
PROOF OF A SUPERCONGRUENCE MODULO p2r

VICTOR J. W. GUO

Abstract. Employing Watson’s terminating 8φ7 transformation, we present a
q-analogue of the following supercongruence: for any prime p ≡ 1 (mod 4) and
positive integer r,

pr−1∑

k=0

4k + 1
64k

(
2k

k

)3

≡ 0 (mod p2r),

which was conjectured by Z.-W. Sun in 2011, thus confirming Sun’s conjecture.
Further, applying a very-well-poised 6φ5 summation and the creative microscoping
method introduced by the author and Zudilin, we extend this supercongruence
to the modulo p2r+1 case. We also give some similar results for primes p ≡ 3
(mod 4). Finally, we propose two conjectures on relevant supercongruences for
further study.

1. Introduction

In 1997, Van Hamme [20, (B.2), (H.2)] proposed the following supercongruence:
for any odd prime p,

(p−1)/2∑

k=0

4k + 1

64k

(
2k

k

)3

≡ (−1)(p−1)/2p (mod p3), (1.1)

(p−1)/2∑

k=0

1

64k

(
2k

k

)3

≡
{−Γp(

1
4
)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.2)

where Γp(x) is the p-adic Gamma function (see [13]). It is easy to see that (1.1) and

(1.2) also hold when these two sums are over k up to p−1, since
(
2k
k

) ≡ 0 (mod p) for
(p−1)/2 < k 6 p−1. The supercongruence (1.1) was first proved by Mortenson [12]
using a 6F5 transformation, and later received a Wilf–Zeilberger (WZ) proof by
Zudilin [27] with the WZ pair borrowed from [2]. The supercongruence (1.2) was
established by Van Hamme himself, and was extended to the modulus p3 case by
Long and Ramakrishna [11]. For some recent generalizations of (1.2), we refer to
the reader to [10,14,21,25,26].
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In 2011, Z.-W. Sun [16, Conjecture 5.9] made the following conjecture: for any
prime p ≡ 1 (mod 4) and positive integer r,

pr−1∑

k=0

4k + 1

64k

(
2k

k

)3

≡ 0 (mod p2r). (1.3)

In 2013, Z.-W. Sun’s twin brother Z.-H. Sun [15, Theorem 3.5] proved that, for any
odd prime p, modulo p2,

(p−1)/2∑

k=0

k

64k

(
2k

k

)3

≡




p
2
− x2, if p = x2 + 4y2 ≡ 1 (mod 4),

(2p− 2 + 2p−1)
(
(p−3)/2
(p−3)/4

)2
, if p ≡ 3 (mod 4).

(1.4)

Note that, for p = x2 + 4y2 ≡ 1 (mod 4),

−Γp(
1
4
)4 ≡ 1

2p−1

(
(p− 1)/2

(p− 1)/4

)2

≡ 4x2 − 2p (mod p2)

(see [3, 19]). Combining (1.2) and (1.4) leads to the following congruence: for any
prime p ≡ 1 (mod 4),

(p−1)/2∑

k=0

4k + 1

64k

(
2k

k

)3

≡ 0 (mod p2). (1.5)

Therefore, Z.-H. Sun [15] has proved (1.3) for r = 1, though he has not mentioned
this explicitly in his paper. In 2017, He [9] reproved the r = 1 case of (1.3) in
a different way. For any p-adic integer x, let 〈x〉p stand for the least nonnegative
residue of x modulo p. Recently, Wang and Z.-W. Sun [24, Corollary 1.1] proved
the following general conjecture [17, Conjecture 19] of Z.-W. Sun which clearly
implies (1.5): for any odd prime p and positive integer b with p ≡ ±1 (mod b) and
〈−1/b〉p ≡ 0 (mod 2),

p−1∑

k=0

(b2k + b− 1)
(1

2
)k(

1
b
)k(1− 1

b
)k

k!3
≡ 0 (mod p2),

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. However, Z.-W.
Sun’s original conjecture (1.3) still remains open so far.

In this paper, we first prove the following results.

