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Abstract. In a recent paper, the first author obtained some q-congruences for truncated 4φ3

series form Singh’s quadratic transformation. In this paper, by applying Singh’s quadratic
transformation again, we give some new q-congruences for truncated 3φ2 series. We also propose
several related conjectures on q-congruences for further study.
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1. Introduction

In 1997, Van Hamme [24, (H.2)] established the following amazing congruence: for any
odd prime p,

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡




−Γp(1/4)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.1)

where (a)n = a(a+1) · · · (a+n−1) stands for the Pochhammer symbol and Γp(x) denotes
the p-adic Gamma function. A number of distinct generalizations of (1.1) have been given
in [7,9,11,12,15,18–20]. For example, the first author and Zudilin [9, Theorem 2] utilized
the “creative microscoping” method introduced in [8] to give the following q-analogue of
(1.1): modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

Here and in what follows, (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) denotes the q-shifted
factorial, [n] = (1− qn)/(1− q) is the q-integer, and Φn(q) represents the n-th cyclotomic
polynomial in q, which can be factorized as follows:

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

*Corresponding author.
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where ζ is an n-th primitive root of unity.
For more q-congruences derived from transformations for basic hypergeometric series,

we refer the reader to [2, 5]. Recently, the first author [4] applied Singh’s quadratic
transformation [1, Appendix (III.21)] to obtain some q-congruences, such as: for any
positive integer n ≡ 1 (mod 4),

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
(n−1)/2∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)3
k

q4k (mod Φn(q)3). (1.2)

In this note, we shall deduce more q-congruences from Singh’s quadratic transforma-
tion. Our first result can be stated as follows.

Theorem 1.1. Let d > 2 be an integer and x an indeterminate. Let n ≡ 1 (mod 2d) be
a positive integer. Then

(n−1)/d∑

k=0

(q; qd)2
k(x; qd)k

(qd; qd)k(qd+2; q2d)k

qdk ≡
(n−1)/(2d)∑

k=0

(q; q2d)2
k(x

2; q2d)k

(q2d; q2d)k(qd+2; q2d)k

q2dk (mod Φn(q)2).

For d = 2, we obtain the following conclusion from Theorem 1.1.

Corollary 1.2. Let n ≡ 1 (mod 4) be a positive integer and x an indeterminate. Then

(n−1)/2∑

k=0

(q; q2)2
k(x; q2)k

(q2; q2)k(q4; q4)k

q2k ≡
(n−1)/4∑

k=0

(q; q4)2
k(x

2; q4)k

(q4; q4)k(q4; q4)k

q4k (mod Φn(q)2). (1.3)

Note that the first author and Zeng [6, Theorem 2.5] have already obtained a related
q-congruence: for any odd prime p,

(p−1)/2∑

k=0

(q; q2)2
k(x; q2)k

(q2; q2)k(q4; q4)k

q2k ≡ (−1)(p−1)/2

(p−1)/2∑

k=0

(q; q2)2
k(−x; q2)k

(q2; q2)k(q4; q4)k

q2k (mod [p]2). (1.4)

For some generalizations of (1.4), see [3]. If we take x = −q or x = −q2 in (1.3), then we
are led to the following two q-congruences: for n ≡ 1 (mod 4),

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)k(q4; q4)k

q2k ≡
(n−1)/4∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)k(q4; q4)k

q4k (mod Φn(q)2), (1.5)

(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

q2k ≡
(n−1)/4∑

k=0

(q; q4)2
k

(q4; q4)k

q4k (mod Φn(q)2). (1.6)

Letting n be a prime and q → 1, then both (1.5) and (1.6) imply the following congruence:
for any prime p ≡ 1 (mod 4),

(p−1)/2∑

k=0

(1
2
)2
k

k!2
≡ 1 (mod p2),

2



which was conjectured by Rodriguez-Villegas [17] in his study of hypergeometric families
of Calabi–Yau manifolds and was first proved by Mortenson [16].

Letting x = 0 in (1.3), we immediately get the following corollary.

