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Abstract. We first give a g-analogue of a supercongruence of Sun, which is a general-
ization of Van Hamme’s (H.2) supercongruence for any prime p = 3 (mod 4). We also
give a further generalization of this g-supercongruence, which may also be considered as
a generalization of a g-supercongruence recently conjectured by the second author and
Zudilin. Then, by combining these two g-supercongruences, we obtain g-analogues of the
following two results: for any integer d > 1 and prime p with p = —1 (mod 2d),
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which are generalizations of Swisher’s (H.3) conjecture modulo p* for r = 2. The key in-
gredients in our proof are the ‘creative microscoping’ method, the ¢-Dixon sum, Watson’s
terminating g¢; transformation, and properties of the p-adic Gamma function.
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1. Introduction

In 1997, Van Hamme [25] listed 13 supercongruences related to truncated forms of Ra-
manujan’s and Ramanujan-like formulas for 1/7. Van Hamme himself proved three of
them, including the following supercongruence [25, (H.2)]: for any prime p = 3 (mod 4),
(p—1)/2 (l)?,
ko
7513 =0 (mod p?), (1.1)
k=0

where (a), = a(a +1)---(a +n — 1) is the Pochhammer symbol. Since (3)/k! = 0
(mod p) for (p+1)/2 < k < p— 1, we may compute the sum in (1.1) for k& up to
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p — 1. In recent years, all kinds of generalizations of (1.1) have been given by different
authors [4,9,11,12,14-16,19,22,23]. For example, Sun [23, Theorem 1.3] proved that, for
any integer d > 1 and prime p with p = —1 (mod 2d),
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In 2016, Swisher [24, (H.3) with r = 2] conjectured that, for primes p = 3 (mod 4) and
p>3,
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Motivated by Sun’s supercongruence (1.2) and Swisher’s conjecture (1.3), we shall
prove the following results: for any integer d > 1 and prime p with p = —1 (mod 2d),
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Note that the d = 3,4 cases of the supercongruence (1.4) were already observed by
He [13, Theorems 1.1 and 1.2]. However, He’s proofs of them are incorrect due to errors
in his derivations of (3.2) and (3.8) in [13].

It is known that many supercongruences have nice g-analogues, and mathematicians
may have more ways to deal with ¢-congruences than to treat classical supercongruences.
Recently, the second author and Zudilin [10] devised a method, called ‘creative micro-
scoping’, to prove plenty of g-congruences. For other recent progress on g-congruences,
the reader may consult [3,4,7-9,11,12,16-18, 20, 27-29].

In this paper, we shall give a g-analogue of (1.2) in the following theorem. Note that
the d = 2 case was already obtained by the second author and Zudilin [12, Theorem 1.1].

Theorem 1.1. Let d and n be positive integers with d > 1. Then, modulo ®,(q)?,
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At the moment, we already need to be familiar with the standard basic hypergeometric
notation. The g-shifted factorial is defined as (a;q)g = 1 and (a;q), = (1 — a)(1 —
aq) - (1—aq™ ') for n > 1 or n = oo. The g-integer is given by [n] = [n], = 1+q+---+
q" ', and @,(q) stands for the n-th cyclotomic polynomial in ¢, which may be defined by

Oug)= [[ (@-¢)

1<k<n
ged(n,k)=1

where ( is an n-th primitive root of unity.

We now assume that n = —1 (mod 2d). Then (¢%; ¢**)(an—n—1)/4 contains the factor 1—
q?=3" Since 1 —¢" =0 (mod ®,,(q)), we always have [(d—1)n]2 = (¢* ¢*") (@n-n—1)/d =
0 (mod ®,(q)), while (¢*"; ¢*")(an—n—1)/a is relatively prime to ®,(g). By the first case
of (1.6), we have
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Thus, if we further let n = p be a prime and take ¢ — 1, then we arrive at (1.2).
We shall also prove the following result, which is a generalization of [3, Theorem 1.1]
(or equivalently, [11, Conjuecture 2]).

