PROOF OF A SUPERCONGRUENCE MODULO p*
VICTOR J. W. GUO

ABSTRACT. Employing Watson’s terminating g¢ transformation, we present a
g-analogue of the following supercongruence: for any prime p = 1 (mod 4) and

positive integer r,

”’Z‘:l k41 (%)3

Pt 64k k
which was conjectured by Z.-W. Sun in 2011, thus confirming Sun’s conjecture.
Further, applying a very-well-poised g¢5 summation and the creative microscoping
method introduced by the author and Zudilin, we extend this supercongruence
to the modulo p?"*! case. We also give some similar results for primes p = 3

(mod 4). Finally, we propose two conjectures on relevant supercongruences for
further study.

0 (mod p*"),

1. INTRODUCTION

In 1997, Van Hamme [20, (B.2), (H.2)] proposed the following supercongruence:
for any odd prime p,

(r—1)/2 3
Ak +1 2k )
Z 64k (k) = (—=1)®Y?p  (mod p°), (1.1)
k=0
(p—1)/2 1 (Qk)g B _Fp(%l)4 (mod p?), if p=1 (mod 4), 1.2)
k=0 64\ &/ o (mod p?), if p=3 (mod 4), '

where I'y(x) is the p-adic Gamma function (see [13]). It is easy to see that (1.1) and
(1.2) also hold when these two sums are over k up to p—1, since (2:) =0 (mod p) for
(p—1)/2 < k < p—1. The supercongruence (1.1) was first proved by Mortenson [12]
using a ¢F5 transformation, and later received a Wilf-Zeilberger (WZ) proof by
Zudilin [27] with the WZ pair borrowed from [2]. The supercongruence (1.2) was
established by Van Hamme himself, and was extended to the modulus p? case by
Long and Ramakrishna [11]. For some recent generalizations of (1.2), we refer to
the reader to [10, 14,21, 25, 26].

1991 Mathematics Subject Classification. 33D15, 11A07, 11B65.
Key words and phrases. supercongruence; p-adic Gamma function; creative microscoping; Wat-
son’s g¢7 transformation; g¢s summation.
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In 2011, Z.-W. Sun [16, Conjecture 5.9] made the following conjecture: for any
prime p =1 (mod 4) and positive integer r,
”Z‘l Ak + 1 2k\*
64k \ k
k=0

In 2013, Z.-W. Sun’s twin brother Z.-H. Sun [15, Theorem 3.5] proved that, for any
odd prime p, modulo p?,

0 (mod p*"). (1.3)

-1)/2 (2k)3_ 2 _ g2 ifp=2>+4y>=1 (mod 4),
k: pr—

atk 2
G4% (2p— 2427 (E297)7, ifp=3 (mod4).

- (1.4)

Note that, for p = 2% + 4y*> = 1 (mod 4),

1 ((p—1)/2\*
1y4 — 42 2
—I'(3) F((p _)) = 42 —2p (mod p°)
(see [3,19]). Combining (1.2) and (1.4) leads to the following congruence: for any
prime p = 1 (mod 4),

(p—1)/2

Ak 41 (2k\°
—_— = d p?). 1.
S T (1) =0 moan (15)

Therefore, Z.-H. Sun [15] has proved (1.3) for » = 1, though he has not mentioned
this explicitly in his paper. In 2017, He [9] reproved the r = 1 case of (1.3) in
a different way. For any p-adic integer z, let (z), stand for the least nonnegative
residue of x modulo p. Recently, Wang and Z.-W. Sun [24, Corollary 1.1] proved
the following general conjecture [17, Conjecture 19] of Z.-W. Sun which clearly
implies (1.5): for any odd prime p and positive integer b with p = +1 (mod b) and
(—1/b), =0 (mod 2),

pz_:(b% +b— 1)(%)’“(%1’{‘;;’!(?)1 “8EZ 0 (mod p?),

where (a), = a(a+1)---(a +n — 1) is the Pochhammer symbol. However, Z.-W.
Sun’s original conjecture (1.3) still remains open so far.
In this paper, we first prove the following results.

