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Abstract. Employing the q-Lucas theorem and some known q-supercongruences,
we give some Dwork-type q-congruences, confirming three conjectures in [J. Com-
bin. Theory, Ser. A 178 (2021), Art. 105362]. As conclusions, we obtain the
following supercongruences: for any prime p ≡ 1 (mod 4) and positive integer r,

(pr−1)/2∑

k=0

( 1
2 )3k
k!3

≡ −Γp( 1
4 )4

(pr−1−1)/2∑

k=0

( 1
2 )3k
k!3

(mod pr+1),
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( 1
2 )3k
k!3

≡ −Γp( 1
4 )4

pr−1−1∑

k=0

( 1
2 )3k
k!3

(mod pr+1),

where (x)n = Γ(x + n)/Γ(x), and Γp(x) stands for the p-adic Gamma function.
The first one confirms a weaker form of Swisher’s (H.3) conjecture for p ≡ 1
(mod 4), which originally predicts that the supercongruence is true modulo p3r.

1. Introduction

In 1914, Ramanujan [28] listed quite a few hypergeometric series representations
of 1/π, including

∞∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
=

4

π
,

where (a)0 = 1 and (a)n = a(a+1) · · · (a+n−1) for n > 1. In 1997, Van Hamme [35]
numerically discovered 13 remarkable p-adic analogues of Ramanujan-type formulas,
such as

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡

{−Γp(
1
4
)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.1)

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)(p−1)/2p (mod p4) if p > 3, (1.2)

where p is an odd prime and Γp(x) is the p-adic Gamma function. Three of them
were proved by Van Hamme himself in [35]. For generalizations of (1.1) modulo p3

and p4, see [20, 23]. The supercongruence (1.2) was first confirmed by Long [22]. It
was not until 2016 that Osburn and Zudilin [27] proved the last remaining case of
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Van Hamme’s conjectural supercongruences. In 2019, the author and Zudilin [16]
obtained a q-analogue of (1.1) as follows: modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

(1.3)

which extends an early result due to the author and Zeng [14, Corollary 1.2]. Further
generalizations of (1.3) modulo Φn(q)3 can be found in the literature [10,11,36,37].
At the moment we need to be familiar with the standard q-notation. The q-shifted
factorial is defined by (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) for n > 1, (a; q)0 = 1,
and Φn(q) denotes the n-th cyclotomic polynomial in q, which can be written as

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − e2πik/n),

where i2 = −1. For simplicity, we will often adopt the abbreviated notation
(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n for n > 0. Furthermore, the q-
integer is defined as [n]q = (1− qn)/(1− q).

Let A(q) and B(q) be two rational functions in q and P (q) a polynomial in q. We
call A(q) and B(q) congruent modulo P (q), denoted by A(q) ≡ B(q) (mod P (q)),
if the numerator of the reduced fraction A(q) − B(q) is divisible by P (q) in the
polynomial ring Z[q].

In 2015, Swisher [33] proved several supercongruences of Van Hamme by utilizing
Long’s method. Meanwhile, she proposed some conjectures on supercongruences
that generalize the (A.2)–(L.2) supercongruences of Van Hamme. For example,
Swisher’s conjectural (C.3) and (H.3) supercongruences can be respectively stated
as follows: for any prime p > 3 and positive integer r,

(pr−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
≡ (−1)(p−1)/2p

(pr−1−1)/2∑

k=0

(6k + 1)
(1

2
)3
k

k!34k
(mod p4r), (1.4)

(pr−1)/2∑

k=0

(1
2
)3
k

k!3
≡





−Γp(
1
4
)4

(pr−1−1)/2∑

k=0

(1
2
)3
k

k!3
(mod p3r), if p ≡ 1 (mod 4),

p2

(pr−2−1)/2∑

k=0

(1
2
)3
k

k!3
(mod p3r−1), if p ≡ 3 (mod 4) and r > 2.

(1.5)

Given a prime p, we say that a power series f(z) =
∑∞

k=0 Akz
k satisfies the Dwork

congruence [3, 24] if

fr+1(z)

fr(zp)
≡ fr(z)

fr−1(zp)
(mod prZp[[z]]) for r = 1, 2, . . ., (1.6)
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where

fr(z) =

pr−1∑

k=0

Akz
k

is a truncation of f(z). Further, if we can replace the modulus in (1.6) by psZp[[z]]
for s = sr > r, then we will also say that f(z) satisfies a Dwork supercongruence.
Formally, we require the condition f1(z

p) =
∑p−1

k=0 Akz
pk 6≡ 0 (mod pZp[[z]]) so

that (1.6) is well-defined. But this may be weakened to f1(z
p) 6≡ 0 (mod pmZp[[z]])

provided that the congruences (1.6) hold modulo pmrZp[[z]] for certain m > 1. Thus,
it is reasonable to call Swisher’s conjectures in [33] Dwork-type supercongruences.

The author [9] proved that (1.4) is true modulo p3r by establishing its q-analogue,
and he [6, Corollary 4.2] also proved that the second case of (1.5) is true modulo
p2r+2. Recently, the author and Zudilin [18] proved more Dwork-type supercongru-
ences, including Swisher’s supercongruences (B.3) and (L.3), and partial cases of
Swisher’s supercongruences (E.3) and (F.3).

