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Abstract. Applying Singh’s quadratic transformation and the ‘creative microscoping’
method (introduced by the author and Zudilin in 2019), we prove several new q-supercongruences
for truncated 4φ3 series. Some related conjectures on q-supercongruences are also pre-
sented.
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1. Introduction

Let p always stand for a prime throughout this paper. In 1997, Van Hamme [17, (H.2)]
proved the following interesting supercongruence:

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡




−Γp(1/4)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.1)

where (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol and Γp(x) is the
p-adic Gamma function.

In the past few years, q-analogues of supercongruences have been widely studied by a
number of authors (see [1,3–5,7,9–13,15,18–20]). In particular, the author and Zudilin [7]
developed a method, which they called ‘creative microscoping’, to establish q-analogues
of many classical supercongruences. They [9, Theorem 2] also utilized the method of
creative microscoping to give a q-analogue of (1.1) as follows: modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

(1.2)

Here (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) is the q-shifted factorial, [n] = (1−qn)/(1−q)
denotes the q-integer, and Φn(q) is the n-th cyclotomic polynomial in q, which may be
given by

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),
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where ζ denotes an n-th primitive root of unity.
The author and Schlosser [5] investigated q-congruences and q-supercongruences more

systematically by employing transformation formulas for basic hypergeometric series, to-
gether with all kinds of techniques such as suitably combining terms, and the creative
microscoping method.

The purpose of this note is to give some q-supercongruences using Singh’s quadratic
transformation [2, Appendix (III.21)]. Our first result is closely related to the aforemen-
tioned q-supercongruence (1.2), and can be stated as follows.

Theorem 1.1. Let d > 2 be an integer and d 6= 3. Let n ≡ 1 (mod 2d) be a positive
integer. Then, modulo Φn(q)2,

(n−1)/d∑

k=0

(q; qd)2
k(q

2d−2; q2d)kq
dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k

≡
(n−1)/(2d)∑

k=0

(q; q2d)2
k(q

2d−2; q2d)kq
2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k

. (1.3)

Letting n = p and q → 1 in (1.3), we get the following result: for d > 2, d 6= 3, and
p ≡ 1 (mod 2d),

(p−1)/d∑

k=0

(1
d
)2
k(

d−1
d

)k

k!(2d−2
d

)k(
d+2
2d

)k

≡
(p−1)/(2d)∑

k=0

( 1
2d

)2
k(

d−1
d

)k

k!(3d−2
2d

)k(
d+2
2d

)k

(mod p2). (1.4)

On the other hand, form (1.2) and d = 2 case of (1.3) we deduce that, for any positive
integer n ≡ 1 (mod 4),

(n−1)/4∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)3
k

q4k ≡
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 (mod Φn(q)2). (1.5)

Our second result is the following q-supercongruence similar to (1.3).

Theorem 1.2. Let d > 4 be an integer. Let n ≡ −1 (mod 2d) be a positive integer and
n 6= 7. Then, modulo Φn(q)2,

(n+1)/d∑

k=0

(q−1; qd)2
k(q

2d+2; q2d)kq
dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k

≡
(n+1)/(2d)∑

k=0

(q−1; q2d)2
k(q

2d+2; q2d)kq
2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k

. (1.6)

Our third result is a generalization of (1.3) for d = 2.

Theorem 1.3. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
(n−1)/2∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)3
k

q4k (mod Φn(q)3). (1.7)
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Letting n = p and q → 1 in (1.7), we are led to

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡

(p−1)/2∑

k=0

(1
4
)2
k(

1
2
)k

k!3
(mod p3) for p ≡ 1 (mod 4). (1.8)

Note that Long and Ramakrishna [14, Theorem 3] gave a generalization of (1.1):

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡





−Γp(1/4)4 (mod p3), if p ≡ 1 (mod 4),

−p2

16
Γp(1/4)4 (mod p3), if p ≡ 3 (mod 4).

