More g-congruences from Singh’s quadratic transformation
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Abstract. In a recent paper, the first author obtained some ¢-congruences for truncated 4¢3
series form Singh’s quadratic transformation. In this paper, by applying Singh’s quadratic
transformation again, we give some new g-congruences for truncated 3¢9 series. We also propose
several related conjectures on g-congruences for further study.
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1. Introduction

In 1997, Van Hamme [24, (H.2)] established the following amazing congruence: for any
odd prime p,

~T,(1/4)* (mod p?), ifp=1 (mod 4),

—1)/2 (1)
Z 2 = (1.1)

k=0 0 (mod p?), if p=3 (mod 4),

where (a), = a(a+1)--- (a+n—1) stands for the Pochhammer symbol and I',(z) denotes
the p-adic Gamma function. A number of distinct generalizations of (1.1) have been given
in [7,9,11,12,15,18-20]. For example, the first author and Zudilin [9, Theorem 2] utilized

the “creative microscoping” method introduced in [8] to give the following g-analogue of
(1.1): modulo ®,,(q)?,

" q q q q ) o _ ) el V2 ifn =1 (mod 4),

k=0 d's et 0 ifn=3 (mod 4).
Here and in what follows, (a;q), = (1 —a)(1 —aq)--- (1 — ag"™ ') denotes the g-shifted
factorial, [n] = (1 —q™)/(1 — q) is the g-integer, and ®,(q) represents the n-th cyclotomic
polynomial in ¢, which can be factorized as follows:

()= J] (a—¢)

1<k<n
ged(n,k)=1
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where ( is an n-th primitive root of unity.

For more g-congruences derived from transformations for basic hypergeometric series,
we refer the reader to [2,5]. Recently, the first author [4] applied Singh’s quadratic
transformation [1, Appendix (II1.21)] to obtain some g-congruences, such as: for any
positive integer n = 1 (mod 4),

nl)/zq ) <% (g 4Y2(e% ¢Y)
2: 4 qq) k= 2: G g g (mod @,(¢)%).  (1.2)

In this note, we shall deduce more g-congruences from Singh’s quadratic transforma-
tion. Our first result can be stated as follows.

Theorem 1.1. Let d > 2 be an integer and x an indeterminate. Let n =1 (mod 2d) be
a positive integer. Then

(n—1)/d N (n—1)/(2d) 2. 24
( q;q ) T;q ) dk (q;q )k(‘r 4 )k 2dk 2
q = q mod ®,(q)7).
— (g M@ ) ,;0 (¢% )k (q?+2; ¢, ( (a)’)

For d = 2, we obtain the following conclusion from Theorem 1.1.
Corollary 1.2. Let n =1 (mod 4) be a positive integer and x an indeterminate. Then

(n—1)/2
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Note that the first author and Zeng [6, Theorem 2.5] have already obtained a related
g-congruence: for any odd prime p,
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¢ =(-1) ¢ (mod [p]*). (1.4)
; (g q4)k — (q*@)e(a* a
For some generalizations of (1.4), see [3]. If we take x = —q or z = —¢* in (1.3), then we

are led to the following two g-congruences: for n =1 (mod 4),

(n— 1)/2 (¢: ) (n— 1)/4 )2 (% g
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Letting n be a prime and ¢ — 1, then both (1.5) and (1.6) imply the following congruence:
for any prime p =1 (mod 4),

(p—1)/2 (1)2
2 =1 (mod p?),
k=0



which was conjectured by Rodriguez-Villegas [17] in his study of hypergeometric families
of Calabi-Yau manifolds and was first proved by Mortenson [16].
Letting x = 0 in (1.3), we immediately get the following corollary.

Corollary 1.3. Let d > 2 be an integer. Let n =1 (mod 2d) be a positive integer. Then

(n—1)/d )2qdk (n—1)/(2d) ( q2d)2q2dk
44 i = k (mod ®,,(q)?). (1.7)
ar (g2 20, kZ:o (2% 1) (q+2; 21,

Letting n = p be a prime and ¢ — 1 in (1.7), we obtain the result: for any integer
d > 2, and prime p =1 (mod 2d),

Besides, the d = 2 case of (1.7) leads to the following g-congruence: for any positive
integer n =1 (mod 4),

