Some ¢-supercongruences from Singh’s quadratic transformation
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Abstract. Applying Singh’s quadratic transformation and the ‘creative microscoping’
method (introduced by the author and Zudilin in 2019), we prove several new g-supercongruences
for truncated 4¢3 series. Some related conjectures on g-supercongruences are also pre-
sented.
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1. Introduction

Let p always stand for a prime throughout this paper. In 1997, Van Hamme [17, (H.2)]
proved the following interesting supercongruence:
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kZ:: Kt 0 (mod p?), if p=3 (mod 4),

where (a), = a(a+1)---(a+n — 1) denotes the Pochhammer symbol and I',(z) is the
p-adic Gamma function.

In the past few years, g-analogues of supercongruences have been widely studied by a
number of authors (see [1,3-5,7,9-13,15,18-20]). In particular, the author and Zudilin [7]
developed a method, which they called ‘creative microscoping’, to establish g-analogues
of many classical supercongruences. They [9, Theorem 2] also utilized the method of
creative microscoping to give a g-analogue of (1.1) as follows: modulo ®,,(q)?,
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gt = (0% 4" 1) (1.2)
k=0 0 ifn=3 (mod4).

Here (a;q), = (1—a)(1—aq)--- (1 —aq" ') is the g-shifted factorial, [n] = (1—q")/(1—q)
denotes the g-integer, and ®,,(q) is the n-th cyclotomic polynomial in g, which may be
given by

Ouq)= [ (a-¢)

1<k<n
ged(n,k)=1



where ( denotes an n-th primitive root of unity.

The author and Schlosser [5] investigated g-congruences and g-supercongruences more
systematically by employing transformation formulas for basic hypergeometric series, to-
gether with all kinds of techniques such as suitably combining terms, and the creative
microscoping method.

The purpose of this note is to give some g-supercongruences using Singh’s quadratic
transformation [2, Appendix (II1.21)]. Our first result is closely related to the aforemen-
tioned g-supercongruence (1.2), and can be stated as follows.

Theorem 1.1. Let d > 2 be an integer and d # 3. Let n = 1 (mod 2d) be a positive
integer. Then, modulo ®,(q)?,

(n—1)/d (n—1)/(2d)
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— (ghqe(@ % qk@ ) = (5@ k(g ¢
Letting n =pand ¢ — 1 in (1.3), we get the following result: for d > 2, d # 3, and
=1 (mod 2d),
(p—1)/d 1\2(d— (p—1)/(2d) 1\2/d-1
(g)k( 7k (20)e (57w 2
= - (mod p7). (1.4)
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On the other hand, form (1.2) and d = 2 case of (1.3) we deduce that, for any positive
integer n =1 (mod 4),
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Our second result is the following g-supercongruence similar to (1.3).

Theorem 1.2. Let d > 4 be an integer. Let n = —1 (mod 2d) be a positive integer and
n # 7. Then, modulo ®,(q)?,
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Our third result is a generalization of (1.3) for d = 2.

Theorem 1.3. Let n =1 (mod 4) be a positive integer. Then

"1)/2q C]Q) < (g1 )2 (g% ")
Z - na )k = Z (¢4 ¢*); o (mod @,(¢)). (17
k=0



Letting n = p and ¢ — 1 in (1.7), we are led to
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Note that Long and Ramakrishna [14, Theorem 3] gave a generalization of (1.1):
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Combining (1.8) and (1.9) and using Sun’s result [16, (4.3)]:
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we have the following conclusion.

(mod p*) for p=2?+4y*>=1 (mod 4),

Corollary 1.4. Let p = 2*> + 4y*> = 1 (mod 4), where x and y are integers. Then
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It is also worth mentioning that Wang [18] and Wei [20] have given two different g¢-
supercongruences on the left-hand side of (1.7) modulo ®,,(¢)3, which are both g-analogues
of (1.9) for p =1 (mod 4). By the (d,r) = (2,1) case of [4, Theorem 9], we know that
the right-hand side of (1.7) is congruent to 0 modulo ®,(¢)?, and thus by (1.2) the g-
supercongruence (1.7) also holds modulo ®,(q)? for n =3 (mod 4).

The paper is organized as follows. We shall prove Theorems 1.1-1.3 in Sections 2—
4, respectively. Finally, in Section 5, we propose some conjectural g-supercongruences,
including a generalization of (1.7) modulo ®,(¢)*.

2. Proof of Theorem 1.1

Recall that the basic hypergeometric series ,,1¢, is defined as
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We need Singh’s quadratic transformation [2, Appendix (I11.21)]:
a?, % c,d . a, b A dE
4¢3{ab\/c_],—ab\/§,—cd 7Q7q:| - 4¢3|:0J2b2q,—0d,—0dq 45,49, (21)

provided that both series terminate. For an elementary proof of this transformation,
see [6, Section 5.
We first give the following parametric generalization of Theorem 1.1.
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Theorem 2.1. Let d > 2 be an integer and a an indeterminate. Let n =1 (mod 2d) be
a positive integer. Then, modulo (1 — aq™)(a — q"),
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Proof. Putting ¢ — ¢%, a = ¢"""/2 b = qU+M/2 ¢ = ¢¥1 and d = —¢*! in Singh’s
transformation (2.1), for n =1 (mod 2d) we have
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Namely, both sides of (2.2) are equal for a = ¢~™ and a = ¢". Therefore, the g-congruence
(2.2) is true modulo 1 — ag™ and a — ¢". Since 1 — ag" and a — ¢" are relatively prime
polynomials in ¢, we complete the proof. O

Proof of Theorem 1.1. Since n = 1 (mod 2d), we have ged(2d,n) = 1. Hence, for d > 2
and d # 3, the polynomials

(% D@7 de(@ )k (0< k< (n—1)/d))
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are relatively prime to ®,(¢q). Moreover, the polynomial 1 — g™ has the factor ®,(q). The
proof of (1.3) then follows from the congruence (2.2) by letting a = 1. O

3. Proof of Theorem 1.2

Similarly as before, we first establish a parametric generalization of Theorem 1.2.