In this paper, we shall give some Dwork-type q-congruences (q-analogues of Dwork-
type congruences) by using the q-Lucas theorem (see Section 2) and some known
q-supercongruences. Our first result can be stated as follows.

Theorem 1.1. Let n and r be positive integers with n ≡ 1 (mod 4). Then, modulo
Φnr(q)

∏r
j=1 Φnj(q),

(nr−1)/d∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(nr−1)/2(q

5n; q4n)(nr−1−1)/2

(q5; q4)(nr−1)/2(q3n; q4n)(nr−1−1)/2

×
(nr−1−1)/d∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk, (1.7)

where d = 1, 2.

Note that, in an early paper [10], the author conjectured that (1.7) holds modulo∏r
j=1 Φnj(q)2.

In order to simplify the q → 1 case of (1.7), we shall also prove the following
supercongruence.

Theorem 1.2. Let p ≡ 1 (mod 4) be a prime and r a positive integer. Then

p
(3

4
)(pr−1)/2(

5
4
)(pr−1−1)/2

(5
4
)(pr−1)/2(

3
4
)(pr−1−1)/2

≡ −Γp(
1
4
)4 (mod p2r). (1.8)
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For n prime, letting q → 1 in (1.7), we are led to the following supercongruences:
for any prime p ≡ 1 (mod 4) and positive integer r,

(pr−1)/2∑

k=0

(1
2
)3
k

k!3
≡ −Γp(

1
4
)4

(pr−1−1)/2∑

k=0

(1
2
)3
k

k!3
(mod pr+1), (1.9)

pr−1∑

k=0

(1
2
)3
k

k!3
≡ −Γp(

1
4
)4

pr−1−1∑

k=0

(1
2
)3
k

k!3
(mod pr+1). (1.10)

Although the supercongruence (1.9) is much weaker than Swisher’s original conjec-
ture (H.3) (the first part of (1.5)), it is the best result on this conjecture so far.
Besides, the author [10] has conjectured that (1.10) is true modulo p3r.

We have the following different q-analogue of (1.9) and (1.10).

Theorem 1.3. Let n and r be positive integers with n ≡ 1 (mod 4). Then, modulo
Φnr(q)

∏r
j=1 Φnj(q),

(nr−1)/d∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk ≡ [n]q2(q3; q4)(nr−1)/2(q
5n; q4n)(nr−1−1)/2

(q5; q4)(nr−1)/2(q3n; q4n)(nr−1−1)/2

q(1−n)/2

×
(nr−1−1)/d∑

k=0

(1 + q(4k+1)n)(q2n; q4n)3
k

(1 + qn)(q4n; q4n)3
k

qnk, (1.11)

where d = 1, 2.

Note that the author and Zudilin [18, Conjecture 4.3] ever conjectured (1.11) also
holds modulo

∏r
j=1 Φnj(q)2.

The paper is organized as follows. We shall prove Theorems 1.1–1.3 in Sections
2–4, respectively. In Section 5, we shall prove three more Dwork-type q-congruences,
which were previously conjectured by the author and Zudilin [18]. Finally, in Section
6, we put forward some related conjectures on q-supercongruences, most of which (if
true) can be utilized to confirm the corresponding complicated conjectures in [18].

2. Proof of Theorem 1.1

The q-binomial coefficient
[
M
N

]
can be defined by

[
M

N

]
=

[
M

N

]

q

=





(q; q)M

(q; q)N(q; q)M−N

, if 0 ≤ N ≤ M,

0, otherwise.

The so-called q-Lucas theorem (see Olive [26] and Désarménien [2, Proposition 2.2])
can be stated as follows: Let n be a positive integer, and let a, b, r, s be nonnegative
integers with b, s ≤ n− 1. Then[

an + b

rn + s

]
≡

(
a

r

)[
b

s

]
(mod Φn(q)).

In order to prove Theorem 1.1, we need the following two lemmas. The proof of
the first one is easy and can be found in [13, Lemma 3.1].
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Lemma 2.1. Let n be a positive odd integer. Let r and s be nonnegative integers
with s 6 n− 1. Then

(−q; q)rn+s ≡ 2r(−q; q)s (mod Φn(q)).

Lemma 2.2. Let m and n be positive integers with n ≡ 1 (mod 4). Then, modulo
Φn(q),

mn−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

m−1∑

k=0

(1
2
)3
k

k!3
. (2.1)

Proof. It is easy to see that

(q; q2)k

(q2; q2)k

=
1

(−q; q)2
k

[
2k

k

]
.

Thus, the left-hand side of (2.1) can be written as

mn−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k =
mn−1∑

k=0

q2k

(−q; q)4
k(−q2; q2)2

k

[
2k

k

]2[
2k

k

]

q2

=
m−1∑
r=0

n−1∑
s=0

q2rn+2s

(−q; q)4
rn+s(−q2; q2)2

rn+s

[
2rn + 2s

rn + s

]2[
2rn + 2s

rn + s

]

q2

.