Theorem 1.1. Let p=1 (mod 4) be a prime and let r > 1. Then

(p"-1)

/2 3
4k + 1 [/ 2k o . ;
Z 64k (k) =(-1) p2 Fp(%)4 (mod p2 +1), (1.6)
k=0

p'—1 3
4k +1 (2k o . ;
Z 64k (k) = (=1)p"Tp(3)"  (mod p™*). (1.7)
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It is clear that the supercongruences (1.6) and (1.7) modulo p*" reduce to (1.3)
and its companion: for any prime p =1 (mod 4) and positive integer r,
(p§/24k+1 2k °
64~ k

k=0

0 (mod p*). (1.8)

We shall also prove the following similar supercongruences.

Theorem 1.2. Let p =3 (mod 4) be a prime and let r > 1. Then

(P> —1)/d 3
4k +1 (%) 27»
> — =p~"  (mod p™), (1.9)
~ 64k \k
(P 1=1)/d 3
4k +1 (2k . .
> n <k> = —16p” °T,($)*  (mod p*'), (1.10)
k=0

where d =1, 2.

The paper is arranged as follows. In the next section, we shall give g-analogues of
(1.3) and (1.8) by using Watson’s terminating g¢ transformation. In Section 3, we
shall give g-analogues of (1.6) and (1.7) by employing a very-well-poised g¢5 sum-
mation and the creative microscoping method devised by the author and Zudilin [7].
Then we give a proof of Theorem 1.1 from its g-analogue and properties of the p-adic
Gamma function in Section 4, and give a proof of Theorem 1.2 in Section 5. Finally,
in Section 6, we put forward some open problems on related supercongruences for
further study.

2. ¢-ANALOGUES OF (1.3) AND (1.8)

Throughout the paper, the g-shifted factorialis defined by (a;q)o = 1 and (a; q), =
(1—a)(l—aq) - (1 —aq®?t) forn =1,2,..., and the n-th cyclotomic polynomial
®,,(q) is given by

Ouq)= [ (a—¢

1<k<n
ged(n,k)=1

where ( is an n-th primitive root of unity. Furthermore, the g-integer is defined as
n|=nl,=1+q+---+¢" "

In order to present g-analogues of (1.3) and (1.8), we first give the following
g-congruences.

Theorem 2.1. Let m and n be positive integers with n = 1 (mod 4) and n > 1.

Then
mn—1 2. 4\3
4k + 1], Eq4f q4)§q_k =0 (mod ®,(q)?), (2.1)
p 0t q");
mn+(n—1)/2 ((]2 (]4)3
> Mk+ e Eg =0 (mod ®,(q)%). (2.2)

(¢%q*)3

k=

o
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Proof. Recall that Watson’s terminating g¢; transformation (see, for example, [4,
Appendix (II1.18)]) can be stated as follows:
%7

¢ a, qa _qaéa ba C, d7 €, C]_n . a2qn+2
o a¥, —ab, aq/b, agfe, aq/d, agle, ag™t' T Thede

_ (ag:9)nlag/de;a)n ¢3[ ag/be, d, e, ¢ " } , (2.3)

~ (ag/d; q)n(ag/e; q)n aq/b, ag/e, deq /a1
where the basic hypergeometric ,11¢, series is defined by

1,02, ..., 0pt1 - (ar; @Q)r(az; Qg - - - (@rg1; Qs k
T T a 72 = Z .
9 { by b Y } kz:% (¢ D (b1; Qi -+~ (br; Q)

We can write the left-hand side of (2.2) with m > 0 as a terminating g¢r series:

2 5 _.5 2 3 2 _Af(4m+2n 2 (dAm+2)n
q, 4, q, 9 9, 9, ¢ y g —
8¢7 |: q4+(4m+2)n ) q47 q 1:| . (24)

q, —d, q4a q37 q47 (127(4m+2)n,
Performing the parameter substitutions ¢ +— ¢* a = b =d = ¢*, ¢ = ¢, e =
g and no mn 4+ (n — 1)/2 in Watson’s g¢7 transformation (2.3), we see
that (2.4) is equal to