Theorem 3.1. Let d > 4 be an integer and a an indeterminate. Let n = —1 (mod 2d)
be a positive integer. Then, modulo (1 — aq™)(a — ¢"),
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Proof. Making the parameter substitutions g — ¢¢, @ = ¢~ TV/2 b = ¢(»=D/2 ¢ = ¢¢+1,

and d = —¢™! in (2.1), for n = —1 (mod 2d) we have
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That is, the two sides of (3.1) are equal for a = ¢~ and a = ¢". This proves that (2.2)
holds modulo 1 — a¢™ and a — ¢". |

Proof of Theorem 1.2. Since d > 4, n = —1 (mod 2d) and n > 7, we have ged(2d,n) = 1
and the polynomials

(% aDe( @ ¢M(@ % (0< k< (n+1)/d))

and

(@ @Ne( @ D@D, (0< k< (n+1)/(2d))

are relatively prime to ®,,(¢). The proof of (1.6) then follows from the congruence (3.1)
by setting a = 1. O

4. Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3.

Theorem 4.1. Let n = 1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo ®,,(q)(1 — aq™)(a — q"),

(n— 1)/2 (n— 1)/2 4 2. .4
> (aq; q /)a(g >q<(§ gk 2 = Z (ag; 4*)1(q <<q/aqq)%’“(q @)k (4.1)

Proof. Letting ¢ — ¢, a — Jaq, b — \/q/a, c = ¢*™™, and d = —¢' ™" in (2.1), for odd

n we have
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which can be written as
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Note that ¢" =1 (mod ®,(q)), and, for 0 < k < (n—1)/2, the polynomials (¢%; ¢*)7(q*; ¢*)»
and (q*; ¢*)? are relatively prime to ®,,(¢). From (4.2) we deduce that (4.1) holds modulo
®,.(q)-



On the other hand, by the d = 2 case of (2.2), modulo (1 —ag")(a — ¢"),

nl)/2 (n—1)/4
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which is equivalent to (4.1) modulo (1 — aq™)(a — ¢"). This is because (aq; ¢*)r(q/a; ")
contains the factor (1 — ag”)(1 — ¢"/a) for (n —1)/4 < k < (n — 1)/2. Since ®,(q) is
coprime with (1 — aq")(a — ¢"), we complete the proof. O

Proof of Theorem 1.3. Letting a = 1 in (4.1), we obtain the desired g-supercongruence
(1.7). O

5. Concluding remarks and open problems

Numerical evaluation implies that the g-congruence (1.3) does not hold for d = 3 and the
g-congruence (1.6) does not hold for n = 7. Moreover, when we sum both sides of (1.3)
over k up to n — 1, the g-congruence seems still to be true. This is also the case for d = 3
(which is more or less surprising). Namely, we have the following conjecture.

Conjecture 5.1. Let d > 2 be an integer. Let n = 1 (mod 2d) be a positive integer.
Then, modulo ®,(q)?,
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Similarly, Theorem 1.2 has such a generalization.

Conjecture 5.2. Let d > 3 be an integer. Let n = —1 (mod 2d) be a positive integer.
Then, modulo ®,(q)?,

n—1 n—1
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Before we propose the third conjecture of this paper, we give the following g-congruence
related to Theorem 1.3.

Theorem 5.3. Let n =1 (mod 4) be a positive integer. Then
(n—1)/2 2)2(¢2; n-1

= 2_: ) ¢ (mod ®,(q)"). (5.1)
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Proof. By [2, Appendix (I.11)], we have
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It follows that

—1
\ (; )30k o
2. 2\2( 4. 44
k=(n+1)/2 (q 4 )k(q 4 )k
(n—1)/2
k=1 q q )n k(q Q)
. on (n— 1)/2
= (ng) (q q )k 1(q q")i- L (mod 3u(0)). (5.2)
(q 7q )n _ o1 q q )

where we have used the g-congruence (¢; ¢*)2(¢% ¢*), = 0 (mod ®,(¢q)?). Similarly to [5,
Lemma 3.1], we can prove that

2. 2 2. 2
(q 7.q 2)(n+1)/27k71 — (_1)(n+1)/2 (q 7.61 2)k;—1 q(n271)/4+k (mod ®,(q))
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for 1 < k < (n—1)/2, and so the k-th term plus the ((n + 1)/2 — k)-th term s in the
summation of the right-hand side (5.2) is congruent to 0 modulo ®,(q). Since the fraction
before the summation is congruent to 0 modulo ®,(¢)3, we conclude that the right-hand
side of (5.2) is congruent to 0 modulo ®,(q)*, thus establishing (5.1). O

Conjecture 5.4. Let n =1 (mod 4) be a positive integer. Then
(n—=1)/2 n—1
3 (@ (a0 Dn o _ > (0:4k(a 0D (mod @, (q)").
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Recently, the author and Zudilin [9] proved a number of Dwork-type g-supercongruences.
We conjecture that (1.5) can be generalized to the following Dwork-type ¢g-supercongruence.

Conjecture 5.5. Let n = 1 (mod 4) be a positive integer and let r > 1. Then, modulo
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