For odd n, we have Φn(q2) = Φn(q)Φn(−q). By the q-Lucas theorem and Lemma
2.1, we get

n−1∑
s=0

q2rn+2s

(−q; q)4
rn+s(−q2; q2)2

rn+s

[
2rn + 2s

rn + s

]2[
2rn + 2s

rn + s

]

q2

≡
(
2r
r

)3

26r

n−1∑
s=0

q2s

(−q; q)4
s(−q2; q2)2

s

[
2s

s

]2[
2s

s

]

q2

≡
(
2r
r

)3

26r

(n−1)/2∑
s=0

(q; q2)2
s(q

2; q4)s

(q2; q2)2
s(q

4; q4)s

q2s (mod Φn(q)).

The proof then follows from the n ≡ 1 (mod 4) case of (1.3) and the easily checked
q-congruence:

(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 ≡ (q2−n, q2+n; q4)(n−1)/4

(q4−n, q4+n; q4)(n−1)/4

q(n−1)/2

= [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

(mod Φn(q)2) (2.2)

for n ≡ 1 (mod 4). ¤
Lemma 2.3. Let n ≡ 1 (mod 4) be an integer greater than 1 and let r, s be positive
integers with r > s. Then, modulo Φns(q),

[n]
(q3; q4)(nr−1)/2(q

5n; q4n)(nr−1−1)/2

(q5; q4)(nr−1)/2(q3n; q4n)(nr−1−1)/2

≡ [n]
(q3; q4)(ns−1)/2(q

5n; q4n)(ns−1−1)/2

(q5; q4)(ns−1)/2(q3n; q4n)(ns−1−1)/2

. (2.3)
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Proof. For n ≡ 1 (mod 4), we have

[n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

=
(q2−n, q2+n; q4)(n−1)/4

(q4−n, q4+n; q4)(n−1)/4

q(n−1)/2,

and so

[n]
(q3; q4)(nr−1)/2(q

5n; q4n)(nr−1−1)/2

(q5; q4)(nr−1)/2(q3n; q4n)(nr−1−1)/2

=
(q2−nr

, q2+nr
; q4)(nr−1)/4(q

4n−nr
, q4n+nr

; q4n)(nr−1−1)/4

(q4−nr , q4+nr ; q4)(nr−1)/4(q2n−nr , q2n+nr ; q4n)(nr−1−1)/4

q(n−1)/2. (2.4)

Note that (q2n−nr
, q2n+nr

; q4n)(nr−1−1)/4 (respectively, (q4n−nr
, q4n+nr

; q4n)(nr−1−1)/4) is
the product of all the factors of the form 1− qan in (q2−nr

, q2+nr
; q4)(nr−1)/4 (respec-

tively, (q4−nr
, q4+nr

; q4)(nr−1)/4). Using the following easily checked q-congruence:

(1− qm−nr

)(1− qm+nr

) ≡ (1− qm)2 (mod ΦN(q)2),

where N divides nr, we see that, modulo Φns(q)2, the right-hand side of (2.4) is
congruent to

(q2; q4)2
(nr−1)/4(q

4n; q4n)2
(nr−1−1)/4

(q4; q4)2
(nr−1)/4(q

2n; q4n)2
(nr−1−1)/4

q(n−1)/2

=
(q2; q4)2

(ns−1)/4(q
4n; q4n)2

(ns−1−1)/4

(q4; q4)2
(ns−1)/4(q

2n; q4n)2
(ns−1−1)/4

(qns+1; q4)2
(nr−ns)/4(q

ns+3n; q4n)2
(nr−1−ns−1)/4

(qns+3; q4)2
(nr−ns)/4(q

ns+n; q4n)2
(nr−1−ns−1)/4

q(n−1)/2.

(2.5)

Furthermore, the polynomial (qns+1; q4)(nr−ns)/4 is divisible by (qns+n; q4n)(nr−1−ns−1)/4,
and the quotient

(qns+1; q4)(nr−ns)/4

(qns+n; q4n)(nr−1−ns−1)/4

=
(1− qns+1)(1− qns+5) · · · (1− qnr−3)

(1− qns+n)(1− qns+5n) · · · (1− qnr−3n)

≡ (1− q1−nr
)(1− q5−nr

) · · · (1− q−ns−3)

(1− qn−nr)(1− q5n−nr) · · · (1− q−ns−3n)

=
(qns+3; q4)(nr−ns)/4

(qns+3n; q4n)(nr−1−ns−1)/4

q(nr−ns)(nr−1+ns−1−nr−ns)/8

≡ (qns+3; q4)(nr−ns)/4

(qns+3n; q4n)(nr−1−ns−1)/4

6≡ 0 (mod Φns(q)).
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This means that the right-hand side of (2.5) reduces to

