that the above congruence is also true modulo p2, i.e.,

pr−1∑

k=0

1

2k

(
2k

k

)
≡ (−1)(pr−1)/2 (mod p2). (1.2)

In 2019, using a q-identity of Carlitz [1], the author [3] established the following q-
analogue of (1.2): for any positive odd integer n,

n−1∑

k=0

(q; q2)k

(q; q)k

qk ≡ (−1)(n−1)/2q(n2−1)/4 (mod Φn(q)2), (1.3)

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) denotes the q-shifted factorial and Φn(q)
stands for the n-th cyclotomic polynomial in q, which may be defined as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. The q-congruence (1.3) was observed by Tauraso
[14] for n being an odd prime, and its weaker form modulo Φn(q) was due to the author
and Zeng [6, Corollary 4.2]. Some q-congruences related to (1.3) were given in [2, 15, 16],
and some other recent progress on q-congruences can be found in [4, 5, 7, 8, 10,11,17].

In this note we shall give the following two new q-analogues of (1.1).
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Theorem 1. Let n be a positive odd integer. Then

n−1∑

k=0

(q; q2)k(−1; q2)k

(q2; q2)k

q2k ≡ (−1)(n−1)/2 (mod Φn(q)), (1.4)

n−1∑

k=0

(q; q2)k(−q2; q2)k

(q2; q2)k

q2k+1 ≡ (−1)(n−1)/2 (mod Φn(q)). (1.5)

Let (a)m = a(a + 1) . . . (a + m − 1) be the rising factorial. For any positive integer
n and rational number x such that the denominator of x is coprime with n, we let 〈x〉n
denote the least non-negative residue of x modulo n. We shall also give the following
congruence: for all positive integers d, r, arbitrary integer s, and any prime p coprime
with d,

pr−1∑

k=0

( s
d
)k2

k

k!
≡ (−1)〈−s/d〉pr (mod p). (1.6)

It is clear that the (d, s) = (2, 1) case of (1.6) reduces to (1.1).
More generally, the following q-analogue of (1.6) is true.

Theorem 2. Let d, n and r be positive integers such that gcd(d, n) = 1, and let s be an
arbitrary integer. Then

n−1∑

k=0

(q2s; q2d)k

(qd; qd)k

q−(k+1)((k−2)d/2+2s) = (−1)〈−s/d〉nq(s−d)〈(s−d)/d〉n (mod Φn(q)). (1.7)

It is easy to see that (1.6) follows from (1.7) by taking n = pr and q → 1.
We shall prove Theorems 1 and 2 in Sections 2 and 3 by making use of the afore-

mentioned q-identity due to Carlitz [1]. In Section 4, we propose two conjectures on
generalizations of (1.4) and (1.5) modulo Φn(q)2.

2. Proof of Theorem 1

Proof of (1.4). Letting q 7→ q−1, we see that the congruence (1.4) can be written as

n−1∑

k=0

(q; q2)k(−1; q2)k

(q2; q2)k

q−k2 ≡ (−1)(n−1)/2 (mod Φn(q)). (2.1)

Moreover, taking q 7→ q2, a = q, b = −1, and n 7→ n− 1 in Carlitz’s formula (see [1]):

n∑

k=0

(a; q)k(b; q)k

(q; q)k

(−ab)n−kq(n−k)(n+k−1)/2 =
n∑

k=0

(a; q)n+1(−b)kq(
k
2)

(q; q)k(q; q)n−k(1− aqn−k)
, (2.2)
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we obtain

n−1∑

k=0

(q; q2)k(−1; q2)k

(q2; q2)k

q(n−1)2−k2

=
n−1∑

k=0

(q; q2)nq
k2−k

(q2; q2)k(q2; q2)n−k−1(1− q2n−2k−1)
. (2.3)

It is clear that the q-shifted factorial (q; q2)n contains the factor 1−qn and is therefore
divisible by Φn(q). Moreover, the product (q2; q2)k(q

2; q2)n−k−1 is coprime with Φn(q) for
k in the range 0 6 k 6 n − 1. Thus, each summand on the right-hand side of (2.3)
is congruent to 0 modulo Φn(q) except for k = (n − 1)/2. Namely, modulo Φn(q), the
identity (2.3) reduces to

n−1∑

k=0

(q; q2)k(−1; q2)k

(q2; q2)k

q1−k2 ≡ (q; q2)nq
(n−1)(n−3)/4

(q2; q2)2
(n−1)/2(1− qn)

=

[
n− 1

n−1
2

]

q2

[
2n− 1

n− 1

]

q

q(n−1)(n−3)/4

(−q; q)2
n−1

, (2.4)

where the q-binomial coefficients
[
n
k

]
q

are defined by

[
n

k

]

q

=





(q; q)n

(q; q)k(q; q)n−k

if 0 6 k 6 n,

0 otherwise.

