Some q-supercongruences related to Swisher's (H.3) conjecture

Jian-Ping Fang and Victor J. W. Guo*
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China
fjp7402@163.com, jwguo@hytc.edu.cn

Abstract

We first give a q-analogue of a supercongruence of Sun, which is a generalization of Van Hamme's (H.2) supercongruence for any prime $p \equiv 3(\bmod 4)$. We also give a further generalization of this q-supercongruence, which may also be considered as a generalization of a q-supercongruence recently conjectured by the second author and Zudilin. Then, by combining these two q-supercongruences, we obtain q-analogues of the following two results: for any integer $d>1$ and prime p with $p \equiv-1(\bmod 2 d)$,

$$
\begin{gathered}
\sum_{k=0}^{\left(p^{2}-1\right) / d} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{4}\right) \\
\sum_{k=0}^{p^{2}-1} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{4}\right)
\end{gathered}
$$

which are generalizations of Swisher's (H.3) conjecture modulo p^{4} for $r=2$. The key ingredients in our proof are the 'creative microscoping' method, the q-Dixon sum, Watson's terminating ${ }_{8} \phi_{7}$ transformation, and properties of the p-adic Gamma function.

Keywords: q-supercongruences; cyclotomic polynomial; q-Dixon sum; Watson's transformation; p-adic Gamma function.

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In 1997, Van Hamme [25] listed 13 supercongruences related to truncated forms of Ramanujan's and Ramanujan-like formulas for $1 / \pi$. Van Hamme himself proved three of them, including the following supercongruence $[25,(\mathrm{H} .2)]$: for any prime $p \equiv 3(\bmod 4)$,

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2} \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.1}
\end{equation*}
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$ is the Pochhammer symbol. Since $\left(\frac{1}{2}\right)_{k} / k!\equiv 0$ $(\bmod p)$ for $(p+1) / 2 \leqslant k \leqslant p-1$, we may compute the sum in (1.1) for k up to

[^0]$p-1$. In recent years, all kinds of generalizations of (1.1) have been given by different authors $[4,9,11,12,14-16,19,22,23]$. For example, Sun [23, Theorem 1.3] proved that, for any integer $d>1$ and prime p with $p \equiv-1(\bmod 2 d)$,
\[

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{1.2}
\end{equation*}
$$

\]

In 2016, Swisher [24, (H.3) with $r=2]$ conjectured that, for primes $p \equiv 3(\bmod 4)$ and $p>3$,

$$
\begin{equation*}
\sum_{k=0}^{\left(p^{2}-1\right) / 2} \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{5}\right) \tag{1.3}
\end{equation*}
$$

Motivated by Sun's supercongruence (1.2) and Swisher's conjecture (1.3), we shall prove the following results: for any integer $d>1$ and prime p with $p \equiv-1(\bmod 2 d)$,

$$
\begin{gather*}
\sum_{k=0}^{\left(p^{2}-1\right) / d} \frac{\left(\frac{1}{d}\right)^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{4}\right) \tag{1.4}\\
\sum_{k=0}^{p^{2}-1} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{4}\right) \tag{1.5}
\end{gather*}
$$

Note that the $d=3,4$ cases of the supercongruence (1.4) were already observed by He [13, Theorems 1.1 and 1.2]. However, He's proofs of them are incorrect due to errors in his derivations of (3.2) and (3.8) in [13].

It is known that many supercongruences have nice q-analogues, and mathematicians may have more ways to deal with q-congruences than to treat classical supercongruences. Recently, the second author and Zudilin [10] devised a method, called 'creative microscoping', to prove plenty of q-congruences. For other recent progress on q-congruences, the reader may consult $[3,4,7-9,11,12,16-18,20,27-29]$.

In this paper, we shall give a q-analogue of (1.2) in the following theorem. Note that the $d=2$ case was already obtained by the second author and Zudilin [12, Theorem 1.1].