Corollary 1.3. Let d > 2 be an integer. Let n ≡ 1 (mod 2d) be a positive integer. Then

(n−1)/d∑

k=0

(q; qd)2
kq

dk

(qd; qd)k(qd+2; q2d)k

≡
(n−1)/(2d)∑

k=0

(q; q2d)2
kq

2dk

(q2d; q2d)k(qd+2; q2d)k

(mod Φn(q)2). (1.7)

Letting n = p be a prime and q → 1 in (1.7), we obtain the result: for any integer
d > 2, and prime p ≡ 1 (mod 2d),

(p−1)/d∑

k=0

(1
d
)2
k

k!(d+2
2d

)k2k
≡

(p−1)/(2d)∑

k=0

( 1
2d

)2
k

k!(d+2
2d

)k

(mod p2).

Besides, the d = 2 case of (1.7) leads to the following q-congruence: for any positive
integer n ≡ 1 (mod 4),

(n−1)/2∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡
(n−1)/4∑

k=0

(q; q4)2
k

(q4; q4)2
k

q4k (mod Φn(q)2). (1.8)

By the proof of [9, Theorem 1], we know that the right-hand side of (1.8) is congruent to

q(n2−1)/4 (q3−n; q4)(n−1)/4

(q4; q4)(n−1)/4

≡ (−1)(n−1)/4q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2).

Namely, we obtain the following conclusion due to Liu and Liu [13].

Corollary 1.4. Let n ≡ 1 (mod 4) be a positive integer. Then

(n−1)/2∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡ (−1)(n−1)/4q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2). (1.9)

Note that the q-congruence (1.9) may be regarded as a q-analogue of the first part of
the following congruence conjecture by Z.-W. Sun [22, Conjecture 5.5]: modulo p2,

(p−1)/2∑

k=0

1

32k

(
2k

k

)2

≡





2x− p

2x
, if p ≡ 1 (mod 4)

and p = x2 + y2 with x ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4),

which was confirmed by Tauraso [23] and Z.-H. Sun [21].
Our second result is the following q-congruence analogous to (1.3).
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Theorem 1.5. Let d > 3 be an integer and x an indeterminate. Let n ≡ −1 (mod 2d)
be a positive integer. Then

(n+1)/d∑

k=0

(q−1; qd)2
k(x; qd)kq

dk

(qd; qd)k(qd−2; q2d)k

≡
(n+1)/(2d)∑

k=0

(q−1; q2d)2
k(x

2; q2d)kq
2dk

(q2d; q2d)k(qd−2; q2d)k

(mod Φn(q)2). (1.10)

Letting x = 0 in the above theorem, we get the following corollary.

Corollary 1.6. Let d > 3 be an integer. Let n ≡ −1 (mod 2d) be a positive integer.
Then

(n+1)/d∑

k=0

(q−1; qd)2
kq

dk

(qd; qd)k(qd−2; q2d)k

≡
(n+1)/(2d)∑

k=0

(q−1; q2d)2
kq

2dk

(q2d; q2d)k(qd−2; q2d)k

(mod Φn(q)2). (1.11)

Similarly as before, when n = p is a prime we may take q → 1 to obtain the following
result: for any integer d > 3, and prime p ≡ −1 (mod 2d),

(p+1)/d∑

k=0

(−1
d
)2
k

k!(d−2
2d

)k2k
≡

(p+1)/(2d)∑

k=0

(− 1
2d

)2
k

k!(d−2
2d

)k

(mod p2).

Besides, taking x = −q and d = 4 in Theorem 1.5, we arrive at the following conclusion.

Corollary 1.7. Let n ≡ 7 (mod 8) be a positive integer. Then

(n+1)/4∑

k=0

(q−1; q4)2
kq

4k

(q4; q4)k(q; q4)k

≡
(n+1)/8∑

k=0

(q−1; q8)2
kq

8k

(q8; q8)k

(mod Φn(q)2). (1.12)

Letting n be a prime and q → 1 in (1.12) yields the following congruence: for any
prime p ≡ 7 (mod 8),

(p+1)/4∑

k=0

(−1
4
)2
k

k!(1
4
)k

≡ 1 (mod p2). (1.13)

Our last result is a q-congruence modulo Φn(q)3, which is a generalization of (1.3) for
d = 2 and x = q.