Now, a special case of a q-analogue of Morley’s congruence [9, (1.5)] gives
[
n− 1

n−1
2

]

q2

≡ (−1)(n−1)/2q(1−n2)/4(−q; q)2
n−1 (mod Φn(q)2) (2.5)

(we only need the modulus Φn(q) case here), and, in view of qn ≡ 1 (mod Φn(q)),

[
2n− 1

n− 1

]

q

=
n−1∏

k=1

1− q2n−k

1− qk
≡

n−1∏

k=1

1− qn−k

1− qk
= 1 (mod Φn(q)). (2.6)

Substituting the above two q-congruences into (2.4), we are led to (2.1). 2

Proof of (1.5). The proof is similar to that of (1.4). Replacing q by q−1, we can write
the congruence (1.5) as

n−1∑

k=0

(q; q2)k(−q2; q2)k

(q2; q2)k

q−(k+1)2 ≡ (−1)(n−1)/2 (mod Φn(q)). (2.7)

Then we substitute q 7→ q2, a = q, b = −q2, and n 7→ n− 1 in (2.2) to get

n−1∑

k=0

(q; q2)k(−q2; q2)k

(q2; q2)k

qn2−(k+1)2 =
n−1∑

k=0

(q; q2)nq
k2+k

(q2; q2)k(q2; q2)n−k−1(1− q2n−2k−1)
. (2.8)
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As before, the q-shifted factorial (q; q2)n has the factor 1 − qn, and 1 − q2n−2k+1 6≡ 0
(mod Φn(q)) for 0 6 k 6 n−1 and k 6= (n−1)/2. Thus, modulo Φn(q), the identity (2.8)
reduces to

n−1∑

k=0

(q; q2)k(−q2; q2)k

(q2; q2)k

q−(k+1)2 ≡ (q; q2)nq
(n2−1)/4

(q2; q2)2
(n−1)/2(1− qn)

=

[
n− 1

n−1
2

]

q2

[
2n− 1

n− 1

]

q

q(n2−1)/4

(−q; q)2
n−1

.

The proof of (2.7) then follows from (2.5) and (2.6). 2

3. Proof of Theorem 2

Taking q 7→ qd, a = qs, b = −qs, and n 7→ n− 1 in (2.2), we have

n−1∑

k=0

(q2s; q2d)k

(qd; qd)k

q(n−k−1)((n+k−2)d/2+2s) =
n−1∑

k=0

(qs; qd)nq
sk+d(k

2)

(qd; qd)k(qd; qd)n−k−1(1− qdn−dk−d+s)
. (3.1)

Since gcd(d, n) = 1, the q-shifted factorial (qs; qd)n contains a factor of the form 1−qan (a
is an integer) and is thus divisible by Φn(q). Meanwhile, the product (qd; qd)k(q

d; qd)n−k−1

is coprime with Φn(q) for 0 6 k 6 n − 1. Hence, each summand on the right-hand side
of (3.1) is congruent to 0 modulo Φn(q) except for k = 〈(s − d)/d〉n. This means that,
modulo Φn(q), the identity (3.1) reduces to

n−1∑

k=0

(qs; qd)k(−qs; qd)k

(qd; qd)k

q−(k+1)(k−2)(d/2+2s)

≡ (qs; qd)nq
s〈(s−d)/d〉n+d(〈(s−d)/d〉n

2 )

(qd; qd)〈(s−d)/d〉n(qd; qd)n−〈(s−d)/d〉n−1(1− qdn−d〈(s−d)/d〉n−d+s)

=

[
n− 1

〈(s− d)/d〉n

]

qd

qs〈(s−d)/d〉n+d(〈(s−d)/d〉n
2 ), (3.2)

where we have used the fact that

(qs; qd)n

1− qdn−d〈(s−d)/d〉n−d+s
≡ (q; q)n−1 ≡ (qd; qd)n−1 (mod Φn(q)).

Note that 〈−s/d〉n ≡ 〈(s− d)/d〉n (mod 2). The proof then follows from (3.2) and

[
n− 1

k

]

qd

=
k∏

j=1

1− qd(n−j)

1− qdj
≡

k∏
j=1

1− q−dj

1− qdj
= (−1)kq−d(k+1

2 ) (mod Φn(q))

with k = 〈(s− d)/d〉n.
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4. Open problems

Numerical calculation implies that the following generalizations of the q-congruences in
Theorem 1 should be true.

Conjecture 1. Let n be a positive odd integer. Then, modulo Φn(q)2,

n−1∑

k=0

(q; q2)k(−1; q2)k

(q2; q2)k

q2k ≡




(−1)(n−1)/2q(
n
2), if n ≡ 1 (mod 4),

(−1)(n−1)/2q(
n+1

2 ), if n ≡ 3 (mod 4).
(4.1)

Conjecture 2. Let n be a positive odd integer. Then, modulo Φn(q)2,

n−1∑

k=0

(q; q2)k(−q2; q2)k

(q2; q2)k

q2k+1 ≡




(−1)(n−1)/2q(
n+1

2 ), if n ≡ 1 (mod 4),

(−1)(n−1)/2q(
n
2), if n ≡ 3 (mod 4).

(4.2)

Note that these two conjectures also give new q-analogues of (1.1). Although the
q-congruences (4.1) and (4.2) are very similar to (1.3), the method of proving (1.3) given
in [3] does not work here. Therefore, to prove (4.1) and (4.2) we need a new technique,
which is left to the interested reader.
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