Theorem 1.1. Let d and n be positive integers with $d>1$. Then, modulo $\Phi_{n}(q)^{2}$,

$$
\begin{align*}
\sum_{k=0}^{n-1} & \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} \\
& \equiv \begin{cases}\frac{[(d-1) n]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{(d n-n-1) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{(d n-n-1) / d}} q^{(1+n-d n) / d}, & \text { if } n \equiv-1 \quad(\bmod d), \\
\frac{[n]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{(n-1) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{(n-1) / d}} q^{(1-n) / d}, & \text { if } n \equiv 1 \quad(\bmod d)\end{cases} \tag{1.6}
\end{align*}
$$

At the moment, we already need to be familiar with the standard basic hypergeometric notation. The q-shifted factorial is defined as $(a ; q)_{0}=1$ and $(a ; q)_{n}=(1-a)(1-$ aq) $\cdots\left(1-a q^{n-1}\right)$ for $n \geqslant 1$ or $n=\infty$. The q-integer is given by $[n]=[n]_{q}=1+q+\cdots+$ q^{n-1}, and $\Phi_{n}(q)$ stands for the n-th cyclotomic polynomial in q, which may be defined by

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(n, k)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity.
We now assume that $n \equiv-1(\bmod 2 d)$. Then $\left(q^{3} ; q^{2 d}\right)_{(d n-n-1) / d}$ contains the factor $1-$ $q^{(2 d-3) n}$. Since $1-q^{n} \equiv 0\left(\bmod \Phi_{n}(q)\right)$, we always have $[(d-1) n]_{q^{2}} \equiv\left(q^{3} ; q^{2 d}\right)_{(d n-n-1) / d} \equiv$ $0\left(\bmod \Phi_{n}(q)\right)$, while $\left(q^{2 d+1} ; q^{2 d}\right)_{(d n-n-1) / d}$ is relatively prime to $\Phi_{n}(q)$. By the first case of (1.6), we have

$$
\sum_{k=0}^{n-1} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right)
$$

Thus, if we further let $n=p$ be a prime and take $q \rightarrow 1$, then we arrive at (1.2).
We shall also prove the following result, which is a generalization of [3, Theorem 1.1] (or equivalently, [11, Conjuecture 2])

Theorem 1.2. Let $d>1$ be an integer and let n be a positive integer with $n \equiv-1$ $(\bmod 2 d)$. Then, for any positive integer m,

$$
\begin{align*}
\sum_{k=0}^{m n-1} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} & \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right), \tag{1.7}\\
\sum_{k=0}^{m n+(d n-n-1) / d} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} & \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) . \tag{1.8}
\end{align*}
$$

With the help of Theorems 1.1 and 1.2, we shall prove (1.4) and (1.5) by establishing the following q-analogues of them.

Theorem 1.3. Let $d>1$ be an integer and let n be a positive integer with $n \equiv-1$ $(\bmod 2 d)$. Then, modulo $\Phi_{n}(q)^{2} \Phi_{n^{2}}(q)^{2}$,

$$
\begin{align*}
& \sum_{k=0}^{\left(n^{2}-1\right) / d} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} \equiv \frac{\left[n^{2}\right]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}} q^{\left(1-n^{2}\right) / d}, \tag{1.9}\\
& \sum_{k=0}^{n^{2}-1} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}^{3}}{(1+q)\left(q^{2 d} ; q^{2 d}\right)_{k}^{3}} q^{(2 d-3) k} \equiv \frac{\left[n^{2}\right]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}^{\left(1-n^{2}\right) / d}} q^{2} \tag{1.10}
\end{align*}
$$

The proofs of Theorems 1.1-1.3 will be given in Sections 2-4, respectively.
Let $n=p$ be a prime and take $q \rightarrow 1$ in Theorem 1.3. Then $\Phi_{p}(1)=\Phi_{p^{2}}(1)=p$, and the left-hand sides of (1.9) and (1.10) reduce to those of (1.4) and (1.5), respectively. Moreover, the right-hand sides of (1.9) and (1.10) become

$$
\lim _{q \rightarrow 1} \frac{\left[n^{2}\right]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{\left(p^{2}-1\right) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{\left(p^{2}-1\right) / d}}=p^{2} \frac{\left(\frac{3}{2 d}\right)_{\left(p^{2}-1\right) / d}}{\left(\frac{2 d+1}{2 d}\right)_{\left(p^{2}-1\right) / d}} .
$$

To illustrate that (1.9) and (1.10) reduce to (1.4) and (1.5), respectively, we need to prove the following result.