Theorem 1.8. Let n ≡ 1 (mod 4) be a positive integer. Then

n−1∑

k=0

(q; q2)3
k

(q2; q2)k(q4; q4)k

q2k ≡
n−1∑

k=0

(q; q4)2
k(q

2; q4)k

(q4; q4)2
k

q4k (mod Φn(q)3). (1.14)

However, we cannot obtain anything interesting when we let n be a prime and take
q → 1 in (1.14).

The paper is organized as follows. We shall prove Theorems 1.1, 1.5, and 1.8 in Sections
2–4, respectively. In the final Section 5, we propose three conjectures on q-congruences,
which are generalizations of (1.3) modulo Φn(q)3.
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2. Proof of Theorem 1.1

Recall that the basic hypergeometric series r+1φr is defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1; q)k(a2; q)k · · · (ar+1; q)kz
k

(q; q)k(b1; q)k · · · (br; q)k

.

Then Singh’s quadratic transformation [1, Appendix (III.21)] can be stated as follows:

4φ3

[
a2, b2, c, d

ab
√

q,−ab
√

q,−cd
; q, q

]
= 4φ3

[
a2, b2, c2, d2

a2b2q,−cd,−cdq
; q2, q2

]
, (2.1)

provided that the two series terminate. It is clear that the d = 0 case of (2.1) reduces to

3φ2

[
a2, b2, c

ab
√

q,−ab
√

q
; q, q

]
= 3φ2

[
a2, b2, c2

a2b2q, 0
; q2, q2

]
, (2.2)

provided that the two 3φ2 series terminate. The transformation (2.2) may be considered
as a q-analogue of Gauss’ quadratic transformation

2F1(2a, 2b; a + b + 1
2
; z) = 2F1(a, b; a + b + 1

2
; 4z(1− z))

when the two series terminate.
We first use (2.2) to build a parametric generalization of Theorem 1.1.

Theorem 2.1. Let d > 2 be an integer and let a and x be indeterminates. Let n ≡ 1
(mod 2d) be a positive integer. Then, modulo (1− aqn)(a− qn),

(n−1)/d∑

k=0

(aq; qd)k(q/a; qd)k(x; qd)kq
dk

(qd; qd)k(qd+2; q2d)k

≡
(n−1)/(2d)∑

k=0

(aq; q2d)k(q/a; q2d)k(x
2; q2d)kq

2dk

(q2d; q2d)k(qd+2; q2d)k

. (2.3)

Proof. Making the parameter substitutions q 7→ qd, a = q(1−n)/2, b = q(1+n)/2, and c = x
in Singh’s transformation (2.1), we obtain

3φ2

[
q1−n, q1+n, x

q(d+2)/2,−q(d+2)/2 ; qd, qd

]
= 3φ2

[
q1−n, q1+n, x2

qd+2, 0
; q2d, q2d

]
.

Namely, the two sides of (2.3) are equal for a = q±n. Hence, the q-congruence (2.3) holds
modulo 1 − aqn and a − qn. Since 1 − aqn and a − qn are coprime polynomials in q, we
complete the proof. 2

Proof of Theorem 1.1. Since n ≡ 1 (mod 2d), we know that gcd(2d, n) = 1. Therefore,
when d > 2 the polynomials

(qd; qd)k(q
d+2; q2d)k (0 6 k 6 (n− 1)/d))

and
(q2d; q2d)k(q

d+2; q2d)k (0 6 k 6 (n− 1)/(2d))

are all coprime with Φn(q). Furthermore, the polynomial 1−qn contains the factor Φn(q).
The proof of (1.3) then follows from the q-congruence (2.3) by setting a = 1. 2
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3. Proof of Theorem 1.5

Similarly as before, we need to establish the following parametric generalization of The-
orem 1.5.