(q67 q4)mn+(n—1)/2 (q_(4m+2)n; q4)

(q45 q4)mn+(nfl)/2(q27(4m+2)n§ q4)mn+(nfl)/2
2 A+(4m+2)n  2—(4m+2)n
q, 47, ¢ y 4 4 4
1q, . 2.5

¢ @, ¢ qa,4q (2.5)
It is not hard to see that there are just m + 1 factors of the form 1 — ¢** with
a being an integer in the mn + (n — 1)/2 factors of (¢% ¢*)mn+m-1)2- The ¢-
shifted factorial (q*(4m+2)”;q4)mn+(n_1) 2 has the same property. However, there
are merely m factors of the form 1 — ¢°" with integral a in each of (¢*; ¢*)mn+(n-1)2
and (g2~ )4 i1y/2. Note that @,(g) is a factor of 1 — ¢/ if and only if
N is divisible by n. Hence, the fraction in front of the 4¢3 series is congruent to 0
modulo ®,(¢)?. For any integer z, let f,,(z) denote the minimum positive integer
k such that (¢°;¢*);, = 0 modulo ®,(q). In view of n = 1 (mod 4) and n > 1, we
have fu(1) = (n +3)/4, fu(2) = (n+ 1)/2, fu(3) = (3n+ 1)/4, fu(4) = n, and
fn(6) = (n —1)/2. This implies that the denominator of the reduced form of the

fraction
(4 0@ g )i (g TEm T2, gh) (g2~ UmT2m; gy, o
(g% a7 (a% a*)i(q% a*)x

is always coprime with ®,,(¢) for non-negative integers k. Therefore, the expression
(2.5) (namely, (2.4)) is congruent to 0 modulo ®,,(¢)?, confirming (2.2) for m > 0.

It is obvious that (¢?;¢*)3/(¢*; ¢*); is congruent to 0 modulo ®,,(¢)® for mn+ (n—
1)/2 <k < (m+ 1)n — 1. Thus, the g-congruence (2.1) after replacing m by m + 1
follows from (2.2) immediately. O

mn+(n—1)/2

X 403

From Theorem 2.1 we can easily deduce the following g-analogues of (1.3) and

(1.8).
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Corollary 2.2. Let n and r be positive integers with n = 1 (mod 4) and n > 1.
Then

(n"—1)/2 (¢ ") r
> [4/<:+1]q2( rsg =0 (mod []®w(a)?), (2.6)
— 7 q*); =
n"—1 r
> [k 4 1pr skt =0 (mod [T ®(a)*). (2.7)
k=0 (q 14 )k j=1

Proof. For r = 1, the ¢g-congruences (2.6) and (2.7) follow from Theorem 2.1 imme-
diately, since (2.2) is also true for m = 0. For r > 2 and 1 < j < r, letting m = n"~/
and n +— n’ in (2.1), one sees that (2.7) holds modulo ®,,;(¢)?, Meanwhile, writing
(n" —1)/2 = (n"7 — 1)n//2 + (n? — 1)/2, one sees that (2.6) also holds modulo
®,;(q)?. Since @,(q)% D,2(q)?%, ..., P, (q)? are pairwise coprime polynomials, we
conclude that the g-congruences (2.6) and (2.7) hold. O

Let n = p be a prime in Corollary 2.2. Taking the limits as ¢ — 1 on both sides
of (2.6) and (2.7), and employing the fact that ®,;(1) = p for all positive integers
J, we get (1.8) and (1.3), respectively.

3. ¢-ANALOGUES OF (1.6) AND (1.7)

Recall that a very-well-poised ¢¢5 summation (see [4, Appendix (II.21)]) can be
stated as follows:

bs @ ga:, —qar, b, ¢ " » ag""™ ] _ (ag; @)n(ag/bc; q)n
o az, —az, ag/b, ag/e, ag”' T be (aq/b; q)n(agq/c; q)n
(3.1)

We first use (3.1) and the creative microscoping method [7] to establish the following
parametric g-congruence.