Theorem 1.4. Let $d>1$ be an integer and let p be a prime with $p \equiv-1(\bmod 2 d)$. Then

$$
\begin{equation*}
\frac{\left(\frac{3}{2 d}\right)_{\left(p^{2}-1\right) / d}}{\left(\frac{2 d+1}{2 d}\right)_{\left(p^{2}-1\right) / d}} \equiv 1 \quad\left(\bmod p^{2}\right) . \tag{1.11}
\end{equation*}
$$

Our proof of Theorem 1.4 is similar to Wang and Pan's proof for the $d=2$ case in [26]. For the reader's convenience, we will give a detailed proof in Section 5.

2. Proof of Theorem 1.1

We need to establish a parametric generalization of Theorem 1.1. The following is the $n \equiv-1(\bmod d)$ case.

Theorem 2.1. Let $d>1$ be an integer and let n be a positive integer with $n \equiv-1$ $(\bmod d)$. Then, modulo $\left(1-a q^{(2 d-2) n}\right)\left(a-q^{(2 d-2) n}\right)$,

$$
\begin{align*}
& \sum_{k=0}^{n-1} \frac{\left(1+q^{2 d k+1}\right)\left(a q^{2} ; q^{2 d}\right)_{k}\left(q^{2} / a ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(a q^{2 d} ; q^{2 d}\right)_{k}\left(q^{2 d} / a ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{(2 d-3) k} \\
& \quad \equiv \frac{[(d-1) n]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{(d n-n-1) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{(d n-n-1) / d}^{(1+n-d n) / d}}{ }^{2} \tag{2.1}
\end{align*}
$$

Proof. Making the parameter substitutions $q \mapsto q^{2 d}, a \mapsto q^{2}, b \mapsto b q^{2}$ and $c \mapsto c q^{2}$ in the q-Dixon sum [2, Appendix (II.13)], we have

$$
\begin{align*}
\sum_{k=0}^{\infty} & \frac{\left(1+q^{2 d k+1}\right)\left(q^{2} ; q^{2 d}\right)_{k}\left(b q^{2} ; q^{2 d}\right)_{k}\left(c q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(q^{2 d} / b ; q^{2 d}\right)_{k}\left(q^{2 d} / c ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}}\left(\frac{q^{2 d-3}}{b c}\right)^{k} \\
& =\frac{\left(q^{2 d+2} ; q^{2 d}\right)_{\infty}\left(q^{2 d-1} / b ; q^{2 d}\right)_{\infty}\left(q^{2 d-1} / c ; q^{2 d}\right)_{\infty}\left(q^{2 d-2} / b c ; q^{2 d}\right)_{\infty}}{\left(q^{2 d} / b ; q^{2 d}\right)_{\infty}\left(q^{2 d} / c ; q^{2 d}\right)_{\infty}\left(q^{2 d+1} ; q^{2 d}\right)_{\infty}\left(q^{2 d-3} / b c ; q^{2 d}\right)_{\infty}} \tag{2.2}
\end{align*}
$$

Since $n \equiv-1(\bmod d)$, putting $b=q^{-(2 d-2) n}$ and $c=q^{(2 d-2) n}$ in (2.2) we conclude that the left-hand side terminates and is equal to

$$
\begin{aligned}
& \sum_{k=0}^{(d n-n-1) / d} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2-(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2+(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(q^{2 d-(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2 d+(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{(2 d-3) k} \\
& \quad=\sum_{k=0}^{n-1} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2-(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2+(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(q^{2 d-(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2 d+(2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{(2 d-3) k}
\end{aligned}
$$

while the right-hand side becomes

$$
\begin{aligned}
& \frac{\left(q^{2 d-1-(2 d-2) n} ; q^{2 d}\right)_{(d n-n-1) / d}\left(q^{2 d+2} ; q^{2 d}\right)_{(d n-n-1) / d}}{\left(q^{2 d-(2 d-2) n} ; q^{2 d}\right)_{(d n-n-1) / d}\left(q^{2 d+1} ; q^{2 d}\right)_{(d n-n-1) / d}} \\
& \quad=\frac{\left(1-q^{(2 d-2) n}\right)\left(q^{3} ; q^{2 d}\right)_{(d n-n-1) / d}}{\left.\left(1-q^{2}\right)_{\left(q^{2 d+1}\right.}^{2 d} ; q^{2 d}\right)_{(d n-n-1) / d}} q^{(1+n-d n) / d}
\end{aligned}
$$