(1.9)

Combining (1.8) and (1.9) and using Sun’s result [16, (4.3)]:

−Γp(1/4)4 ≡ 4x2 − 2p− p2

4x2
(mod p3) for p = x2 + 4y2 ≡ 1 (mod 4),

we have the following conclusion.

Corollary 1.4. Let p = x2 + 4y2 ≡ 1 (mod 4), where x and y are integers. Then

(p−1)/2∑

k=0

(1
4
)2
k(

1
2
)k

k!3
≡ 4x2 − 2p− p2

4x2
(mod p3).

It is also worth mentioning that Wang [18] and Wei [20] have given two different q-
supercongruences on the left-hand side of (1.7) modulo Φn(q)3, which are both q-analogues
of (1.9) for p ≡ 1 (mod 4). By the (d, r) = (2, 1) case of [4, Theorem 9], we know that
the right-hand side of (1.7) is congruent to 0 modulo Φn(q)2, and thus by (1.2) the q-
supercongruence (1.7) also holds modulo Φn(q)2 for n ≡ 3 (mod 4).

The paper is organized as follows. We shall prove Theorems 1.1–1.3 in Sections 2–
4, respectively. Finally, in Section 5, we propose some conjectural q-supercongruences,
including a generalization of (1.7) modulo Φn(q)4.

2. Proof of Theorem 1.1

Recall that the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k

.

We need Singh’s quadratic transformation [2, Appendix (III.21)]:

4φ3

[
a2, b2, c, d

ab
√

q,−ab
√

q,−cd
; q, q

]
= 4φ3

[
a2, b2, c2, d2

a2b2q,−cd,−cdq
; q2, q2

]
, (2.1)

provided that both series terminate. For an elementary proof of this transformation,
see [6, Section 5].

We first give the following parametric generalization of Theorem 1.1.
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Theorem 2.1. Let d > 2 be an integer and a an indeterminate. Let n ≡ 1 (mod 2d) be
a positive integer. Then, modulo (1− aqn)(a− qn),

(n−1)/d∑

k=0

(aq; qd)k(q/a; qd)k(q
2d−2; q2d)kq

dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k

≡
(n−1)/(2d)∑

k=0

(aq; q2d)k(q/a; q2d)k(q
2d−2; q2d)kq

2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k

.

(2.2)

Proof. Putting q 7→ qd, a = q(1−n)/2, b = q(1+n)/2, c = qd−1, and d = −qd−1 in Singh’s
transformation (2.1), for n ≡ 1 (mod 2d) we have

4φ3

[
q1−n, q1+n, qd−1,−qd−1

q(d+2)/2,−q(d+2)/2, q2d−2 ; qd, qd

]
= 4φ3

[
q1−n, q1+n, q2d−2, q2d−2

qd+2, q2d−2, q3d−2 ; q2d, q2d

]
.

Namely, both sides of (2.2) are equal for a = q−n and a = qn. Therefore, the q-congruence
(2.2) is true modulo 1 − aqn and a − qn. Since 1 − aqn and a − qn are relatively prime
polynomials in q, we complete the proof. 2

Proof of Theorem 1.1. Since n ≡ 1 (mod 2d), we have gcd(2d, n) = 1. Hence, for d > 2
and d 6= 3, the polynomials

(qd; qd)k(q
2d−2; qd)k(q

d+2; q2d)k (0 6 k 6 (n− 1)/d))

and
(q2d; q2d)k(q

3d−2; q2d)k(q
d+2; q2d)k (0 6 k 6 (n− 1)/(2d))

are relatively prime to Φn(q). Moreover, the polynomial 1− qn has the factor Φn(q). The
proof of (1.3) then follows from the congruence (2.2) by letting a = 1. 2

3. Proof of Theorem 1.2

Similarly as before, we first establish a parametric generalization of Theorem 1.2.