Theorem 1.1. Let p ≡ 1 (mod 4) be a prime and let r > 1. Then

(pr−1)/2∑

k=0

4k + 1

64k

(
2k

k

)3

≡ (−1)rp2rΓp(
3
4
)4r (mod p2r+1), (1.6)

pr−1∑

k=0

4k + 1

64k

(
2k

k

)3

≡ (−1)rp2rΓp(
3
4
)4r (mod p2r+1). (1.7)
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It is clear that the supercongruences (1.6) and (1.7) modulo p2r reduce to (1.3)
and its companion: for any prime p ≡ 1 (mod 4) and positive integer r,

(pr−1)/2∑

k=0

4k + 1

64k

(
2k

k

)3

≡ 0 (mod p2r). (1.8)

We shall also prove the following similar supercongruences.

Theorem 1.2. Let p ≡ 3 (mod 4) be a prime and let r > 1. Then

(p2r−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ p2r (mod p2r+1), (1.9)

(p2r−1−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ −16p2r−2Γp(
3
4
)4 (mod p2r), (1.10)

where d = 1, 2.

The paper is arranged as follows. In the next section, we shall give q-analogues of
(1.3) and (1.8) by using Watson’s terminating 8φ7 transformation. In Section 3, we
shall give q-analogues of (1.6) and (1.7) by employing a very-well-poised 6φ5 sum-
mation and the creative microscoping method devised by the author and Zudilin [7].
Then we give a proof of Theorem 1.1 from its q-analogue and properties of the p-adic
Gamma function in Section 4, and give a proof of Theorem 1.2 in Section 5. Finally,
in Section 6, we put forward some open problems on related supercongruences for
further study.

2. q-Analogues of (1.3) and (1.8)

Throughout the paper, the q-shifted factorial is defined by (a; q)0 = 1 and (a; q)n =
(1− a)(1− aq) · · · (1− aqn−1) for n = 1, 2, . . . , and the n-th cyclotomic polynomial
Φn(q) is given by

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity. Furthermore, the q-integer is defined as
[n] = [n]q = 1 + q + · · ·+ qn−1.

In order to present q-analogues of (1.3) and (1.8), we first give the following
q-congruences.

Theorem 2.1. Let m and n be positive integers with n ≡ 1 (mod 4) and n > 1.
Then

mn−1∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ 0 (mod Φn(q)2), (2.1)

mn+(n−1)/2∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ 0 (mod Φn(q)2). (2.2)
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Proof. Recall that Watson’s terminating 8φ7 transformation (see, for example, [4,
Appendix (III.18)]) can be stated as follows:

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

=
(aq; q)n(aq/de; q)n

(aq/d; q)n(aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
, (2.3)

where the basic hypergeometric r+1φr series is defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑

k=0

(a1; q)k(a2; q)k . . . (ar+1; q)k

(q; q)k(b1; q)k · · · (br; q)k

zk.

We can write the left-hand side of (2.2) with m > 0 as a terminating 8φ7 series:

8φ7

[
q2, q5, −q5, q2, q3, q2, q4+(4m+2)n, q2−(4m+2)n

q, −q, q4, q3, q4, q2−(4m+2)n, q4+(4m+2)n ; q4, q−1

]
. (2.4)

Performing the parameter substitutions q 7→ q4, a = b = d = q2, c = q3, e =
q4+(4m+2)n, and n 7→ mn + (n − 1)/2 in Watson’s 8φ7 transformation (2.3), we see
that (2.4) is equal to

(q6; q4)mn+(n−1)/2(q
−(4m+2)n; q4)mn+(n−1)/2

(q4; q4)mn+(n−1)/2(q2−(4m+2)n; q4)mn+(n−1)/2

× 4φ3

[
q, q2, q4+(4m+2)n, q2−(4m+2)n

q4, q3, q6 ; q4, q4

]
. (2.5)

It is not hard to see that there are just m + 1 factors of the form 1 − qan with
a being an integer in the mn + (n − 1)/2 factors of (q6; q4)mn+(n−1)/2. The q-

shifted factorial (q−(4m+2)n; q4)mn+(n−1)/2 has the same property. However, there
are merely m factors of the form 1− qan with integral a in each of (q4; q4)mn+(n−1)/2

and (q2−(4m+2)n; q4)mn+(n−1)/2. Note that Φn(q) is a factor of 1 − qN if and only if
N is divisible by n. Hence, the fraction in front of the 4φ3 series is congruent to 0
modulo Φn(q)2. For any integer x, let fn(x) denote the minimum positive integer
k such that (qx; q4)k ≡ 0 modulo Φn(q). In view of n ≡ 1 (mod 4) and n > 1, we
have fn(1) = (n + 3)/4, fn(2) = (n + 1)/2, fn(3) = (3n + 1)/4, fn(4) = n, and
fn(6) = (n − 1)/2. This implies that the denominator of the reduced form of the
fraction