This implies that the q-congruence (2.1) is true modulo $1-a q^{(2 d-2) n}$ and $a-q^{(2 d-2) n}$.
We now give the $n \equiv 1(\bmod d)$ case.
Theorem 2.2. Let $d>1$ be an integer and let n be a positive integer with $n \equiv 1(\bmod d)$. Then, modulo $\left(1-a q^{2 n}\right)\left(a-q^{2 n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(1+q^{2 d k+1}\right)\left(a q^{2} ; q^{2 d}\right)_{k}\left(q^{2} / a ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(a q^{2 d} ; q^{2 d}\right)_{k}\left(q^{2 d} / a ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{(2 d-3) k} \equiv \frac{[n]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{(n-1) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{(n-1) / d}} q^{(1-n) / d} \tag{2.3}
\end{equation*}
$$

Proof. Since $n \equiv 1(\bmod d)$, letting $b=q^{-2 n}$ and $c=q^{2 n}$ in (2.2) we see that the left-hand side terminates and is equal to

$$
\begin{aligned}
& \sum_{k=0}^{(n-1) / d} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2-2 n} ; q^{2 d}\right)_{k}\left(q^{2+2 n} ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(q^{2 d-2 n} ; q^{2 d}\right)_{k}\left(q^{2 d+2 n} ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{(2 d-3) k} \\
& \quad=\sum_{k=0}^{n-1} \frac{\left(1+q^{2 d k+1}\right)\left(q^{2-2 n} ; q^{2 d}\right)_{k}\left(q^{2+2 n} ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}}{(1+q)\left(q^{2 d-2 n} ; q^{2 d}\right)_{k}\left(q^{2 d+2 n} ; q^{2 d}\right)_{k}\left(q^{2 d} ; q^{2 d}\right)_{k}} q^{2 d-3) k}
\end{aligned}
$$

while the right-hand side reduces to

$$
\frac{\left(q^{2 d-1-2 n} ; q^{2 d}\right)_{(n-1) / d}\left(q^{2 d+2} ; q^{2 d}\right)_{(n-1) / d}}{\left(q^{2 d-2 n} ; q^{2 d}\right)_{(n-1) / d}\left(q^{2 d+1} ; q^{2 d}\right)_{(n-1) / d}}=\frac{\left(1-q^{2 n}\right)\left(q^{3} ; q^{2 d}\right)_{(n-1) / d}}{\left(1-q^{2}\right)\left(q^{2 d+1} ; q^{2 d}\right)_{(n-1) / d}} q^{(1-n) / d} .
$$

This proves the q-congruence (2.3).
Proof of Theorem 1.1. Let $a=1$ in (2.1). Then the left-hand side of (2.1) reduces to the left-hand side of (1.6), and the denominators of the left-hand side are relatively prime to $\Phi_{n}(q)$ since $\operatorname{gcd}(d, n)=1$. Moreover, the modulus $\left(1-a q^{(2 d-2) n}\right)\left(a-q^{(2 d-2) n}\right)$ becomes $\left(1-q^{(2 d-2) n}\right)^{2}$, which has the factor $\Phi_{n}(q)^{2}$. This proves the first case of (1.6). Similarly, letting $a=1$ in (2.3), we are led to the second case of (1.6).

3. Proof of Theorem 1.2

Recall that Watson's terminating ${ }_{8} \phi_{7}$ transformation formula (see [2, Section 2] and [2, Appendix (III.18)]) can be stated as follows:

$$
\begin{align*}
& { }_{8} \phi_{7}\left[\begin{array}{ccccccc}
a, & q a^{\frac{1}{2}}, & -q a^{\frac{1}{2}}, & b, & c, & d, & e, \\
a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & a q / b, & a q / c, & a q / d, & a q / e, & a q^{n+1}
\end{array} ; q,\right. \\
& \tag{3.1}\\
& \\
& =\frac{(a q ; q)_{n}(a q / d e ; q)_{n}}{(a q / d ; q)_{n}(a q / e ; q)_{n}}{ }_{4}{ }^{4} \phi_{3}\left[\begin{array}{ccc}
a q / b c, d, & e, q^{-n} \\
a q / b, & a q / c, d e q^{-n} / a
\end{array}\right]
\end{align*}
$$

where the basic hypergeometric ${ }_{r+1} \phi_{r}$ series is defined by

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} ; q, z \\
b_{1}, \ldots, b_{r}
\end{array}\right]:=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k}\left(a_{2} ; q\right)_{k} \ldots\left(a_{r+1} ; q\right)_{k}}{(q ; q)_{k}\left(b_{1} ; q\right)_{k} \cdots\left(b_{r} ; q\right)_{k}} z^{k} .
$$