(n—1)/2 k (n—1)/4 4
q;q )iQQ (44 )k 4k 2
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By the proof of [9, Theorem 1}, we know that the right-hand side of (1.8) is congruent to

3—n. 4 2. .4
(n2—1)/4 ("4 ) m-1y/a _ (n—1)/4_(n—1)(n+3)/8 (€% 4 n-1)/ 2
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Namely, we obtain the following conclusion due to Liu and Liu [13].
Corollary 1.4. Let n =1 (mod 4) be a positive integer. Then
(n—1)/2 2 2k

4.4 = (—1)n= D/ 1)(”+3)/8—(q 41y mod ®,(¢)%). (1.9
a*; 4"k (=1) (¢* q*) (n-1)/4 ( (@) (19)

k=0

Note that the g-congruence (1.9) may be regarded as a g-analogue of the first part of
the following congruence conjecture by Z.-W. Sun [22, Conjecture 5.5]: modulo p?,

ifp=1 (mod 4)

(p—1)/2 1 /9% 2 oF
Z 3R\ k) T and p=2+y? withz=1 (mod 4),
h=0 0, if p=3 (mod 4),

which was confirmed by Tauraso [23] and Z.-H. Sun [21].
Our second result is the following g-congruence analogous to (1.3).



Theorem 1.5. Let d > 3 be an integer and x an indeterminate. Let n = —1 (mod 2d)
be a positive integer. Then

(nt1)/d , 1 49 dk (n+1)/(2d) 2(,.2. 2dk
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Letting = 0 in the above theorem, we get the following corollary.

Corollary 1.6. Let d > 3 be an integer. Let n = —1 (mod 2d) be a positive integer.
Then

(n+1)/d -1 9 dk (n+1)/(2d) 2d\2 . 2dk
(¢ 9%ia (¢ d*)ia 2
= (mod ®,(¢q)%).  (1.11)
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Similarly as before, when n = p is a prime we may take ¢ — 1 to obtain the following
result: for any integer d > 3, and prime p = —1 (mod 2d),

(p+1)/d (_l)Q (p+1)/(2d) (_L)Z
Z d’k Z 2d/k (mod p2)
—2 = d—2 :
p k!( )2k — KNS )k
Besides, taking + = —q and d = 4 in Theorem 1.5, we arrive at the following conclusion.

Corollary 1.7. Let n =7 (mod 8) be a positive integer. Then

(nt1)/4 4 4\2 ak (n+1)/8 1. 8\2 8k
3 ((q gk 3 (' 4%)kg (mod B, (¢)?). (1.12)
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— (¢h5awGa) = (@

Letting n be a prime and ¢ — 1 in (1.12) yields the following congruence: for any
prime p =7 (mod 8),

(p+1)/4 (_1)2
Z ' 1 =1 (mod p?). (1.13)
= Rk

Our last result is a g-congruence modulo ®,,(¢)3, which is a generalization of (1.3) for
d=2and xr=q.

Theorem 1.8. Let n =1 (mod 4) be a positive integer. Then

3
—

(q2 ( )akq<q)4 q4 Qa )kq4k (mod q)n(q)?;)‘ (1‘14)
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However, we cannot obtain anything interesting when we let n be a prime and take
g — 1in (1.14).

The paper is organized as follows. We shall prove Theorems 1.1, 1.5, and 1.8 in Sections
2-4, respectively. In the final Section 5, we propose three conjectures on g-congruences,
which are generalizations of (1.3) modulo ®,(g)?.
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2. Proof of Theorem 1.1

Recall that the basic hypergeometric series ,,1¢, is defined by

a1, g, - - -y Qpy  (a1;Q)x(az; Q)x - (@ry1; Q)"
i A 7 9 z - .
+1¢[ biby,.oibe } Zko (4 Q)k(br; @) - - (br; Qi

Then Singh’s quadratic transformation [1, Appendix (III.21)] can be stated as follows:

a2’b2’c’d . a27b27c27d2 L2002
4¢3|: ab\/(_l7 _Ojb\/g, —cd 7Q7Q:| - 4¢3|: a2b2q, —Cd, _qu 4549, (21)
provided that the two series terminate. It is clear that the d = 0 case of (2.1) reduces to
a2 Ve a2 23,
3¢2 { Clb\/a, —ab\/a 4 q} - 3¢2 [ &2b2q, 0’ q,q9 |, (22)

provided that the two 3¢, series terminate. The transformation (2.2) may be considered
as a g-analogue of Gauss’ quadratic transformation

2F1(2a,2b;a 4+ b+ §;2) = o Fi(a,b;a + b+ §;42(1 — 2))

when the two series terminate.
We first use (2.2) to build a parametric generalization of Theorem 1.1.