(q; q4)k(q
2; q4)k(q

4+(4m+2)n; q4)k(q
2−(4m+2)n; q4)k

(q4; q4)2
k(q

3; q4)k(q6; q4)k

q4k

is always coprime with Φn(q) for non-negative integers k. Therefore, the expression
(2.5) (namely, (2.4)) is congruent to 0 modulo Φn(q)2, confirming (2.2) for m > 0.

It is obvious that (q2; q4)3
k/(q

4; q4)3
k is congruent to 0 modulo Φn(q)3 for mn+(n−

1)/2 < k 6 (m + 1)n− 1. Thus, the q-congruence (2.1) after replacing m by m + 1
follows from (2.2) immediately. ¤

From Theorem 2.1 we can easily deduce the following q-analogues of (1.3) and
(1.8).
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Corollary 2.2. Let n and r be positive integers with n ≡ 1 (mod 4) and n > 1.
Then

(nr−1)/2∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ 0 (mod
r∏

j=1

Φnj(q)2), (2.6)

nr−1∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ 0 (mod
r∏

j=1

Φnj(q)2). (2.7)

Proof. For r = 1, the q-congruences (2.6) and (2.7) follow from Theorem 2.1 imme-
diately, since (2.2) is also true for m = 0. For r > 2 and 1 6 j 6 r, letting m = nr−j

and n 7→ nj in (2.1), one sees that (2.7) holds modulo Φnj(q)2, Meanwhile, writing
(nr − 1)/2 = (nr−j − 1)nj/2 + (nj − 1)/2, one sees that (2.6) also holds modulo
Φnj(q)2. Since Φn(q)2, Φn2(q)2, . . . , Φnr(q)2 are pairwise coprime polynomials, we
conclude that the q-congruences (2.6) and (2.7) hold. ¤

Let n = p be a prime in Corollary 2.2. Taking the limits as q → 1 on both sides
of (2.6) and (2.7), and employing the fact that Φpj(1) = p for all positive integers
j, we get (1.8) and (1.3), respectively.

3. q-Analogues of (1.6) and (1.7)

Recall that a very-well-poised 6φ5 summation (see [4, Appendix (II.21)]) can be
stated as follows:

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aqn+1

; q,
aqn+1

bc

]
=

(aq; q)n(aq/bc; q)n

(aq/b; q)n(aq/c; q)n

.

(3.1)

We first use (3.1) and the creative microscoping method [7] to establish the following
parametric q-congruence.

Theorem 3.1. Let n ≡ 1 (mod 4) be a positive integer. Let a be an indeterminate.
Then, modulo Φn(q2)(1− aq2n)(a− q2n),

(n−1)/2∑

k=0

[4k + 1]q2

(aq2; q4)k(q
2/a; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(q4; q4)k

q−k ≡ q−3(n−1)/2[n]q2

(q5; q4)(n−1)/2

(q3; q4)(n−1)/2

.

(3.2)

Proof. Making the substitutions q 7→ q4, a = q2, b = q3, c = q2+2n, and n 7→ (n−1)/2
in (3.1), we obtain

(n−1)/2∑

k=0

[4k + 1]q2

(q2; q4)k(q
2+2n; q4)k(q

2−2n; q4)k

(q4; q4)k(q4−2n; q4)k(q4+2n; q4)k

q−k

=
(q6; q4)(n−1)/2(q

1−2n; q4)(n−1)/2

(q3; q4)(n−1)/2(q4−2n; q4)(n−1)/2
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= q−3(n−1)/2[n]q2

(q5; q4)(n−1)/2

(q3; q4)(n−1)/2

.

Namely, the two sides of (3.2) are equal when a = q±2n. Therefore, the q-congruence
(3.2) holds modulo 1− aq2n and a− q2n.