(q2; q4)2
(ns−1)/4(q

4n; q4n)2
(ns−1−1)/4

(q4; q4)2
(ns−1)/4(q

2n; q4n)2
(ns−1−1)/4

q(n−1)/2

≡ (q2−ns
, q2+ns

; q4)(ns−1)/4(q
4n−ns

, q4n+ns
; q4n)(ns−1−1)/4

(q4−ns , q4+ns ; q4)(ns−1)/4(q2n−ns , q2n+ns ; q4n)(ns−1−1)/4

q(n−1)/2

= [n]
(q3; q4)(ns−1)/2(q

5n; q4n)(ns−1−1)/2

(q5; q4)(ns−1)/2(q3n; q4n)(ns−1−1)/2

(mod Φns(q)),

as desired. ¤

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. By (1.3) and (2.2), we obtain

(nr−1)/d∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [nr]
(q3; q4)(nr−1)/2

(q5; q4)(nr−1)/2

(mod Φnr(q)2),

(nr−1−1)/d∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk ≡ [nr−1]qn

(q3n; q4n)(nr−1−1)/2

(q5n; q4n)(nr−1−1)/2

(mod Φnr−1(qn)2),

where d = 1, 2. Since Φnr−1(qn) is divisible by Φnr(q), from the above two q-
congruences we conclude that (1.7) holds modulo Φnr(q)2.

By Lemma 2.2, for 1 6 j 6 r − 1, there hold

nr−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [nj]
(q3; q4)(nj−1)/2

(q5; q4)(nj−1)/2

nr−j−1∑

k=0

(1
2
)3
k

k!3
(mod Φnj(q)),

nr−1−1∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk

≡ [nj−1]qn

(q3n; q4n)(nj−1−1)/2

(q5n; q4n)(nj−1−1)/2

nr−j−1∑

k=0

(1
2
)3
k

k!3
(mod Φnj−1(qn)).

It follows that

nr−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(nj−1)/2(q

5n; q4n)(nj−1−1)/2

(q5; q4)(nj−1)/2(q3n; q4n)(nj−1−1)/2

×
nr−1−1∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk (mod Φnj(q)).

In view of Lemma 2.3, we see that the d = 1 case of (1.7) holds modulo Φnj(q)
for 1 6 j 6 r − 1. Since Φn(q), Φn2(q), . . . , Φnr−1(q), Φnr(q)2 are pairwise coprime
polynomials in q, we complete the proof of the d = 1 case of (1.7).



8 VICTOR J. W. GUO

Note that the k-th summand on the left-hand side of (1.7) is congruent to 0
modulo Φnj(q) for k in the range (nr − 1)/2 < k 6 nj(nr−j + 1)/2. By Lemma 2.2
again, for 1 6 j 6 r − 1, there hold

(nr−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
nj(nr−j+1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k

≡ [nj]
(q3; q4)(nj−1)/2

(q5; q4)(nj−1)/2

(nr−j+1)/2∑

k=0

(1
2
)3
k

k!3
(mod Φnj(q)),

and

(nr−1−1)/2∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk

≡ [nj−1]qn

(q3n; q4n)(nj−1−1)/2

(q5n; q4n)(nj−1−1)/2

(nr−j+1)/2∑

k=0

(1
2
)3
k

k!3
(mod Φnj−1(qn)).

Similarly as before, we can show that the d = 2 case of (1.7) is true. ¤

3. Proof of Theorem 1.2

We first recall some basic properties of Morita’s p-adic Gamma function [1, 29].
For any odd prime p, the p-adic Gamma function is defined by Γp(0) = 1, and

Γp(n) = (−1)n
∏

0<k<n
p-k

k

for integers n > 1. Let Zp denote the ring of all p-adic integers. We can extend Γp

to all x ∈ Zp by the limit:

Γp(x) = lim
xn→x

Γp(xn),

where xn is any positive integer sequence that p-adically tends to x. By the defini-
tion, one has

Γp(x + 1)

Γp(x)
=

{−x, p - x,

−1, p | x.
(3.1)

It is also known that, for x ∈ Zp, there holds

Γp(x)Γp(1− x) = (−1)a0(x), (3.2)

where a0(x) is the smallest positive integer such that a0(x) ≡ x (mod p).
To prove Theorem 1.3, we also need the following result (see [23, Theorem 14]).

Lemma 3.1. Let p be an odd prime and r a positive integer. Then, for a,m ∈ Zp,

Γp(a + mpr) ≡ Γp(a) + Γ′p(a)mpr (mod p2r). (3.3)
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Proof of Theorem 1.2. Let Γ(x) be the classical Gamma function. The r = 1 case
is already known. This can also be deduced from comparing (1.1) and (1.3) and
noticing that, for n ≡ 1 (mod 4),

(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 ≡ (q2−n, q2+n; q4)(n−1)/4

(q4−n, q4+n; q4)(n−1)/4

q(n−1)/2

= [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

(mod Φn(q)2).

We now assume that r > 1. In view of (3.1), there hold

(3
4
) pr−1

2

(5
4
) pr−1

2

=
Γ(2pr+1

4
)Γ(5

4
)

Γ(3
4
)Γ(2pr+3

4
)

=
3p
4
· 7p

4
· · · 2pr−3p

4
p
4
· 5p

4
· · · 2pr−p

4

· Γp(
2pr+1

4
)Γp(

5
4
)

Γp(
3
4
)Γp(

2pr+3
4

)

=
(3

4
) pr−1−1

2

p
4
(5

4
) pr−1−1

2

· Γp(
2pr+1

4
)Γp(

5
4
)

Γp(
3
4
)Γp(

2pr+3
4

)
.