We write the left-hand side of (1.8) with $m \geqslant 0$ as a terminating basic hypergeometric series:

$$
{ }_{8} \phi_{7}\left[\begin{array}{ccccc}
q^{2}, \tag{3.2}\\
q^{2 d+1}, & -q^{2 d+1}, & q^{2}, & q, & q^{2}, \\
q, & -q, & q^{2 d}, \\
q^{2 d+(2 d m+2 d-2) n}, & q^{2 d}, & q^{2-(2 d m+2 d-2) n}, & q^{2 d+(2 d m+2 d-2) n}
\end{array}\right] .
$$

By Watson's transformation (3.1) with $q \mapsto q^{2 d}, a=b=d=q^{2}, c=q, e=q^{2 d+(2 d m+2 d-2) n}$, and $n \mapsto m n+(d n-n-1) / d$, the series (3.2) is equal to

$$
\left.\begin{array}{l}
\frac{\left(q^{2 d+2} ; q^{2 d}\right)_{m n+(d n-n-1) / d}\left(q^{-(2 d m+2 d-2) n} ; q^{2 d}\right)_{m n+(d n-n-1) / d}}{\left(q^{2 d} ; q^{2 d}\right)_{m n+(d n-n-1) / d}\left(q^{2-(2 d m+2 d-2) n} ; q^{2 d}\right)_{m n+(d n-n-1) / d}} \\
\quad \times{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{2 d-1}, q^{2}, q^{2 d+(2 d m+2 d-2) n}, q^{2-(2 d m+2 d-2) n} \\
q^{2 d}, \\
q^{2 d+1},
\end{array}, q^{2 d+2}\right. \tag{3.3}
\end{array}\right] .
$$

It is easy to see that there are exactly $m+1$ factors of the form $1-q^{a n}$ (a is an integer) among the $m n+(d n-n-1) / d$ factors of $\left(q^{2 d+2} ; q^{2 d}\right)_{m n+(d n-n-1) / d}$. So are the q-shifted factorial $\left(q^{-(2 d m+2 d-2) n} ; q^{2 d}\right)_{m n+(d n-n-1) / d}$. But both $\left(q^{2 d} ; q^{2 d}\right)_{m n+(d n-n-1) / d}$ and $\left(q^{2-(2 d m+2 d-2) n} ; q^{2 d}\right)_{m n+(d n-n-1) / d}$ have merely m factors of the form $1-q^{a n}$. Since $\Phi_{n}(q)$ is a factor of $1-q^{N}$ if and only if N is a multiple of n, we deduce that the fraction before the ${ }_{4} \phi_{3}$ series is congruent to 0 modulo $\Phi_{n}(q)^{2}$.

For any integer x, let $f_{d, n}(x)$ be the least non-negative integer k such that $\left(q^{x} ; q^{2 d}\right)_{k} \equiv 0$ modulo $\Phi_{n}(q)$. Since $n \equiv-1(\bmod 2 d)$, we have $f_{d, n}(2)=(d n-n+d-1) / d, f_{d, n}(2 d-1)=$ $(n+1) /(2 d), f_{d, n}(2 d)=n, f_{d, n}(2 d+1)=(2 d n-n-1) /(2 d), f_{d, n}(2 d+2)=(d n-n-1) / d$, and so

$$
f_{d, n}(2 d-1)<f_{d, n}(2 d+2)<f_{d, n}(2) \leqslant f_{d, n}(2 d+1)<f_{d, n}(2 d) .
$$

This means that the denominator of the reduced form of the k-th term

$$
\frac{\left(q^{2 d-1} ; q^{2 d}\right)_{k}\left(q^{2} ; q^{2 d}\right)_{k}\left(q^{2 d+(2 d m+2 d-2) n} ; q^{2 d}\right)_{k}\left(q^{2-(2 d m+2 d-2) n} ; q^{2 d}\right)_{k}}{\left(q^{2 d} ; q^{2 d}\right)_{k}^{2}\left(q^{2 d+1} ; q^{2 d}\right)_{k}\left(q^{2 d+2} ; q^{2 d}\right)_{k}} q^{2 d k}
$$

in the ${ }_{4} \phi_{3}$ series is always relatively prime to $\Phi_{n}(q)$ for $k \geqslant 0$. Therefore, the expression (3.3) (i.e. (3.2)) is congruent to 0 modulo $\Phi_{n}(q)^{2}$, thus establishing (1.8) for $m \geqslant 0$.