In view of [6, Lemma 3.1], for 0 6 k 6 (n− 1)/2, we have

(aq2; q4)(n−1)/2−k

(q4/a; q4)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq2; q4)k

(q4/a; q4)k

q(n−1)2/2+2k (mod Φn(q2)),

and so

[4(m− k) + 1]q2

(aq2; q4)m−k(q
2/a; q4)m−k(q

2; q4)m−k

(aq4; q4)m−k(q4/a; q4)m−k(q4; q4)m−k

q−(m−k)

≡ −[4k + 1]q2

(aq2; q4)k(q
2/a; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(q4; q4)k

q−k (mod Φn(q2)),

where m = (n − 1)/2 and we have used the fact q2n ≡ 1 (mod Φn(q2)) and the
condition n ≡ 1 (mod 4). This means that the k-th and (m − k)-th summands on
the left-hand side of (3.2) cancel each other modulo Φn(q) and so the left-hand side
of (3.2) is congruent to 0 modulo Φn(q2). Since the right-hand side of (3.2) is also
congruent to 0 modulo Φn(q2), we conclude that (3.2) holds modulo Φn(q2).

The proof of (3.2) then follows from the fact that Φn(q2), 1 − aq2n, and a − q2n

are pairwise coprime polynomials in q. ¤

We are now able to give q-analogues of (1.6) and (1.7) as follows.

Theorem 3.2. Let n and r be positive integers with n ≡ 1 (mod 4) and n > 1.
Then, modulo Φnr(q)

∏r
j=1 Φnj(q)2, we have

(nr−1)/2∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q2−2nr

[nr]q2 [nr]
(q4; q4)2

(nr−1)/4

(q2; q4)2
(nr−1)/4

, (3.3)

nr−1∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q2−2nr

[nr]q2 [nr]
(q4; q4)2

(nr−1)/4

(q2; q4)2
(nr−1)/4

. (3.4)

Proof. Letting a = 1 in (3.2) and noticing that 1 − q2n contains the factor Φn(q2),
which is coprime with (q3; q4)(n−1)/2, we obtain

(n−1)/2∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q−3(n−1)/2[n]q2

(q5; q4)(n−1)/2

(q3; q4)(n−1)/2

(mod Φn(q2)3), (3.5)

and

n−1∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q−3(n−1)/2[n]q2

(q5; q4)(n−1)/2

(q3; q4)(n−1)/2

(mod Φn(q2)3), (3.6)
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since (q2; q4)3
k/(q

4; q4)3
k ≡ 0 (mod Φn(q)3) for (n − 1)/2 < k 6 n − 1. It is easy to

see that

(q5; q4)(n−1)/2

(q3; q4)(n−1)/2

= [n]
(q; q4)(n−1)/4(q

n+4; q4)(n−1)/4

(q3; q4)(n−1)/4(qn+2; q4)(n−1)/4

≡ [n]
(q1−n; q4)(n−1)/4(q

4; q4)(n−1)/4

(q3−n; q4)(n−1)/4(q2; q4)(n−1)/4

= q(1−n)/2[n]
(q4; q4)2

(n−1)/4

(q2; q4)2
(n−1)/4

(mod Φn(q)2). (3.7)

In view of Φn(q2) = Φn(q)Φn(−q) for odd n, from (3.5)–(3.7) we deduce that

(n−1)/2∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q2−2n[n]q2 [n]
(q4; q4)2

(n−1)/4

(q2; q4)2
(n−1)/4

(mod Φn(q)3), (3.8)

and its companion:

n−1∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q2−2n[n]q2 [n]
(q4; q4)2

(n−1)/4

(q2; q4)2
(n−1)/4

(mod Φn(q)3). (3.9)

Replacing n by nr in (3.8) and (3.9), we see that (3.3) and (3.4) hold modulo
Φnr(q)3. Since both [nr]q2 and [nr] are divisible by

∏r−1
j=1 Φnj(q), and the denominator

of the reduced form of (q4; q4)2
(nr−1)/4/(q

2; q4)2
(nr−1)/4 is coprime with

∏r−1
j=1 Φnj(q), in

light of (2.6) and (2.7), we see that (3.3) and (3.4) also hold modulo
∏r−1

j=1 Φnj(q)2.
This completes the proof of the theorem. ¤

Further, similarly to the proof of (3.5) and [7, Theorem 1.4], we can prove the
following q-analogue of (1.1).

Theorem 3.3. Let n > 1 be an odd integer. Then, modulo [n]Φn(q)2,

(n−1)/d∑

k=0

(−1)k[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ (−q)−3(n−1)/2[n]q2

(−q5; q4)(n−1)/2

(−q3; q4)(n−1)/2

, (3.10)

where d = 1, 2.