It follows that

p
(3

4
)(pr−1)/2(

5
4
)(pr−1−1)/2

(5
4
)(pr−1)/2(

3
4
)(pr−1−1)/2

= 4
Γp(

2pr+1
4

)Γp(
5
4
)

Γp(
3
4
)Γp(

2pr+3
4

)
= −Γp(

2pr+1
4

)Γp(
1
4
)

Γp(
3
4
)Γp(

2pr+3
4

)
.

By (3.2) and (3.3), we have

Γp(
2pr+1

4
)

Γp(
2pr+3

4
)

= (−1)(p+3)/4Γp(
1+2pr

4
)Γp(

1−2pr

4
)

≡ (−1)(p+3)/4(Γp(
1
4
) + 1

2
Γ′p(

1
4
)pr)(Γp(

1
4
)− 1

2
Γ′p(

1
4
)pr)

≡ (−1)(p+3)/4Γp(
1
4
)2 (mod p2r).

The proof then follows from the identity Γp(
1
4
)Γp(

3
4
) = (−1)(p+3)/4. ¤

4. Proof of Theorem 1.3

The proof is exactly the same as that of 1.1. Firstly, we have the following different
q-analogue of (1.1) obtained by the author and Zudilin [17]:

(n−1)/2∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk

≡





[n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2 (mod Φn(q)2) if n ≡ 1 (mod 4),

0 (mod Φn(q)2) if n ≡ 3 (mod 4).

(4.1)

Secondly, we can prove that, for all positive integers m and n with n ≡ 1 (mod 4),
modulo Φn(q),

mn−1∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk ≡ [n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2

m−1∑

k=0

(1
2
)3
k

k!3
. (4.2)



10 VICTOR J. W. GUO

5. More Dwork-type q-congruences

Rodriguez-Villegas [30, (36)] conjectured that, for any odd prime p,

(p−1)/2∑

k=0

(1
2
)2
k

k!2
≡ (−1)(p−1)/2 (mod p2), (5.1)

which was later confirmed by Mortenson [25]. The author, Pan, and Zhang [12,
Corollary 3.1] gave a q-analogue of (5.1) as follows: for any odd integer n > 1,

(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(n−1)/2q(1−n2)/4 (mod Φn(q)2). (5.2)

In this section, we shall give the following generalization of (5.2), which was conjec-
tured by the author and Zudilin [18, Conjecture 4.6].

Theorem 5.1. Let n > 1 be an odd integer and let r > 1. Then, modulo
Φnr(q)

∏r
j=1 Φnj(q),

(nr−1)/d∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(n−1)/2q(1−n)(1+n2r−1)/4

(nr−1−1)/d∑

k=0

(qn; q2n)2
k

(q2n; q2n)2
k

, (5.3)

where d = 1, 2.

Sketch of proof. In view of (5.2), we have

(nr−1)/d∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(nr−1)/2q(1−n2r)/4 (mod Φnr(q)2),

(nr−1−1)/d∑

k=0

(qn; q2n)2
k

(q2n; q2n)2
k

≡ (−1)(nr−1−1)/2qn(1−n2r−2)/4 (mod Φnr−1(qn)2),

where d = 1, 2. Since Φnr−1(qn) is a multiple of Φnr(q), from the above two q-
congruences we see that (5.3) holds modulo Φnr(q)2.

Moreover, we can also deduce from (5.2) that, for all positive integers m and n
with n odd, modulo Φn(q),

mn−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(n−1)/2q(1−n2)/4

m−1∑

k=0

(1
2
)2
k

k!2
.

In particular, for 1 6 j 6 r − 1, there hold

nr−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(nj−1)/2q(1−n2j)/4

nr−j−1∑

k=0

(1
2
)2
k

k!2
(mod Φnj(q)),

nr−1−1∑

k=0

(qn; q2n)2
k

(q2n; q2n)2
k

≡ (−1)(nj−1−1)/2qn(1−n2j−2)/4

nr−j−1∑

k=0

(1
2
)3
k

k!3
(mod Φnj−1(qn)).
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It follows that, for 1 6 j 6 r − 1,

nr−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(n−1)/2q(1−n)(1+n2r−1)/4

nr−1−1∑

k=0

(qn; q2n)2
k

(q2n; q2n)2
k

(mod Φnj(q)),

where we have used the fact q(1−n)(1+n2j−1)/4 ≡ q(1−n)(1+n2r−1)/4 (mod Φnj(q)). This
proves (5.3) for d = 1. Similarly, we can prove it for d = 2. ¤

For n prime, letting q → 1 in (5.3), we obtain the following result: for any odd
prime p and positive integer r,

(pr−1)/d∑

k=0

(1
2
)2
k

k!2
≡ (−1)(p−1)/2

(pr−1−1)/2∑

k=0

(1
2
)2
k

k!2
(mod pr+1),

where d = 1, 2. Note that the author and Zudilin [18, (3.52)] have proved that the
above supercongruence holds modulo p2r.