Theorem 3.1. Let d > 3 be an integer and a an indeterminate. Let n ≡ −1 (mod 2d)
be a positive integer. Then, modulo (1− aqn)(a− qn),

(n+1)/d∑

k=0

(aq−1; qd)k(q
−1/a; qd)k(q

d+1; q2d)kq
dk

(qd; qd)k(qd−2; q2d)k

≡
(n+1)/(2d)∑

k=0

(aq−1; q2d)k(q
−1/a; q2d)k(q

2d+2; q2d)kq
2dk

(q2d; q2d)k(qd−2; q2d)k

. (3.1)

Proof. Performing the parameter substitutions q 7→ qd, a = q−(n+1)/2, b = q(n−1)/2, and
c = qd+1 in (2.1), we get

3φ2

[
q−n−1, qn−1, qd+1

q(d−2)/2,−q(d−2)/2 ; qd, qd

]
= 3φ2

[
q−n−1, qn−1, q2d+2

qd−2, 0
; q2d, q2d

]
.

Namely, both sides of (3.1) are equal for a = q±n. This proves that (3.1) is true modulo
1− aqn and a− qn. 2

Proof of Theorem 1.5. Since d > 3, n ≡ −1 (mod 2d), we conclude that gcd(2d, n) = 1
and the polynomials

(qd; qd)k(q
d−2; q2d)k (0 6 k 6 (n + 1)/d))

and
(q2d; q2d)k(q

d−2; q2d)k (0 6 k 6 (n + 1)/(2d))

are all coprime with Φn(q). The proof then follows from the q-congruence (3.1) by taking
a = 1. 2

4. Proof of Theorem 1.8

Likewise, we first give a q-congruence with an extra parameter a.

Theorem 4.1. Let n ≡ 1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo Φn(q)(1− aqn)(a− qn),

n−1∑

k=0

(aq; q2)k(q/a; q2)k(q; q
2)k

(q2; q2)k(q4; q4)k

q2k ≡
n−1∑

k=0

(aq; q4)k(q/a; q4)k(q
2; q4)k

(q4; q4)2
k

q4k. (4.1)
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Proof. Letting q 7→ q2, a → √
aq, b →

√
q/a, and c = q1−n in (2.1), we have

3φ2

[
aq, q/a, q1−n

q2,−q2 ; q2, q2

]
= 3φ2

[
aq, q/a, q2−2n

q4, 0
; q4, q4

]
,

which can be written as

n−1∑

k=0

(aq; q2)k(q/a; q2)k(q
1−n; q2)k

(q2; q2)k(q4; q4)k

q2k =
n−1∑

k=0

(aq; q4)k(q/a; q4)k(q
2−2n; q4)k

(q4; q4)2
k

q4k. (4.2)

Since qn ≡ 1 (mod Φn(q)), and the polynomials (q2; q2)k(q
4; q4)k and (q4; q4)2

k are coprime
with Φn(q) for 0 6 k 6 n− 1. we deduce from (4.2) that (4.1) is true modulo Φn(q).

On the other hand, the d = 2 case of (2.3) implies that, modulo (1− aqn)(a− qn),

(n−1)/2∑

k=0

(aq; q2)k(q/a; q2)k(q; q
4)k

(q2; q2)k(q4; q4)k

q2k ≡
(n−1)/4∑

k=0

(aq; q4)k(q/a; q4)k(q
2; q4)k

(q4; q4)2
k

q4k,

which is equivalent to (4.1) modulo (1− aqn)(a− qn). This is because (aq; q4)k(q/a; q4)k

incorporates the factor (1− aqn)(1− qn/a) for (n− 1)/4 < k 6 (n− 1)/2. Noticing that
Φn(q) is coprime with (1− aqn)(a− qn), we accomplish the proof. 2

Proof of Theorem 1.8. Letting a = 1 in (4.1), we obtain the desired q-supercongruence
(1.14). 2

5. A generalization of (1.13)

We find that the congruence (1.13) has the following generalization: for any prime p ≡ 3
(mod 4),

(p+1)/4∑

k=0

(−1
4
)2
k

k!(1
4
)k

≡ (−1)(p+1)/4 (mod p2). (5.1)

In fact, we have the following q-analogue of (5.1).