Theorem 3.1. Let d > 4 be an integer and a an indeterminate. Let n ≡ −1 (mod 2d)
be a positive integer. Then, modulo (1− aqn)(a− qn),

(n+1)/d∑

k=0

(aq−1; qd)k(q
−1/a; qd)k(q

2d+2; q2d)kq
dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k

≡
(n+1)/(2d)∑

k=0

(aq−1; q2d)k(q
−1/a; q2d)k(q

2d+2; q2d)kq
2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k

. (3.1)
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Proof. Making the parameter substitutions q 7→ qd, a = q−(n+1)/2, b = q(n−1)/2, c = qd+1,
and d = −qd+1 in (2.1), for n ≡ −1 (mod 2d) we have

4φ3

[
q−n−1, qn−1, qd+1,−qd+1

q(d−2)/2,−q(d−2)/2, q2d+2 ; qd, qd

]
= 4φ3

[
q−n−1, qn−1, q2d+2, q2d+2

qd−2, q2d+2, q3d+2 ; q2d, q2d

]
.

That is, the two sides of (3.1) are equal for a = q−n and a = qn. This proves that (2.2)
holds modulo 1− aqn and a− qn. 2

Proof of Theorem 1.2. Since d > 4, n ≡ −1 (mod 2d) and n > 7, we have gcd(2d, n) = 1
and the polynomials

(qd; qd)k(q
2d+2; qd)k(q

d−2; q2d)k (0 6 k 6 (n + 1)/d))

and
(q2d; q2d)k(q

3d+2; q2d)k(q
d−2; q2d)k (0 6 k 6 (n + 1)/(2d))

are relatively prime to Φn(q). The proof of (1.6) then follows from the congruence (3.1)
by setting a = 1. 2

4. Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3.

Theorem 4.1. Let n ≡ 1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo Φn(q)(1− aqn)(a− qn),

(n−1)/2∑

k=0

(aq; q2)k(q/a; q2)k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
(n−1)/2∑

k=0

(aq; q4)k(q/a; q4)k(q
2; q4)k

(q4; q4)3
k

q4k. (4.1)

Proof. Letting q 7→ q2, a → √
aq, b →

√
q/a, c = q1−n, and d = −q1−n in (2.1), for odd

n we have

4φ3

[
aq, q/a, q1−n,−q1−n

q2,−q2, q2−2n ; q2, q2

]
= 4φ3

[
aq, q/a, q2−2n, q2−2n

q4, q2−2n, q4−2n ; q4, q4

]
,

which can be written as

(n−1)/2∑

k=0

(aq; q2)k(q/a; q2)k(q
2−2n; q4)k

(q2; q2)k(q2−2n; q2)k(q4; q4)k

q2k =

(n−1)/2∑

k=0

(aq; q4)k(q/a; q4)k(q
2−2n; q4)k

(q4; q4)2
k(q

4−2n; q4)k

q4k. (4.2)

Note that qn ≡ 1 (mod Φn(q)), and, for 0 6 k 6 (n−1)/2, the polynomials (q2; q2)2
k(q

4; q4)k

and (q4; q4)3
k are relatively prime to Φn(q). From (4.2) we deduce that (4.1) holds modulo

Φn(q).
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On the other hand, by the d = 2 case of (2.2), modulo (1− aqn)(a− qn),

(n−1)/2∑

k=0

(aq; q2)k(q/a; q2)k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
(n−1)/4∑

k=0

(aq; q4)k(q/a; q4)k(q
2; q4)k

(q4; q4)3
k

q4k,

which is equivalent to (4.1) modulo (1− aqn)(a− qn). This is because (aq; q4)k(q/a; q4)k

contains the factor (1 − aqn)(1 − qn/a) for (n − 1)/4 < k 6 (n − 1)/2. Since Φn(q) is
coprime with (1− aqn)(a− qn), we complete the proof. 2

Proof of Theorem 1.3. Letting a = 1 in (4.1), we obtain the desired q-supercongruence
(1.7). 2

5. Concluding remarks and open problems

Numerical evaluation implies that the q-congruence (1.3) does not hold for d = 3 and the
q-congruence (1.6) does not hold for n = 7. Moreover, when we sum both sides of (1.3)
over k up to n− 1, the q-congruence seems still to be true. This is also the case for d = 3
(which is more or less surprising). Namely, we have the following conjecture.