The author and Zudilin [15, Theorem 4.14] applied Andrews’ q-analogue of Gauss’

2F1(−1) summation (see [4, Appendix (II.11)]) to show that, for n ≡ 3 (mod 4),

(n−1)/2∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡ 0 (mod Φn(q)2).

They [18] mentioned the following companion q-congruence: for n ≡ 1 (mod 4),

(n−1)/2∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡
(−2

n

)
q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2), (5.4)

where (a
b
) denotes the Kronecker symbol.

Here we shall prove the following Dwork-type generalization of the above q-
congruence, which was originally conjectured by the author and Zudilin [18, Con-
jecture 4.7].

Theorem 5.2. Let n > 1 be an integer with n ≡ 1 (mod 4) and let r > 1. Then,
modulo Φnr(q)

∏r
j=1 Φnj(q),

(nr−1)/d∑

k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k

q2k

≡
(−2

n

)
q(n−1)(n2r−1+3)/8 (q2; q4)(nr−1)/4(q

4n; q4n)(nr−1−1)/4

(q4; q4)(nr−1)/4(q2n; q4n)(nr−1−1)/4

×
(nr−1−1)/d∑

k=0

(qn; q2n)2
k

(q2n; q2n)k(q4n; q4n)k

q2nk, (5.5)

where d = 1, 2.
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Sketch of proof. By (5.4), modulo Φnr(q)2,

(nr−1)/d∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡
(−2

nr

)
q(nr−1)(nr+3)/8 (q2; q4)(nr−1)/4

(q4; q4)(nr−1)/4

,

(nr−1−1)/d∑

k=0

(qn; q2n)2
kq

2nk

(q2n; q2n)k(q4n; q4n)k

≡
( −2

nr−1

)
qn(nr−1−1)(nr−1+3)/8 (q2n; q4n)(nr−1−1)/4

(q4n; q4n)(nr−1−1)/4

,

where d = 1, 2. Hence, the q-congruence (5.5) is true modulo Φnr(q)2.
Besides, we can conclude from (5.4) that, for all positive integers m and n with

n ≡ 1 (mod 4), modulo Φn(q),

mn−1∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡
(−2

n

)
q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

m−1∑

k=0

(1
2
)2
k

2kk!2
,

and so, for 1 6 j 6 r − 1, modulo (mod Φnj(q)),

nr−1∑

k=0

(q; q2)2
kq

2k

(q2; q2)k(q4; q4)k

≡
(−2

nj

)
q(nj−1)(nj+3)/8 (q2; q4)(nj−1)/4

(q4; q4)(nj−1)/4

nr−j−1∑

k=0

(1
2
)2
k

2kk!2
,

nr−1−1∑

k=0

(qn; q2n)2
kq

2nk

(q2n; q2n)k(q4n; q4n)k

≡
( −2

nj−1

)
qn(nj−1−1)(nj−1+3)/8 (q2n; q4n)(nj−1−1)/4

(q4n; q4n)(nj−1−1)/4

nr−j−1∑

k=0

(1
2
)2
k

2kk!2
.

It follows that, for 1 6 j 6 r − 1, modulo Φnj(q),

nr−1∑

k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k

q2k

≡
(−2

n

)
q(n−1)(n2j−1+3))/8 (q2; q4)(nj−1)/4(q

4n; q4n)(nj−1−1)/4

(q4; q4)(nj−1)/4(q2n; q4n)(nj−1−1)/4

×
nr−1−1∑

k=0

(qn; q2n)2
k

(q2n; q2n)k(q4n; q4n)k

q2nk.

Like the proof of Lemma 2.3, we can prove that

(q2; q4)(nr−1)/4(q
4n; q4n)(nr−1−1)/4

(q4; q4)(nr−1)/4(q2n; q4n)(nr−1−1)/4

≡ (q2; q4)(nj−1)/4(q
4n; q4n)(nj−1−1)/4

(q4; q4)(nj−1)/4(q2n; q4n)(nj−1−1)/4

(mod Φnj(q)).

Using q(n−1)(n2j−1+3)/8 ≡ q(n−1)(n2r−1+3)/8 (mod Φnj(q)), we complete the proof of
(5.5) for d = 1. The proof of the d = 2 case is exactly the same. ¤

When n is a prime and q tends to 1 in (5.5), we arrive at the following result: for
any prime p ≡ 1 (mod 4),

(pr−1)/d∑

k=0

(1
2
)2
k

2kk!2
≡

(−2

p

)
(1

2
)(pr−1)/4(1)(pr−1−1)/4

(1)(pr−1)/4(
1
2
)(nr−1−1)/4

(pr−1−1)/d∑

k=0

(1
2
)2
k

2kk!2
(mod pr+1),
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where d = 1, 2. We point out that the r = 1 case was first proved by Sun [31].
Moreover, the author and Zudilin [18] conjectured that the above supercongruence
is true modulo p2r.