Finally, we observe that $\left(q^{2} ; q^{2 d}\right)_{k} /\left(q^{2 d} ; q^{2 d}\right)_{k}$ is congruent to 0 modulo $\Phi_{n}(q)$ for $m n+$ $(d n-n-1) / d<k \leqslant(m+1) n-1$. The proof of (1.7) with $m \mapsto m+1$ then follows from (1.8) immediately.

4. Proof of Theorem 1.3

Since $n \equiv-1(\bmod 2 d)$, we have $n^{2} \equiv 1(\bmod d)$. By the second case of (1.6), the q congruence (1.10) is true modulo $\Phi_{n^{2}}(q)^{2}$. It is easy to see that $\left(q^{2} ; q^{2 d}\right)_{k} \equiv 0\left(\bmod \Phi_{n^{2}}(q)\right)$ for $\left(n^{2}-1\right) / d<k \leqslant n-1$, we conclude that (1.9) is also true modulo $\Phi_{n^{2}}(q)^{2}$.

It is easily seen that, for $n \equiv-1(\bmod 2 d)$,

$$
\frac{\left[n^{2}\right]_{q^{2}}\left(q^{3} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}}{\left(q^{2 d+1} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}^{\left(1-n^{2}\right) / d}} q^{0} \quad\left(\bmod \Phi_{n}(q)^{2}\right)
$$

because $\left[n^{2}\right]_{q^{2}}=\left(1-q^{2 n^{2}}\right) /\left(1-q^{2}\right)$ is divisible by $\Phi_{n}(q)$, and $\left(q^{3} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}$ has $(n+1) / d$ factors of the form $1-q^{a n}$ (a is an integer), while $\left(q^{2 d+1} ; q^{2 d}\right)_{\left(n^{2}-1\right) / d}$ only contains ($n-d+$ $1) / d$ such factors. Moreover, in view of Theorem 1.2, the left-hand sides of (1.9) and (1.10) are both congruent to 0 modulo $\Phi_{n}(q)^{2}$ since $\left(n^{2}-1\right) / d=(n-d+1) n / d+(d n-n-1) / d$. It follows that the q-congruences (1.9) and (1.10) are true modulo $\Phi_{n}(q)^{2}$. Since $\Phi_{n}(q)$ and $\Phi_{n^{2}}(q)$ are relatively prime polynomials, we complete the proof of the theorem.

5. Proof of Theorem 1.4

We first recall some basic properties of Morita's p-adic Gamma function [1,21]. Let p be an odd prime. For any integer $n \geq 1$, the p-adic Gamma function is defined by

$$
\Gamma_{p}(n):=(-1)^{n} \prod_{\substack{0<k<n \\ p \nmid k}} k .
$$

In particular, set $\Gamma_{p}(0)=1$. Let \mathbb{Z}_{p} denote the ring of all p-adic integers. Extend Γ_{p} to all $x \in \mathbb{Z}_{p}$ by defining

$$
\Gamma_{p}(x)=\lim _{x_{n} \rightarrow x} \Gamma_{p}\left(x_{n}\right),
$$

where x_{n} is any sequence of positive integers that p-adically approaches x. By the definition of p-adic Gamma function, we have

$$
\frac{\Gamma_{p}(x+1)}{\Gamma_{p}(x)}= \begin{cases}-x, & p \nmid x \tag{5.1}\\ -1, & p \mid x\end{cases}
$$

It is also known that, for any $x \in \mathbb{Z}_{p}$,

$$
\begin{equation*}
\Gamma_{p}(x) \Gamma_{p}(1-x)=(-1)^{a_{0}(x)} \tag{5.2}
\end{equation*}
$$

where $a_{0}(x) \in\{1,2, \ldots, p\}$ satisfies $a_{0}(x) \equiv x(\bmod p)$.
To prove Theorem 1.4, we also require the following result (see [19, Theorem 14]).
Lemma 5.1. For any odd prime p and $a, m \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\Gamma_{p}(a+m p) \equiv \Gamma_{p}(a)+\Gamma_{p}^{\prime}(a) m p \quad\left(\bmod p^{2}\right) . \tag{5.3}
\end{equation*}
$$