Theorem 5.1. Let n ≡ 3 (mod 4) be a positive integer. Then modulo Φn(q)2,

(n+1)/4∑

k=0

(q−1; q4)2
kq

4k

(q4; q4)k(q; q4)k

≡ (−1)(n+1)/4q(n2−1)/8. (5.2)

Proof. We first establish the following q-congruence:

(n+1)/4∑

k=0

(aq−1; q4)k(a
−1q−1; q4)kq

4k

(q4; q4)k(q; q4)k

≡ (−1)(n+1)/4q(n2−1)/8 (mod (1− aqn)(a− qn)).

(5.3)
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Recall that the q-Chu-Vandermonde summation [1, Appendix (II.6)] can be written as

2φ1

[
a, q−n

c
; q, q

]
=

(c/a; q)na
n

(c; q)n

. (5.4)

Letting q 7→ q4, a 7→ qn−1, n 7→ (n + 1)/4, and c 7→ q in (5.4), we have

(n+1)/4∑

k=0

(qn−1; q4)k(q
−n−1; q4)kq

4k

(q4; q4)k(q; q4)k

= (−1)(n+1)/4q(n2−1)/8. (5.5)

which is just the a = q±n case of (5.3). It is easy to see that the denominators of (5.3)
are all coprime with Φn(q). The proof of (5.2) then immediately follows from the a = 1
case of (5.3). 2

6. Some open problems

Numerical calculation implies that the q-congruence (1.8) holds modulo Φn(q)3 when both
sides are summed over k up to n− 1. Namely, we have the following conjecture.

Conjecture 6.1. Let n ≡ 1 (mod 4) be a positive integer. Then

n−1∑

k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k

q2k ≡
n−1∑

k=0

(q; q4)2
k

(q4; q4)2
k

q4k (mod Φn(q)3).

In particular, if n ≡ 1 (mod 4) is a prime, then

p−1∑

k=0

1

32k

(
2k

k

)2

≡
p−1∑

k=0

(1
4
)2
k

k!2
(mod p3).

It is natural to believe that Conjecture 6.1 have a parametric version as follows:

Conjecture 6.2. Let n ≡ 1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo Φn(q)(1− aqn)(a− qn),

n−1∑

k=0

(aq; q2)k(q/a; q2)k

(q2; q2)k(q4; q4)k

q2k ≡
n−1∑

k=0

(aq; q4)k(q/a; q4)k

(q4; q4)2
k

q4k. (6.1)

Note that the d = 2 and x = 0 case of Theorem 2.1 means that the q-congruence (6.1)
is true modulo (1−aqn)(a− qn). It remains to prove that (6.1) is also true modulo Φn(q).
Although we cannot prove it at the moment being, we find the following more general
conjecture.
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Conjecture 6.3. Let n be a positive odd integer and x, y indeterminates. Then

n−1∑

k=0

(x; q)k(y; q2)k

(q; q)k(xyq; q)k

qk ≡
n−1∑

k=0

(x; q2)k(y; q2)k

(q2; q2)k(xyq; q2)k

q2k (mod Φn(q)). (6.2)

It is not difficult to see that the q-congruence (6.1) modulo Φn(q) follows from (6.2)
by making suitable parameter replacements. By induction on n, we can show that

n−1∑

k=0

(x; q)k

(q; q)k

qk =
(xq; q)n−1

(q; q)n−1

.

Since (xq; q)n−1 is congruent to (xq2; q2)n−1 modulo Φn(q), we conclude that Conjecture
6.3 is true for x = 0 or y = 0.

Acknowledgement. The authors thank the two anonymous referees for careful readings
of a previous version of this paper.
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