4. Proof of Theorem 1.1

We need the following congruence modulo a prime p.

Proposition 4.1. Let p ≡ 1 (mod 4) be a prime and r a positive integer. Then

1

2(pr−1)/2

(
(pr − 1)/2

(pr − 1)/4

)
≡ (−1)(p−1)r/4 Γp(

1
4
)2r

Γp(
1
2
)r

(mod p). (4.1)

Proof. By Fermat’s little theorem, we have 2p−1 ≡ 1 (mod p), and so

2(pr−1)/2 = 2((p−1+1)r−1)/2 ≡ 2(p−1)r/2 (mod p).
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Since (pr − 1)/2 = (p− 1)pr−1/2 + (p− 1)pr−2/2 + · · ·+ (p− 1)/2 and (pr − 1)/4 =
(p− 1)pr−1/4 + (p− 1)pr−2/4 + · · ·+ (p− 1)/4, by the Lucas theorem, we have(

(pr − 1)/2

(pr − 1)/4

)
=

(
(p− 1)/2

(p− 1)/4

)r

(mod p).

Applying Van Hamme’s result [19, Theorem 3]:

1

2(p−1)/2

(
(p− 1)/2

(p− 1)/4

)
≡ (−1)(p−1)/4 Γp(

1
4
)2

Γp(
1
2
)

(mod p), (4.2)

we get the desired congruence (4.1). ¤
Proof of Theorem 1.1. Letting n = p be a prime and taking the limits as q → 1 in
(3.3) and (3.4), we are led to the following supercongruences:

(pr−1)/2∑

k=0

4k + 1

64k

(
2k

k

)3

≡ p2r 2pr−1

(
(pr−1)/2
(pr−1)/4

)2 (mod p2r+1), (4.3)

pr−1∑

k=0

4k + 1

64k

(
2k

k

)3

≡ p2r 2pr−1

(
(pr−1)/2
(pr−1)/4

)2 (mod p2r+1). (4.4)

In light of Proposition 4.1, the right-hand sides of (4.3) and (4.4) is congruent to

p2r Γp(
1
2
)2r

Γp(
1
4
)4r

(mod p2r+1).

Noticing that Γp(
1
2
)2 = −1 and Γp(

1
4
)2Γp(

3
4
)2 = 1, we finish the proof of the theorem.

¤

5. Proof of Theorem 1.2

Let p be an odd prime. We first recall some fundamental properties of the p-adic
Gamma function [1, 13]. For any positive integer n, the p-adic Gamma function is
defined as

Γp(n) := (−1)n
∏

0<k<n
p-k

k.

Moreover, put Γp(0) = 1. Let Zp stand for the ring of all p-adic integers. Then Γp

can be extended to all x ∈ Zp by defining

Γp(x) = lim
xn→x

Γp(xn),

where xn denotes any sequence of positive integers p-adically approximating x. From
the definition of p-adic Gamma function, we can easily deduce that

Γp(x + 1)

Γp(x)
=

{−x, p - x,

−1, p | x.
(5.1)

We also need the following properties: for any x ∈ Zp,

Γp(x)Γp(1− x) = (−1)p−〈−x〉p , (5.2)
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and for any a,m ∈ Zp,

Γp(a + mp) ≡ Γp(a) + Γ′p(a)mp (mod p2) (5.3)

(see [11, Theorem 14]).
In order to prove Theorem 1.2, we first give two congruences modulo p2, though

for the first one we only need it modulo p.

Lemma 5.1. Let p ≡ 3 (mod 4) be a prime and let r > 1. Then

pr (1)(p2r−1)/4

(1
2
)(p2r−1)/4

≡ (−1)r (mod p2), (5.4)

p
(5

4
)(p2r−1−1)/2

(3
4
)(p2r−1−1)/2

≡ −16Γp(
3
4
)4 (mod p2). (5.5)

Proof. Let Γ(x) be the classical Gamma function. We prove (5.4) by induction on
r. For r = 1, in view of (5.1), we have

p
(1)(p2−1)/4

(1
2
)(p2−1)/4

= p
Γ(p2+3

4
)Γ(1

2
)

Γ(p2+1
4

)

= −p
p · 2p · · · · · (p−3)p

4

p
2
· 3p

2
· · · · ·

(p−1)p
2

2

· Γp(
p2+3

4
)Γp(

1
2
)