Theorem 1.2. Let d > 1 be an integer and let n be a positive integer with n = —1
(mod 2d). Then, for any positive integer m,
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With the help of Theorems 1.1 and 1.2, we shall prove (1.4) and (1.5) by establishing
the following g-analogues of them.

k=0

Theorem 1.3. Let d > 1 be an integer and let n be a positive integer with n = —1
(mod 2d). Then, modulo ®,,(q)*®,2(q)?,
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The proofs of Theorems 1.1-1.3 will be given in Sections 2-4, respectively.

Let n = p be a prime and take ¢ — 1 in Theorem 1.3. Then ®,(1) = ®,2(1) = p,
and the left-hand sides of (1.9) and (1.10) reduce to those of (1.4) and (1.5), respectively.
Moreover, the right-hand sides of (1.9) and (1.10) become
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To illustrate that (1.9) and (1.10) reduce to (1.4) and (1.5), respectively, we need to prove
the following result.

Theorem 1.4. Let d > 1 be an integer and let p be a prime with p = —1 (mod 2d). Then
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Our proof of Theorem 1.4 is similar to Wang and Pan’s proof for the d = 2 case in [26].
For the reader’s convenience, we will give a detailed proof in Section 5.

2. Proof of Theorem 1.1

We need to establish a parametric generalization of Theorem 1.1. The following is the
n = —1 (mod d) case.

Theorem 2.1. Let d > 1 be an integer and let n be a positive integer with n = —1
(mod d). Then, modulo (1 — ag?*=2")(a — ¢?¢=2"),
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Proof. Making the parameter substitutions ¢ — ¢*¢, a — ¢%, b — bg? and ¢ — c¢® in the
¢-Dixon sum [2, Appendix (I1.13)], we have
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Since n = —1 (mod d), putting b = ¢~ and ¢ = ¢®**=2" in (2.2) we conclude that
the left-hand side terminates and is equal to
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This implies that the g-congruence (2.1) is true modulo 1 — ag®*=?" and a — ¢

2d—2)n' 0

We now give the n =1 (mod d) case.

Theorem 2.2. Let d > 1 be an integer and let n be a positive integer withn =1 (mod d).
Then, modulo (1 — ag**)(a — ¢*"),
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Proof. Sincen =1 (mod d), letting b = ¢?" and ¢ = ¢*" in (2.2) we see that the left-hand
side terminates and is equal to
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This proves the g-congruence (2.3). O

Proof of Theorem 1.1. Let a = 1in (2.1). Then the left-hand side of (2.1) reduces to the
left-hand side of (1.6), and the denominators of the left-hand side are relatively prime to
®,,(q) since ged(d,n) = 1. Moreover, the modulus (1 — ag®¥=2")(a — ¢*¢=2") becomes
(1 — q®=2m)2 which has the factor ®,,(¢q)?. This proves the first case of (1.6). Similarly,
letting @ = 1 in (2.3), we are led to the second case of (1.6). O



3. Proof of Theorem 1.2

Recall that Watson’s terminating g¢; transformation formula (see [2, Section 2| and [2,
Appendix (II1.18)]) can be stated as follows:
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where the basic hypergeometric ,,1¢, series is defined by

1,02, ..., 0r41 = CL1, CL2, k -(ar+1;Q)k k
T ¢7‘|: ?q7 :| Z.
i bi,...,b, ZO bl; ) '(br;Q)k

We write the left-hand side of (1.8) with m > 0 as a terminating basic hypergeometric
series:
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By Watson’s transformation (3.1) with ¢ — ¢*%,a = b =d = ¢?, ¢ = q, e = ¢?¥+(2dm+2d=2)n_

and n +— mn + (dn —n — 1)/d, the series (3.2) is equal to
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It is easy to see that there are exactly m + 1 factors of the form 1 — ¢*" (a is an in-
teger) among the mn + (dn — n — 1)/d factors of (¢?*+2; q2d)mn+(dn,n,1)/d. So are the

g-shifted factorial (g~ (Gdm+2d=2n, g2d) 0 1y/a- But both (¢°% ¢*)mnt(@n—n—1)/a and
(g7~ Zdm+2d=2)n, g2d) + dn—n—1y/a have merely m factors of the form 1 — ¢*. Since ®,,(q)
is a factor of 1 — ¢V if and only if N is a multiple of n, we deduce that the fraction before
the 4¢3 series is congruent to 0 modulo ®,(g)>.