Theorem 3.1. Let n =1 (mod 4) be a positive integer. Let a be an indeterminate.
Then, modulo ®,(¢?)(1 — ag*)(a — ¢*"),

(n—1)/2

S k1 ag®; ¢")k(q*/a; ¢")r(a®; 4" )x o = D2 RURTRIEEVEY

— q4 a*)i(a*/a; a)i(a*; a*) (@Y 12
(3.2)

Proof. Making the substitutions ¢ — ¢*,a = ¢*, b = ¢3, ¢ = ¢*™", and n — (n—1)/2
n (3.1), we obtain

(n—1)/2
S k1] 2(q2;q4)k(q (@ Nk
q

q
prd (% a)e(a* 2" a)e(@* 2" ¢* )i
_ (€% @) (n=1)/2(* 2" ") (n=1)2
(@54 (n-1)2(*2 ¢*) (n—1)/2

242n. 2—2n
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—3(n—1)/2 [n] ) (qsa q4)(n71)/2 .
(@ a2
Namely, the two sides of (3.2) are equal when a = ¢=2". Therefore, the g-congruence

(3.2) holds modulo 1 — ag®® and a — ¢*".
In view of [6, Lemma 3.1], for 0 < k < (n — 1)/2, we have

(0% ¢*) (n—1)/2-k (n-1)/2-2 (A3 0k (no1y2/210k ,
=(=a)" " d @,(¢%),
(¢*/a; q") n-1)/2-k (a (¢*/a; q*)x (mo (¢°))

and so

1, 11, (g% )mi(g 2/“?q4)m—k(q2§q4)m—kq_(m_k)
(a q47q4)m k(054 ) m—r (g ¢ )i

_ (ag® g )i(q?/a;q")e(d* ¢ iy, 2
= U gt il 00 )

where m = (n — 1)/2 and we have used the fact ¢** = 1 (mod ®,(¢*)) and the
condition n = 1 (mod 4). This means that the k-th and (m — k)-th summands on
the left-hand side of (3.2) cancel each other modulo ®,(¢) and so the left-hand side
of (3.2) is congruent to 0 modulo ®,(¢?). Since the right-hand side of (3.2) is also
congruent to 0 modulo ®,(¢?), we conclude that (3.2) holds modulo ®,(¢?).

The proof of (3.2) then follows from the fact that ®,(¢*), 1 — a¢®*, and a — ¢*"
are pairwise coprime polynomials in gq. O

[4(m — k) +

We are now able to give g-analogues of (1.6) and (1.7) as follows.

Theorem 3.2. Let n and r be positive integers with n = 1 (mod 4) and n > 1.
Then, modulo ®,r(q) [Tj_; Prni(q)?, we have

(n"—1)/2 4. 42
(q2 q4)k —k 2_9n" (q 7q )(nr_l)/4
[4k 4 1], ¢ =g e S (3.3)
kzzo ! (q Jq )3 I (q2;q4)%n'r 1)/4
n—1 2 ¢t 4. 4\2
100 O S )
D [k b = ¢ e 0 e (3.4)
k=0 4% q ) (%4 )(n" 1)/4

Proof. Letting a = 1 in (3.2) and noticing that 1 — ¢*" contains the factor @, (¢?),
which is coprime with (¢% ¢*)(n—1)/2, we obtain

(q2;q4)i —k —3(n—1)/2 (q q )(n 1)/2 2\3
[4k + 1) ¢ =g ]2 (mod @,(¢7)), (3.5)
k=0 ! (q 4 )% (q q )(n 1)/2

3
M:
=
[\

n—1 2. 4\3 5. 4
ah+ 1 L = q-3<"-1>/2[n1q2% (mod Du(¢),  (3.6)
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since (¢%¢)3/(q* ¢*)3 =0 (mod @,(q)?) for (n —1)/2 < k < n — 1. Tt is easy to
see that