Γp(
p2+1

4
)

= − (1)(p−3)/4

(1
2
)(p+1)/4

· Γp(
p2+3

4
)Γp(

1
2
)

Γp(
p2+1

4
)

≡ −Γp(
p+1
4

)Γp(
1
2
)

Γp(
p+3
4

)
· Γp(

3
4
)Γp(

1
2
)

Γp(
1
4
)

(mod p2). (5.6)

By (5.2) and (5.3), we get

Γp(
p+1
4

)

Γp(
p+3
4

)
= (−1)(p+1)/4Γp(

1+p
4

)Γp(
1−p
4

) ≡ (−1)(p+1)/4Γp(
1
4
)2 (mod p2). (5.7)

Substituting (5.7) into (5.6) and using Γp(
1
2
)2 = 1 and Γp(

1
4
)Γp(

3
4
) = (−1)(p+1)/4 for

p ≡ 3 (mod 4), we deduce that

p
(1)(p2−1)/4

(1
2
)(p2−1)/4

≡ −1 (mod p2).

We now assume that the congruence (5.4) holds for some r − 1 (r > 2). Then

pr (1)(p2r−1)/4

(1
2
)(p2r−1)/4

= pr Γ(p2r+3
4

)Γ(1
2
)

Γ(p2r+1
4

)

= −pr p · 2p · · · · · (p2r−1−3)p
4

p
2
· 3p

2
· · · · ·

(p2r−1−1)p
2

2

· Γp(
p2r+3

4
)Γp(

1
2
)

Γp(
p2r+1

4
)
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= −pr−1 (1)(p2r−1−3)/4

(1
2
)(p2r−1+1)/4

· Γp(
p2r+3

4
)Γp(

1
2
)

Γp(
p2r+1

4
)

= −pr−1p · 2p · · · · · (p2r−2−1)p
4

p
2
· 3p

2
· · · · ·

(p2r−2−3)p
2

2

· Γp(
p2r−1+1

4
)Γp(

1
2
)

Γp(
p2r−1+3

4
)

· Γp(
p2r+3

4
)Γp(

1
2
)

Γp(
p2r+1

4
)

≡ −pr−1 (1)(p2r−2−1)/4

(1
2
)(p2r−2−1)/4

(mod p2).

By the induction hypothesis, we have

pr−1 (1)(p2r−2−1)/4

(1
2
)(p2r−2−1)/4

≡ (−1)r−1 (mod p2),

and so (5.4) holds for r.
Wang and Pan [22] proved that

(3
4
)(p2r−1)/2

(5
4
)(p2r−1)/2

≡ 1 (mod p2).

They also gave the following identity:

(3
4
)(p2r−1)/2

(5
4
)(p2r−1)/2

=
p(1

4
)(p2r−1+1)/2

(3
4
)(p2r−1−1)/2

· Γp(
p2r+1

4
)Γp(

5
4
)

Γp(
3
4
)Γp(

2p2r+3
4

)
.

It follows that

p

4

(5
4
)(p2r−1−1)/2

(3
4
)(p2r−1−1)/2

=
p(1

4
)(p2r−1+1)/2

(3
4
)(p2r−1−1)/2

≡ Γp(
3
4
)Γp(

2p2r+3
4

)

Γp(
p2r+1

4
)Γp(

5
4
)
≡ −4Γp(

3
4
)2

Γp(
1
4
)2

. (mod p2)

Noticing that Γp(
1
4
)2Γp(

3
4
)2 = 1, we obtain (5.5). ¤

We now present a q-analogue of (1.9) as follows.

Theorem 5.2. Let n and r be positive integers with n ≡ 3 (mod 4). Then, modulo
Φn2r(q)

∏r
j=1 Φn2j(q)2, we have

(n2r−1)/d∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q2−2n2r

[n2r]q2 [n2r]
(q4; q4)2

(n2r−1)/4

(q2; q4)2
(n2r−1)/4

, (5.8)

where d = 1, 2.

Proof. It is clear that n2 ≡ 1 (mod 4). Replacing n by n2 in (3.3) and (3.4), we
obtain the desired q-congruence (5.8). ¤
Proof of (1.9). Letting n = p be a prime and taking the limits as q → 1 in (5.8),
we arrive at

(p2r−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ p4r
(1)2

(p2r−1)/4

(1
2
)2
(p2r−1)/4

(mod p2r+1),

where d = 1, 2. The proof of (1.9) then follows from (5.4). ¤
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Similarly, we have the following q-analogue of (1.10).