Theorem 2.1. Let d > 2 be an integer and let a and x be indeterminates. Let n = 1
(mod 2d) be a positive integer. Then, modulo (1 — aq™)(a — q"),

(n=1)/d (n—1)/(24)
T (aq; q")r(a/a; q")r(@; g")rg™ _ 3 (ag; ¢*)r(a/a; *N)i(2*; ¢*F)rg

(qd; qd)k(qd+2; q2d)k <q2d; qu)k<qd+2; q2d)k

Proof. Making the parameter substitutions ¢ — ¢%, a = ¢"="/2, b = ¢"*™/2 and ¢ = z
in Singh’s transformation (2.1), we obtain

2dk

(2.3)

k=0 k=0

1-n 14n 1-n 14n ,.2
qa ,q T qQ ,q T
3¢2{ D2 _ (d+2)/2 ;qd7qd} = 3¢2{ 2.0 TR

Namely, the two sides of (2.3) are equal for a = ¢*™. Hence, the g-congruence (2.3) holds
modulo 1 — ag™ and a — ¢". Since 1 — aq™ and a — ¢" are coprime polynomials in ¢, we
complete the proof. O

Proof of Theorem 1.1. Since n = 1 (mod 2d), we know that ged(2d,n) = 1. Therefore,
when d > 2 the polynomials

(% D@ (0< k< (n—1)/d))
and
(@5 D@ ) (0< k< (n—1)/(2d))

are all coprime with ®,,(¢). Furthermore, the polynomial 1 —¢" contains the factor ®,,(q).
The proof of (1.3) then follows from the g-congruence (2.3) by setting a = 1. O



3. Proof of Theorem 1.5

Similarly as before, we need to establish the following parametric generalization of The-
orem 1.5.

Theorem 3.1. Let d > 3 be an integer and a an indeterminate. Let n = —1 (mod 2d)
be a positive integer. Then, modulo (1 — aq™)(a — q"),

Z (ag™; ¢ i /a; ¢ (g™ ) pg™
(a% qM)i(q% )i

/(2 _
_ Z (CLq 1; qu)k(q l/a; q2d)k(q2d+2; q2d)kq2dk

3.1
2 () (% ), 3

n—1)/2

Proof. Performing the parameter substitutions ¢ — ¢%, a = ¢~ /2 b = ¢ , and

c=q™in (2.1), we get

—n—1 -1 d+1

q q" ~1 . 2d4+2
3¢2[ (@-2/2 _gld=2)/2 1q” CI} = 3@{

7q ,q . d d
qd20 aq27q2 .

Namely, both sides of (3.1) are equal for a = ¢*". This proves that (3.1) is true modulo
1 —aq™ and a — ¢". O

Proof of Theorem 1.5. Since d > 3, n = —1 (mod 2d), we conclude that ged(2d,n) = 1
and the polynomials

(% a7 e (0<k < (n+1)/d))

and
(@5 @) (0< k< (n+1)/(2d))

are all coprime with ®,,(¢). The proof then follows from the ¢g-congruence (3.1) by taking
a=1. ]

4. Proof of Theorem 1.8

Likewise, we first give a g-congruence with an extra parameter a.

Theorem 4.1. Let n =1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo ®,(q)(1 — aq™)(a — q"),

n—1

(ag; q q/a *)i(q 2 (ag; q*) q/a q*)x (qQ;q‘*)kq%
et ) — (a*; "),

n—1

(4.1)
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Proof. Letting ¢ — ¢*, a — \/aq, b — \/q/a, and ¢ = ¢~ in (2.1), we have
ag,q/a,q" ™" 5 of _ ag.q/a, @™ 4 4
3¢2|: q27_q2 aQ7q:|_3¢2|: q4,0 vd 54
which can be written as

n—1 n—1

Z (aq; q q/a) q(q) (qq) ”;q2)kq2k -y (aq;qﬂﬁ%;;q?;z(q”?”;q4)kq4k' (4.2)