(@ ) m-v/2 _ 0 (6000740 0 ) -1
(@54 (n-1)/2 (@254 n-1)/2(@"2%; ¢*) (n—1) /4
[n] (q " q )n 1)/4(q43q4)(n—1)/4
(@ ¢ (1)

1 /4(q2; q4)(n71)/4
4. 4\2
— q(l—n)/2[n] (a%q ;(n—l)/zl

(mod ®,,(¢)?). (3.7)

In view of @,,(¢*) = ®,(q)®,,(—q) for odd n, from (3.5)—(3.7) we deduce that

(n—1)/2 4. 4\2

(qz;q“)?’ _ . (¢*5a") 01y

> [4k:+1]qz(q 7 e = ]qz[n]# (mod ®,(q)%), (3.8
k=0 !

and its companion:

n—1 4. 4\2
(% qh)3 _ on (@56 ) 1y a
[k gy o msd " = 6 nlpll o= (mod @(g)"). (39)
k=0 ) k ) (n—1)/4

Replacing n by n” in (3.8) and (3.9), we see that (3.3) and (3.4) hold modulo
®,-(¢)*. Since both [n"],2 and [n"] are divisible by [}, ' ®,,;(q), and the denominator
of the reduced form of (¢*; ¢ ) 1 /4/(q q )(W _1y4 Is coprime with [7Z, 1 ®,;(q), in
light of (2.6) and (2.7), we see that (3.3) and (3.4) also hold modulo HJ: P,(q)%
This completes the proof of the theorem. O

Further, similarly to the proof of (3.5) and [7, Theorem 1.4], we can prove the
following g-analogue of (1.1).

Theorem 3.3. Let n > 1 be an odd integer. Then, modulo [n]®,(q)?,

(n—1)/d

(q2;q4)2 —k —3(n—1)/2 (_q53q4)(n71)/2
)¥[dk + 1] ¢ " = (—9) "V np , (3.10)
ZO (¢* ¢*); T (=% ") 12

where d =1, 2.

4. PROOF OF THEOREM 1.1
We need the following congruence modulo a prime p.

Proposition 4.1. Let p =1 (mod 4) be a prime and r a positive integer. Then
1

1 (" —1)/2\ _ p—1)r 4FP(Z)2T
s (gr ) = VIR G el

Proof. By Fermat’s little theorem, we have 2°~! =1 (mod p), and so

2 =1)/2 — o((P=1+1)7=1/2 = o(=1r/2 (04 p).
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Since (p" —1)/2=(p—-1)p" 24+ (p—1)p" /24 -+ (p—1)/2and (p" — 1)/4 =
(p—1)p~1/4+(p—1)p2/4+ -+ (p—1)/4, by the Lucas theorem, we have

(" =12\ _ (b=1/2\"
(o= a) = (G ya) moan:
Applying Van Hamme’s result [19, Theorem 3]:

1 ((p—1)/2\ _ p-1y7aLp(3)’
2(p—1)/2 <<p _ 1)/4) = (_1)( )/ F—(%) (mOd p)v (42)

we get the desired congruence (4.1). O

Proof of Theorem 1.1. Letting n = p be a prime and taking the limits as ¢ — 1 in
(3.3) and (3.4), we are led to the following supercongruences:

(p"—1)/2 3 r_
Ak +1 (2K , 2 )
=p"— d p*+i 4.3
2. G <k> P (7-172y? (mod p™ 7). (4:3)
k=0 (pr—1)/4
pr—1 3 r_
Ak +1 (2K , 2l -
=p — . 4.4
PDRTE <k> P (712 (mod p™) (4.4)
k=0 (pr—1)/4
In light of Proposition 4.1, the right-hand sides of (4.3) and (4.4) is congruent to
1\2r
2r p(z) (mod p?+1).
G
Noticing that T'y(5)? = —1 and T',(§)?T',(2)? = 1, we finish the proof of the theorem.