Theorem 5.3. Let n and r be positive integers with n ≡ 3 (mod 4). Then, modulo
Φ2

n2r−1(q)
∏r−1

j=1 Φn2j(q)2, we have

(n2r−1−1)/d∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q−3(n2r−1−1)/2[n2r−1]q2

(q5; q4)(n2r−1−1)/2

(q3; q4)(n2r−1−1)/2

, (5.9)

where d = 1, 2.

Proof. Note that the q-congruence (3.2) also holds modulo (1 − aq2n)(a − q2n) for
n ≡ 3 (mod 4). Namely, the q-congruences (3.5) and (3.6) hold modulo Φn(q2)2 for
n ≡ 3. Replacing n by n2r−1 in (3.5) and (3.6), we are led to the following result:
modulo Φn2r−1(q2)2,

(n2r−1−1)/d∑

k=0

[4k + 1]q2

(q2; q4)3
k

(q4; q4)3
k

q−k ≡ q−3(n2r−1−1)/2[n2r−1]q2

(q5; q4)(n2r−1−1)/2

(q3; q4)(n2r−1−1)/2

, (5.10)

Since n2 ≡ n4 ≡ · · · ≡ n2r−2 ≡ 1 (mod 4), by Theorem 2.1, the left-hand side of
(5.10) is congruent to 0 modulo

∏r−1
j=1 Φn2j(q)2. Meanwhile, it is not difficult to see

that the right-hand side of (5.10) is also congruent to 0 modulo
∏r−1

j=1 Φn2j(q)2. This

completes the proof of (5.10). ¤
Proof of (1.10). Letting n = p be a prime and taking q → 1 in (5.10), we conclude
that

(p2r−1−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ p2r−1 (5
4
)(p2r−1−1)/2

(3
4
)(p2r−1−1)/2

(mod p2r),

where d = 1, 2. The proof of (1.10) then follows from (5.5). ¤

6. Concluding remarks and open problems

By establishing a suitable q-analogue, the author and Zudilin [8, Theorem 3.3]
proved the following Dwork-type supercongruence: for any odd prime p and positive
integer r,

(pr−1)/d∑

k=0

(−1)k 4k + 1

64k

(
2k

k

)3

≡ (−1)(p−1)/2p

(pr−1−1)/d∑

k=0

(−1)k 4k + 1

64k

(
2k

k

)3

(mod p3r),

(6.1)

where d = 1, 2, the d = 2 case confirming the (B.3) conjecture of Swisher [18].
It is natural to propose the following new Dwork-type supercongruence conjecture.

Conjecture 6.1. Let p ≡ 1 (mod 4) be a prime and let r > 1. Then

(pr−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ −p2Γp(
3
4
)4

(pr−1−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

(mod p3r), (6.2)

where d = 1, 2.
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Although many other Dwork-type supercongruences modulo p3r have been proved
by the author and Zudilin [8], none of them are related to p-adic Gamma functions.
For this reason, we believe that Conjecture 6.1 is rather challenging.

Numerical evaluations imply that the following generalization of (1.10) should be
true.

Conjecture 6.2. Let p ≡ 3 (mod 4) be a prime with p > 3 and let r > 1. Then

(p2r−1−1)/d∑

k=0

4k + 1

64k

(
2k

k

)3

≡ −16p2r−2Γp(
3
4
)4 (mod p2r+1), (6.3)

where d = 1, 2.

Note that the r = 1 case of (6.3) has already been proved by Wang and Sun [23,
Theorem 1.2].

In [5, Conjecture 7.2], the author proposed the following curious conjecture: for
all positive integers n with n ≡ 1 (mod 4),

(n−1)/2∑

k=0

[4k + 1]
(q; q2)3

k

(q2; q2)3
k

qk(n2−2nk−n−2)/4 ≡ 0 (mod Φn(q)2),

which is a q-analogue of (1.3) for r = 1. The author and Zudilin [7, Theorem 4.11]
have showed that the above q-congruence is true modulo Φn(q). It would be very
interesting if the reader can confirm this conjecture completely, though it is not a
full q-analogue of Z.-W. Sun’s original conjecture (1.3).
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