For any integer , let f;,(x) be the least non-negative integer k such that (¢°; ¢**), = 0
modulo ®,(¢). Sincen = —1 (mod 2d), we have f;,(2) = (dn—n+d—1)/d, fi,(2d—1) =
(n+1)/(2d), fan(2d) =n, fan(2d+1) = (2dn—n—1)/(2d), fi.(2d+2) = (dn—n—1)/d,
and so

fd’n(Qd — 1) < fd,n(Qd + 2) < fd,n(2) < fd7n<2d + 1) < fd’n(Qd)
This means that the denominator of the reduced form of the k-th term
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in the 4¢3 series is always relatively prime to ®,(q) for £ > 0. Therefore, the expression
(3.3) (i.e. (3.2)) is congruent to 0 modulo ®,(¢q)?, thus establishing (1.8) for m > 0.

Finally, we observe that (¢% ¢*?)x/(¢*%; ¢*?), is congruent to 0 modulo ®,,(g) for mn +
(dn—n—1)/d < k < (m+1)n—1. The proof of (1.7) with m — m+1 then follows from
(1.8) immediately.

4. Proof of Theorem 1.3

Since n = —1 (mod 2d), we have n?> = 1 (mod d). By the second case of (1.6), the g¢-
congruence (1.10) is true modulo @,,2(¢)?. It is easy to see that (¢% ¢*?);, = 0 (mod ®,:2(q))
for (n? —1)/d < k < n — 1, we conclude that (1.9) is also true modulo ®,2(g)?.

It is easily seen that, for n = —1 (mod 2d),

1] 2(6* D n2-1)ja (1_p2
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because [n?],2 = (1—¢*")/(1—¢?) is divisible by ®,,(¢), and (¢*; ¢**)(n2—1y/a has (n+1)/d
factors of the form 1—¢*" (a is an integer), while (¢**™*; ¢**)(,2_1),4 only contains (n—d+
1)/d such factors. Moreover, in view of Theorem 1.2, the left-hand sides of (1.9) and (1.10)
are both congruent to 0 modulo ®,,(¢)? since (n*—1)/d = (n—d+1)n/d+(dn—n—1)/d.
It follows that the g-congruences (1.9) and (1.10) are true modulo ®,(g)%. Since ®,(q)

and ®,,2(q) are relatively prime polynomials, we complete the proof of the theorem.

5. Proof of Theorem 1.4

We first recall some basic properties of Morita’s p-adic Gamma function [1,21]. Let p be
an odd prime. For any integer n > 1, the p-adic Gamma function is defined by

Ty(n):= (=" J] &

0<k<n
ptk

In particular, set I',(0) = 1. Let Z, denote the ring of all p-adic integers. Extend I', to
all x € Z,, by defining
Fy(x) = lim [y(x,),

In—T

where x,, is any sequence of positive integers that p-adically approaches x. By the defini-
tion of p-adic Gamma function, we have

r 1 -, b1,
Lie 1) _ T (5.1)
I'p(z) -1, p|=x
It is also known that, for any = € Z,,
Lp(a)Tp(1 = 2) = (=1)°@), (5.2)
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where ag(z) € {1,2,...,p} satisfies ag(x) = (mod p).
To prove Theorem 1.4, we also require the following result (see [19, Theorem 14]).

Lemma 5.1. For any odd prime p and a,m € Z,, we have
Ip(a+mp) =Ty(a) + Ty(a)ymp (mod p?). (5.3)

Proof of Theorem 1.4. Let I'(x) be the classical Gamma function. By (5.1), we have
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It follows from (5.1)—(5.3) that
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(5 ) -
as desired. O

6. An open problem

Motivated by Swisher’s conjectural supercongruence (1.3), it is natural to propose the
following conjecture, which is also a generalization of [13, Conjecture 1.3].



Conjecture 6.1. For any integer d > 1 and prime p with p = —1 (mod 2d), we have

(pg—l)/d (1)3
k
# = p2 (mOd p5)7
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ﬁ =p* (mod p°).
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