Conjecture 5.1. Let d > 2 be an integer. Let n ≡ 1 (mod 2d) be a positive integer.
Then, modulo Φn(q)2,

n−1∑

k=0

(q; qd)2
k(q

2d−2; q2d)kq
dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k

≡
n−1∑

k=0

(q; q2d)2
k(q

2d−2; q2d)kq
2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k

.

Similarly, Theorem 1.2 has such a generalization.

Conjecture 5.2. Let d > 3 be an integer. Let n ≡ −1 (mod 2d) be a positive integer.
Then, modulo Φn(q)2,

n−1∑

k=0

(q−1; qd)2
k(q

2d+2; q2d)kq
dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k

≡
n−1∑

k=0

(q−1; q2d)2
k(q

2d+2; q2d)kq
2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k

.

Before we propose the third conjecture of this paper, we give the following q-congruence
related to Theorem 1.3.

Theorem 5.3. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
n−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k (mod Φn(q)4). (5.1)
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Proof. By [2, Appendix (I.11)], we have

(a; q)n−k

(b; q)n−k

=
(a; q)n(q1−n/b; q)k

(b; q)n(q1−n/a; q)k

(
b

a

)k

≡ (a; q)n(q/b; q)k

(b; q)n(q/a; q)k

(
b

a

)k

(mod Φn(q)).

It follows that

n−1∑

k=(n+1)/2

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k

=

(n−1)/2∑

k=1

(q; q2)2
n−k(q

2; q4)n−k

(q2; q2)2
n−k(q

4; q4)n−k

q2n−2k

≡ (q; q2)2
n(q2; q4)nq

2n

(q2; q2)2
n−1(q

4; q4)n−1

(n−1)/2∑

k=1

(q2; q2)2
k−1(q

4; q4)k−1

(q; q2)2
k(q

2; q4)k

q2k (mod Φn(q)4), (5.2)

where we have used the q-congruence (q; q2)2
n(q2; q4)n ≡ 0 (mod Φn(q)3). Similarly to [5,

Lemma 3.1], we can prove that

(q2; q2)(n+1)/2−k−1

(q; q2)(n+1)/2−k

≡ (−1)(n+1)/2 (q2; q2)k−1

(q; q2)k

q(n2−1)/4+k (mod Φn(q))

for 1 6 k 6 (n − 1)/2, and so the k-th term plus the ((n + 1)/2 − k)-th term s in the
summation of the right-hand side (5.2) is congruent to 0 modulo Φn(q). Since the fraction
before the summation is congruent to 0 modulo Φn(q)3, we conclude that the right-hand
side of (5.2) is congruent to 0 modulo Φn(q)4, thus establishing (5.1). 2

Conjecture 5.4. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
n−1∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)3
k

q4k (mod Φn(q)4).

Recently, the author and Zudilin [9] proved a number of Dwork-type q-supercongruences.
We conjecture that (1.5) can be generalized to the following Dwork-type q-supercongruence.

Conjecture 5.5. Let n ≡ 1 (mod 4) be a positive integer and let r > 1. Then, modulo∏r
j=1 Φnj(q)2,

(nr−1)/d∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)3
k

q4k

≡
(q2; q4)2

(nr−1)/4(q
4n; q4n)2

(nr−1−1)/4

(q4; q4)2
(nr−1)/4(q

2n; q4n)2
(nr−1−1)/4

q(n−1)/2

(nr−1−1)/d∑

k=0

(qn; q4n)2
k(q

2n; q4n)k

(q4n; q4n)3
k

q4nk,

where d = 1, 2, 4.
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