Since ¢" = 1 (mod ®,(g)), and the polynomials (¢%; ¢*)r(¢*; ¢*)x and (¢*; ¢*)? are coprime
with @,,(¢q) for 0 < k < n — 1. we deduce from (4.2) that (4.1) is true modulo ®,,(q).
On the other hand, the d = 2 case of (2.3) implies that, modulo (1 — ag™)(a — ¢"),
Rl aqq /aq> (050 o _ "N (00:0)8(0/0: )l 0 Ve
2 = Z /
k=0

(@% a®)r(a*; q*) (¢4 )}

Y

which is equivalent to (4.1) modulo (1 — ag™)(a — ¢"). This is because (aq; ¢*)r(q/a; q*)x
incorporates the factor (1 — aq™)(1 — ¢"/a) for (n —1)/4 < k < (n — 1)/2. Noticing that
®,,(g) is coprime with (1 — ag™)(a — ¢"), we accomplish the proof. O

Proof of Theorem 1.8. Letting a = 1 in (4.1), we obtain the desired g-supercongruence
(1.14). O

5. A generalization of (1.13)

We find that the congruence (1.13) has the following generalization: for any prime p = 3
(mod 4),
(p+1)/4 (_ )
> e = I (mod 2) (5.1)
7

k=0

Eall \V]
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In fact, we have the following g-analogue of (5.1).
Theorem 5.1. Let n = 3 (mod 4) be a positive integer. Then modulo ®,,(q)?,

(n+1)/4

—1. 2 Ak
Z ((;] 47)(]()kq ) = (_1)(n+1)/4q(n2_1)/8‘ (52)
q-q q;97 )k
k=0

Proof. We first establish the following g-congruence:

(n+1)/4 1 4 1, 1. 4\ 4k

3 (aq™ k(@™ g5 4 kg Rt 1)/ (2= . .
(q4'q4)k(q'q4)k = (_1)( +1)/4q( b/ (mod (1 —aq")(a —q")).

k=0 ’ ’

(5.3)



Recall that the ¢-Chu-Vandermonde summation [1, Appendix (II.6)] can be written as
a,q" (¢/a; @)na"
¢ { §Q»Q} =75 5.4
e (€ @n 54)
Letting ¢ — ¢*, a+— ¢" ', n+— (n+1)/4, and ¢+ ¢ in (5.4), we have
(n+1)/4

S g
q;97 )k

4. 44

which is just the a = ¢ case of (5.3). It is easy to see that the denominators of (5.3)
are all coprime with ®,,(¢). The proof of (5.2) then immediately follows from the a = 1
case of (5.3). O

6. Some open problems

Numerical calculation implies that the g-congruence (1.8) holds modulo ®,,(¢q)* when both
sides are summed over k up to n — 1. Namely, we have the following conjecture.

Conjecture 6.1. Let n =1 (mod 4) be a positive integer. Then

n—1 o 2)2 n-lo 4
(9 )k 2%k (Qaq )kg q4k (mod q)n(q)s).

p—1 2 p=l 1y2
1 [2k (1)
o7 ( kz) = —4!2k (mod p?).

k=0
It is natural to believe that Conjecture 6.1 have a parametric version as follows:

Conjecture 6.2. Let n =1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo ®,,(q)(1 — aq™)(a — q"),

nlaqq Ve(q/a; ¢*)p 2:nlaqq (Q/GQ)k4k
kz; s S CCY O oy

Note that the d = 2 and x = 0 case of Theorem 2.1 means that the g-congruence (6.1)
is true modulo (1 —aq™)(a—¢"). It remains to prove that (6.1) is also true modulo ®,,(q).
Although we cannot prove it at the moment being, we find the following more general
conjecture.



Conjecture 6.3. Let n be a positive odd integer and x,y indeterminates. Then

n—1 n—1 2 )

— kE_ 2k

= q mod ®,(q)). 6.2
ZO R (@Ya; q)i ; q2,q2) Ty Q) ( () 62)

It is not difficult to see that the g-congruence (6.1) modulo ®,,(q) follows from (6.2)
by making suitable parameter replacements. By induction on n, we can show that

-1

3

ke (TG @)n

— (¢ ) (@ @1

Since (xq; q),_1 is congruent to (r¢*; ¢*),_1 modulo ®,(q), we conclude that Conjecture
6.3 is true for x = 0 or y = 0.
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