O

5. PROOF OF THEOREM 1.2

Let p be an odd prime. We first recall some fundamental properties of the p-adic
Gamma function [1,13]. For any positive integer n, the p-adic Gamma function is

defined as
Ly(n):=(=1)" J] &

0<k<n
ptk

Moreover, put I',(0) = 1. Let Z, stand for the ring of all p-adic integers. Then I',
can be extended to all x € Z, by defining

Iy(z) = Iliglx Lp(zy),

where x,, denotes any sequence of positive integers p-adically approximating x. From
the definition of p-adic Gamma function, we can easily deduce that

Fp(l'+1) o -7, p)(xa
Ip(z)
We also need the following properties: for any = € Z,,

Lp(@)Tp(1 = z) = (=1, (5-2)



and for any a,m € Z,,
Lp(a+mp) =T,(a) + F;(a)mp (mod p?) (5.3)

(see [11, Theorem 14]).
In order to prove Theorem 1.2, we first give two congruences modulo p?, though
for the first one we only need it modulo p.

Lemma 5.1. Let p =3 (mod 4) be a prime and let r > 1. Then

T(;) WD — (~1)7 (mod p?), (5.4)
(2) p?r—1)/4

pw = —16T,(3)" (mod p?). (5.5)
(Z) 2r—1 1/2

Proof. Let I'(x) be the classical Gamma function. We prove (5.4) by induction on
r. For r =1, in view of (5.1), we have

2
(1)(;02—1)/4 :pr<p 13 F(%)

"Ouoon 1 0D
_ _pp 2 ((};_41): Fp(pzzri)I;p(%)
L. %P ..... - Iy p:
_ (1)(17—3)/4 ) Fp(pzz_g)rp(%)
(3)(p+1)/4 (2
P (1 3\p (1
= —Fp(r‘;(é’;(ﬁ : Fp(r“;)ép 2) (mod p?). (5.6)

By (5.2) and (5.3), we get

!
W~

FPE;; = (- 1)(p+1)/4F (Tp)rp(l—P) = (—1)(”1)/41"},(%)2 (mod pz)‘ (5.7)

Substituting (5.7) into (5.6) and using I',(
p =3 (mod 4), we deduce that

(1) (p2—1)/4
(3)2—1)/4

+

1
2

= -1 (mod p?).

We now assume that the congruence (5.4) holds for some r — 1 (r > 2). Then

pr(1)<p2r—1>/4 _prf(p 2)0(3)
- 27
(5)2r—1)/4 (et

4
27‘—1_3 21
_ _prp.gp. e . )P | T, (2 4+3)Fp(%)
1_27.% ..... w Fp(%)
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2r
e g DT,

= _p 2r
(Bt DB
2r—2 _ 2r—1 2r
a2 P T () DT (5)
PN =T W= W
1) p2r—2_
- r—l(l)(p2 2-1)/4 (mod p2).
(2) @214
By the induction hypothesis, we have
1 2r—2 _
r—1 (1)(10 1)/4 = (_1)1"71 (HlOd pZ),
(2)@2r—2-1)/4
and so (5.4) holds for 7.
Wang and Pan [22] proved that
(Do _ 2
(D12
They also gave the following identity:
2r
Dor-vp  pDersne TG
- 27
BDor-ne Derrne TR,
It follows that
27
p(Der-1-nse _ p(i)( iy _ Dy(DT(P5) _ —4A0(0)° 402
1(3) BNEE = T (P (3 - TR (mod p°)
Doy ey Tp(P5)0(3) rlg
Noticing that I'y()?T',(2)? = 1, we obtain (5.5). O

We now present a g-analogue of (1.9) as follows.