The author [5] established the q-congruence

n−1∑

k=0

qk

(−q; q)k

[
2k

k

]
≡ (−1)(n−1)/2q(n2−1)/4 (mod Φn(q)2), (5.6)

which was conjectured by Tauraso [34] for n being an odd prime. The author also
conjectured that

n−1∑

k=0

qk

[
2k

k

]
≡

(−3

n

)
q(n2−1)/3 (mod Φn(q)2), (5.7)

which was recently confirmed by Liu and Petrov [21].
Here we shall prove the following Dwork-type q-generalizations of (5.6) and (5.7),

confirming a conjecture of the author and Zudilin [18, Conjecture 4.8].

Theorem 5.3. Let n > 1 be an odd integer and let r > 1. Then, modulo
Φnr(q)2−d

∏r
j=1 Φnj(q),

(nr−1)/d∑

k=0

qk

(−q; q)k

[
2k

k

]
≡ (−1)(n−1)/2q(n−1)(1+n2r−1)/4

(nr−1−1)/d∑

k=0

qnk

(−qn; qn)k

[
2k

k

]

qn

,

(5.8)

(nr−1)/d∑

k=0

qk

[
2k

k

]
≡ q(n−1)(1+n2r−1)/3

(−3

n

) (nr−1−1)/d∑

k=0

qnk

[
2k

k

]

qn

, (5.9)

where d = 1, 2. When d = 1, the second q-congruence is still true for even integers
n.

Sketch of proof. For d = 1, the q-congruences (5.8) and (5.9) follow from (5.6) and
(5.7) and the following generalizations of them: for all positive integers m and n,
modulo Φn(q),

mn−1∑

k=0

qk

(−q; q)k

[
2k

k

]
≡ (−1)(n−1)/2q(n2−1)/4

m−1∑

k=0

1

2k

(
2k

k

)
(n is odd), (5.10)

mn−1∑

k=0

qk

[
2k

k

]
≡

(−3

n

)
q(n2−1)/3

m−1∑

k=0

(
2k

k

)
. (5.11)

From (5.6) and (5.7), we immediately obtain

(n−1)/2∑

k=0

qk

(−q; q)k

[
2k

k

]

q

≡ (−1)(n−1)/2q(n2−1)/4 (mod Φn(q)), (5.12)

(n−1)/2∑

k=0

qk

[
2k

k

]
≡

(−3

n

)
q(n2−1)/3 (mod Φn(q)). (5.13)
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Likewise, we can prove the d = 2 case of (5.8) and (5.9) by using (5.10)–(5.13). ¤
Sun [32, Conjecture 3 (ii),(iii)] proposed the following conjecture: for any prime

p,

pr−1∑

k=0

1

2k

(
2k

k

)
≡

(−1

p

) pr−1−1∑

k=0

1

2k

(
2k

k

)
(mod p2r) (p > 2), (5.14)

pr−1∑

k=0

(
2k

k

)
≡

(−3

p

) pr−1−1∑

k=0

(
2k

k

)
(mod p2r), (5.15)

and these expectations were recently confirmed by Zhang and Pan [38]. It is easy to
see that (5.8) and (5.9) are q-analogues of (5.14) and (5.15) modulo pr+1. Complete
q-analogues of (5.14) and (5.15) are still not known.

6. Open problems and concluding remarks

Liu [19] established the following generalization of (1.1): for any odd prime p and
positive integer m,

mp−1∑

k=0

(1
2
)3
k

k!3
≡




−Γp(

1
4
)4

m−1∑

k=0

(1
2
)3
k

k!3
(mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),

(6.1)

Recently, the author [10] gave a q-analogue of the second case of (6.1): for positive
integers m and n with n ≡ 3 (mod 4),

mn−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ 0 (mod Φn(q)2), (6.2)

which were previously conjectured by the author and Zudilin [16].
We find the following q-analogue of the first case of (6.1), which is also a refinement

of Lemma 2.2.

Conjecture 6.1. Let m and n be positive integers with n ≡ 1 (mod 4) and n > 1.
Then, modulo Φn(q)2,

mn−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

m−1∑

k=0

(1
2
)3
k

k!3
. (6.3)

For n ≡ 3 (mod 4), one sees that [n](q3; q4)(n−1)/2 is divisible by Φn(q)2 while
(q5; q4)(n−1)/2 is coprime with Φn(q), and so (6.3) reduces to (6.2) in this case. For
any prime p ≡ 1 (mod 4), we have

p
(3

4
)(p−1)/2

(5
4
)(p−1)/2

≡ −Γp(
1
4
)4 (mod p2).

Letting n = p be a prime and taking the limits as q → 1 in (6.3), we are led to the
first part of (6.1).
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It is not difficult to verify that, for any positive odd integer n,

(1
2
)3
k

k!3
≡ (qn; q2n)2

k(q
2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk (mod Φn(q)2). (6.4)

Thus, the q-congruence can also be written as follows: modulo Φn(q)2,

mn−1∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

m−1∑

k=0

(qn; q2n)2
k(q

2n; q4n)k

(q2n; q2n)2
k(q

4n; q4n)k

q2nk.