Proof of Theorem 1.4. Let $\Gamma(x)$ be the classical Gamma function. By (5.1), we have

$$
\begin{aligned}
\frac{\left(\frac{3}{2 d}\right)_{\left(p^{2}-1\right) / d}}{\left(\frac{2 d+1}{2 d}\right)_{\left(p^{2}-1\right) / d}} & =\frac{\Gamma\left(\frac{2 p^{2}+1}{2 d}\right) \Gamma\left(\frac{2 d+1}{2 d}\right)}{\Gamma\left(\frac{3}{2 d}\right) \Gamma\left(\frac{2 p^{2}+2 d-1}{2 d}\right)} \\
& =\frac{\frac{(2 d-3) p}{2 d} \cdot \frac{(4 d-3) p}{2 d} \ldots \ldots \frac{(2 p-1) p}{2 d}}{\frac{(2 d-1) p}{2 d} \cdot \frac{(4 d-1) p}{2 d} \cdots \cdots \frac{(2 p-2 d+1) p}{2 d}} \cdot \frac{\Gamma_{p}\left(\frac{2 p^{2}+1}{2 d}\right) \Gamma_{p}\left(\frac{2 d+1}{2 d}\right)}{\Gamma_{p}\left(\frac{3}{2 d}\right) \Gamma_{p}\left(\frac{2 p^{2}+2 d-1}{2 d}\right)} \\
& \equiv \frac{p\left(\frac{2 d-3}{2 d}\right)_{(p+1) / d}}{\left(\frac{2 d-1}{2 d}\right)_{(p-d+1) / d}} \cdot \frac{\Gamma_{p}\left(\frac{1}{2 d}\right) \Gamma_{p}\left(\frac{2 d+1}{2 d}\right)}{\Gamma_{p}\left(\frac{3}{2 d}\right) \Gamma_{p}\left(\frac{2 d-1}{2 d}\right)} \quad\left(\bmod p^{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{p\left(\frac{2 d-3}{2 d}\right)_{(p+1) / d}}{\left(\frac{2 d-1}{2 d}\right)_{(p-d+1) / d}} & =\frac{p(-1)^{(p+1) / d} \Gamma_{p}\left(\frac{2 p+2 d-1}{2 d}\right) \Gamma_{p}\left(\frac{2 d-1}{2 d}\right)}{\frac{p}{2 d}(-1)^{(p-d+1) / d} \Gamma_{p}\left(\frac{2 d-3}{2 d}\right) \Gamma_{p}\left(\frac{2 p+1}{2 d}\right)} \\
& =-\frac{2 d \Gamma_{p}\left(\frac{2 p+2 d-1}{2 d}\right) \Gamma_{p}\left(\frac{2 d-1}{2 d}\right)}{\Gamma_{p}\left(\frac{2 d-3}{2 d}\right) \Gamma_{p}\left(\frac{2 p+1}{2 d}\right)}
\end{aligned}
$$

It follows from (5.1)-(5.3) that

$$
\begin{aligned}
\frac{\left(\frac{3}{2 d}\right)_{\left(p^{2}-1\right) / d}}{\left(\frac{2 d+1}{2 d}\right)_{\left(p^{2}-1\right) / d}} & \equiv \frac{\Gamma_{p}\left(\frac{2 p+2 d-1}{2 d}\right) \Gamma_{p}\left(\frac{1}{2 d}\right)^{2}}{\Gamma_{p}\left(\frac{2 d-3}{2 d}\right) \Gamma_{p}\left(\frac{2 p+1}{2 d}\right) \Gamma_{p}\left(\frac{3}{2 d}\right)} \\
& \equiv \frac{\Gamma_{p} \frac{\left(\frac{2 p+2 d-1}{2 d}\right) \Gamma_{p}\left(\frac{2 d-1-2 p}{2 d}\right)(-1)^{\frac{p+1}{2 d}} \Gamma_{p}\left(\frac{1}{2 d}\right)^{2}}{(-1)^{\frac{(2 d-3)(p+1)}{2 d}}}}{} \\
& \equiv \Gamma_{p}\left(\frac{2 d-1}{2 d}\right)^{2} \Gamma_{p}\left(\frac{1}{2 d}\right)^{2}=1 \quad\left(\bmod p^{2}\right),
\end{aligned}
$$

as desired.