Theorem 5.2. Let n and r be positive integers with n = 3 (mod 4). Then, modulo
D2r(q) [Tjy Pr2i(q)?, we have

(n?"—1)/d

(@*a")7 & 2-2n277 2 2 (q4;q4)%n2“1)/4
[4k 4 1], ¢ =q " [n7]gen™] , (5.8)
kzzo " (g% 4"} R o S
where d =1, 2.
Proof. Tt is clear that n? = 1 (mod 4). Replacing n by n? in (3.3) and (3.4), we
obtain the desired g-congruence (5.8). O

Proof of (1.9). Letting n = p be a prime and taking the limits as ¢ — 1 in (5.8),
we arrive at

& Ak +1 (2k)° — A <1)?1?2’“—1)/4 2r+1
D> e\ ) =P e (mod pth),
k=0 (2)Gper—1ya

where d = 1,2. The proof of (1.9) then follows from (5.4). O]
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Similarly, we have the following g-analogue of (1.10).

Theorem 5.3. Let n and r be positive integers with n = 3 (mod 4). Then, modulo
n2r 1( )HT I(I)n2j( ) , we have

(n2r=1-1)/d

(g ;q4)% —k —3(n2r—1-1)/27, 2r—1 (q5;q4)(n2T*1—1)/2
[4k + 1] ,2 g P =0 221 . (5.9
kzzo (g ah)} TG g 211y 2

where d =1, 2.
Proof. Note that the g-congruence (3.2) also holds modulo (1 — ag®")(a — ¢*") for
= 3 (mod 4). Namely, the g-congruences (3.5) and (3.6) hold modulo ®,,(¢*)? for

n = 3. Replacing n by n* ! in (3.5) and (3.6), we are led to the following result:
modulo ®@,,2-—1(q?)?

p2r—1_
( Zl)/d[4k . 1] 2 (q2;q4)% Sk 3(n2T71_1)/2[n2r 1] (q q )(n2r71_1)/2’ (51())
=0 (4% q*) 2r—1-1) 2
Since n? = n* = .- = n¥2 =1 (mod 4), by Theorem 2.1, the left-hand side of
(5.10) is congruent to 0 modulo H“l ®,2i(q)>. Meanwhile, it is not difficult to see
that the right-hand side of (5.10) is also congruent to 0 modulo [];Z; ' ®,2;(¢)%. This
completes the proof of (5.10). O

Proof of (1.10). Letting n = p be a prime and taking ¢ — 1 in (5.10), we conclude
that

®*~1-1)/d

Ak +1 <2k>3 or1 (D112 2
P e (IIlOd p T)a
; 64k k (%)(p%*l—l)/?

where d = 1,2. The proof of (1.10) then follows from (5.5). O

6. CONCLUDING REMARKS AND OPEN PROBLEMS

By establishing a suitable g-analogue, the author and Zudilin [8, Theorem 3.3]
proved the following Dwork-type supercongruence: for any odd prime p and positive
integer r,

(pr—1)/d 3 (r—'-1)/d 3
WAk 1 (2% ) 4k +1 (2K )
) = eem S ) moa i
k=0 k=0
(6.1)

where d = 1,2, the d = 2 case confirming the (B.3) conjecture of Swisher [18].
It is natural to propose the following new Dwork-type supercongruence conjecture.

I
0

Conjecture 6.1. Let p =1 (mod 4) be a prime and let r = 1. Then

(prfl)/d 3 (prfli 3
4k +1 (2k T ak +1/2k .
Z G4k (k‘) = —p’T,(3)! Z T ( k) (mod p*"), (6.2)
k=0 k=0

where d =1, 2.
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Although many other Dwork-type supercongruences modulo p®" have been proved
by the author and Zudilin [8], none of them are related to p-adic Gamma functions.
For this reason, we believe that Conjecture 6.1 is rather challenging.

Numerical evaluations imply that the following generalization of (1.10) should be
true.

Conjecture 6.2. Let p =3 (mod 4) be a prime with p > 3 and let v > 1. Then

(v =1 -1)/d

Ak +1 (2K’ . )
2 om (k) = —16p"°Ty(1)"  (mod p™™), (6.3)
k=0

where d =1, 2.

Note that the r = 1 case of (6.3) has already been proved by Wang and Sun [23,
Theorem 1.2].