Recently, the author [6] gave another q-analogues of the second case of (6.1): for
positive integers m and n with n ≡ 3 (mod 4),

mn−1∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk ≡ 0 (mod Φn(q)2), (6.5)

which were previously conjectured by the author and Zudilin [16].
We have the following different q-analogue of the first case of (6.1), which is also

a refinement of (4.2).

Conjecture 6.2. Let m and n be positive integers with n ≡ 1 (mod 4) and n > 1.
Then, modulo Φn(q)2,

mn−1∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk ≡ [n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2

m−1∑

k=0

(1
2
)3
k

k!3
. (6.6)

Likewise, the q-congruence (6.6) has the following equivalent form: modulo Φn(q)2,

mn−1∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk ≡ [n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2

m−1∑

k=0

(1 + qn(4k+1))(q2n; q4n)3
k

(1 + qn)(q4n; q4n)3
k

qnk.

We believe that Lemma 2.3 can be strengthened as follows.

Conjecture 6.3. The q-congruence (2.3) holds modulo Φns(q)2.

By the proof of Lemma 2.3, we know that the above conjecture can be easily
derived from the following conjectural q-congruence with q → q2.

Conjecture 6.4. Let n ≡ 1 (mod 4) be an integer greater than 1 and let r, s be
positive integers with r > s. Then, modulo Φns(q)2,

(q; q2)(nr−1)/4(q
2n; q2n)(nr−1−1)/4

(q2; q2)(nr−1)/4(qn; q2n)(nr−1−1)/4

≡ (q; q2)(ns−1)/4(q
2n; q2n)(ns−1−1)/4

(q2; q2)(ns−1)/4(qn; q2n)(ns−1−1)/4

.

We point out that if Conjectures 6.1 and 6.3 are true, then we can prove that (1.7)
holds modulo

∏r
j=1 Φnj(q)2, which was conjectured by the author [10, Conjecture

6.3]. Similarly, if Conjectures 6.2 and 6.3 are confirmed, then we can conclude
that (1.11) holds modulo

∏r
j=1 Φnj(q)2, as already conjectured by the author and

Zudilin [18, Conjecture 4.3]. Both [10, Conjecture 6.3] and [18, Conjecture 4.3] might
be the best ways to prove the truth of (1.9) and (1.10) modulo p2r.

Although we are unable to prove some interesting special cases of [18, Conjetures
4.1, 4.2, 4.5, 4.6], we shall give the following simplified versions of them.
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Conjecture 6.5. Let m and n be positive integers with n ≡ 1 (mod 4). Then,
modulo Φn(q)3,

mn−1∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk ≡ [n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

m−1∑

k=0

(−1)k(4k + 1)
(1

2
)5
k

k!5
.

(6.7)

The m = 1 case of (6.7) was given by the author [7]. Conjecture 4.1 in [18] can be
deduced from Conjectures 6.4 and 6.5 in this section. It is worth mentioning that
(6.7) is equivalent to the following q-congruence: modulo Φn(q)3,

mn−1∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk

≡ [n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

m−1∑

k=0

(−1)k[4k + 1]qn

(qn; q2n)4
k(q

2n; q4n)k

(q2n; q2n)4
k(q

4n; q4n)k

qnk

for the same reason as (6.4).

Conjecture 6.6. Let m and n be positive integers with n odd. Then, modulo Φn(q)3,

mn−1∑

k=0

(−1)k[4k + 1]
(q2; q4)3

k

(q4; q4)3
k

qk ≡ [n]q2(−q3; q4)(n−1)/2

(−q5; q4)(n−1)/2

(−q)(1−n)/2

m−1∑

k=0

(−1)k(4k + 1)
(1

2
)3
k

k!3
.

(6.8)

The m = 1 case of (6.8) was proved by the author and Zudilin [15]. Conjecture
4.2 in [18] is a consequence of Conjecture 6.6.

Conjecture 6.7. Let m and n be positive integers with n odd. Then, modulo Φn(q)2,

mn−1∑

k=0

(−1)k[3k + 1]
(q; q2)3

k

(q; q)3
k

≡ (−1)(n−1)/2q(n−1)2/4[n]
m−1∑

k=0

(−1)k(3k + 1)
8k(1

2
)3
k

k!3
. (6.9)

We point out that the m = 1 case of (6.9) is also true modulo Φn(q)3, which was
established by the author [8]. Moreover, Conjecture 4.4 in [18] can be derived from
Conjecture 6.7.

Conjecture 6.8. Let m and n be positive integers with n odd. Then, modulo Φn(q)2,

mn−1∑

k=0

(−1)k[4k + 1]
(q; q2)3

k

(q2; q2)3
k

qk2 ≡ (−1)(n−1)/2q(n−1)2/4[n]
m−1∑

k=0

(−1)k(4k + 1)
(1

2
)3
k

k!3
.

(6.10)

It should be mentioned that the m = 1 case of (6.10) also holds modulo Φn(q)3

(see [15]). Besides, Conjecture 4.5 in [18] follows from Conjecture 6.8. Finally, the
q-congruences (6.8)–(6.10) have equivalent forms as before. However, we will not
formulate them specifically here.

Data availability. All data generated during this study are included in the pub-
lished article.
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