6. An open problem

Motivated by Swisher's conjectural supercongruence (1.3), it is natural to propose the following conjecture, which is also a generalization of [13, Conjecture 1.3].

Conjecture 6.1. For any integer $d>1$ and prime p with $p \equiv-1(\bmod 2 d)$, we have

$$
\begin{gathered}
\sum_{k=0}^{\left(p^{2}-1\right) / d} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{5}\right) \\
\sum_{k=0}^{p^{2}-1} \frac{\left(\frac{1}{d}\right)_{k}^{3}}{k!^{3}} \equiv p^{2} \quad\left(\bmod p^{5}\right)
\end{gathered}
$$

Acknowledgment. The authors thank the anonymous referee for a careful reading of this paper. The second author was partially supported by the National Natural Science Foundation of China (grant 11771175).

References

[1] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univesity Press, Cambridge, 1999.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[3] V.J.W. Guo, A family of q-congruences modulo the square of a cyclotomic polynomial, Electron. Res. Arch. 28 (2020), 1031-1036.
[4] V.J.W. Guo, A further q-analogue of Van Hamme's (H.2) supercongruence for primes $p \equiv 3$ (mod 4), Int. J. Number Theory 17 (2021), 1201-1206.
[5] V.J.W. Guo, Some variations of a "divergent" Ramanujan-type q-supercongruence, J. Difference Equ. Appl. 27 (2021), 376-388.
[6] V.J.W. Guo and J.-C. Liu, q-Analogues of two Ramanujan-type formulas for $1 / \pi$, J. Difference Equ. Appl. 24 (2018), 1368-1373.
[7] V.J.W. Guo and M.J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Israel J. Math. 240 (2020), 821-835.
[8] V.J.W. Guo and M.J. Schlosser, A family of q-supercongruences modulo the cube of a cyclotomic polynomial, Bull. Aust. Math. Soc., https://doi.org/10.1017/S0004972721000630
[9] V.J.W. Guo, J. Zeng, Some q-supercongruences for truncated basic hypergeometric series, Acta Arith. 171 (2015), 309-326.
[10] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[11] V.J.W. Guo and W. Zudilin, On a q-deformation of modular forms, J. Math. Anal. Appl. 475 (2019), 1636-1646.
[12] V.J.W. Guo and W. Zudilin, A common q-analogue of two supercongruences, Results Math. 75 (2020), 46.
[13] B. He, On some conjectures of Swisher, Results Math. 71 (2017), 1223-1234.
[14] J-C. Liu, Some supercongruences on truncated ${ }_{3} F_{2}$ hypergeometric series, J. Difference Equ. Appl. 24 (2018), 438-451.
[15] J-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471 (2019), 613-622.
[16] J-C. Liu, On a congruence involving q-Catalan numbers, C. R. Math. Acad. Sci. Paris 358 (2020), 211-215.
[17] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math. 116 (2020), 102003.
[18] Y. Liu and X. Wang, q-Analogues of two Ramanujan-type supercongruences, J. Math. Anal. Appl. 502 (2021), Art. 125238.
[19] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math. 290 (2016), 773-808.
[20] H.-X. Ni and H. Pan, Some symmetric q-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl. 481 (2020), 123372.
[21] A.M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics, 198, SpringerVerlag, New York, 2000.
[22] Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory 143 (2014), 293-319.
[23] Z.-W. Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132 (2012), 2673-2699.
[24] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015), Art. 18.
[25] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[26] C. Wang and H. Pan, On a conjectural congruence of Guo, preprint, January 2020, arXiv:2001.08347.
[27] X. Wang and M. Yue, A q-analogue of the (A.2) supercongruence of Van Hamme for any prime $p \equiv 3(\bmod 4)$, Int. J. Number Theory 16 (2020), 1325-1335.
[28] X. Wang and M. Yue, Some q-supercongruences from Watson's ${ }_{8} \phi_{7}$ transformation formula, Results Math. 75 (2020), Art. 71.
[29] W. Zudilin, Congruences for q-binomial coefficients, Ann. Combin. 23 (2019), 1123-1135.

[^0]: ${ }^{*}$ Corresponding author.