In [5, Conjecture 7.2], the author proposed the following curious conjecture: for
all positive integers n with n =1 (mod 4),

g (G0
Z [4k + 1] (qQ7 qz)ki qk(n Skt = (mod ¢n(q)2)>
k=0 !

which is a g-analogue of (1.3) for r = 1. The author and Zudilin [7, Theorem 4.11]
have showed that the above g-congruence is true modulo ®,(¢). It would be very
interesting if the reader can confirm this conjecture completely, though it is not a
full g-analogue of Z.-W. Sun’s original conjecture (1.3).

REFERENCES

[1] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge,
1999.

[2] S.B. Ekhad and D. Zeilberger, A WZ proof of Ramanujan’s formula for m, in: Geometry,
Analysis, and Mechanics, pp. 107-108, J. M. Rassias (ed.), World Scientific, Singapore, 1994.

[3] S. Chowla, B. Dwork, and R.J. Evans, On the mod p? determination of (g:i)ﬂ), J. Number

4
Theory 24 (1986), 188-196. /
[4] G. Gasper and M. Rahman, Basic hypergeometric series, second edition, Encyclopedia of
Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[5] V.J.W. Guo, ¢g-Analogues of two “divergent” Ramanujan-type supercongruences, Ramanujan
J. 52 (2020), 605-624.
[6] V.J.W. Guo and M.J. Schlosser, Some g-supercongruences from transformation formulas for
basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[7] V.J.W. Guo and W. Zudilin, A g-microscope for supercongruences, Adv. Math. 346 (2019),
329-358.
[8] V.J.W. Guo and W. Zudilin, Dwork-type supercongruences through a creative q-microscope,
J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
[9] B. He, Congruences concerning truncated hypergeometric series, Proc. Roy. Soc. Edinburgh
Sect. A 147 (2017), 599-613.
[10] J.-C. Liu, On Van Hamme’s (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471
(2019), 613-622.
[11] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric
series, Adv. Math. 290 (2016), 773-808.



[12]
[13]
[14]

[15]

[20]

21]
22]
23]
24]
25]
26]

[27]

13

E. Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc.
136 (2008), 4321-4328.

A.M. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics, Vol. 198,
Springer-Verlag, New York, 2000.

H. Song and C. Wang, Further generalizations of the (A.2) and (H.2) supercongruences of
Van Hamme, Results Math. 79 (2024), Art. 147.

Z.-H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory 133 (2013),
1950-1976.

Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), 2509-2535.
Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquaterly 36 (2019),
1-99.

H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015),
Art. 18.

L. Van Hamme, Proof of a conjecture of Beukers on Apery numbers, in: Proceedings of
the conference on p-adic analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, 1986, pp.
189-195.

L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric se-
ries, in: p-Adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math.
192, Dekker, New York, 1997, pp. 223-236.

C. Wang, A new g-extension of the (H.2) congruence of Van Hamme for primes p =1 (mod 4),
Results Math. 76 (2021), Art. 205.

C. Wang and H. Pan, On a conjectural congruence of Guo, preprint, January 2020;
arXiv:2001.08347.

C. Wang and Z.-W. Sun, p-Adic analogues of hypergeometric identities and their applications,
Nanjing Univ. J. Math. Biquarterly 41 (2024), 34-56.

C. Wang and Z.-W. Sun, A parametric congruence motivated by Orr’s identity, J. Difference
Equ. Appl. 29 (2023), 198-207.

C. Wei, A further g-analogue of Van Hamme’s (H.2) supercongruence for any prime p = 1
(mod 4), Results Math. 76 (2021), Art. 92.

C. Wei, A g-supercongruence modulo the third power of a cyclotomic polynomial, Bull. Aust.
Math. Soc. 106 (2022), 236-242.

W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), 1848-1857.

SCHOOL OF MATHEMATICS, HANGZHOU NORMAL UNIVERSITY, HANGZHOU 311121, PEO-
PLE’S REPUBLIC OF CHINA
E-mail address: jwguo@math.ecnu.edu.cn



