SOME ¢-SUPERCONGRUENCES FROM THE BAILEY
TRANSFORMATION

VICTOR J. W. GUO

ABSTRACT. Using the Bailey transformation formula together with the ‘creative
microscoping’ method (recently introduced by the author and Zudilin), we give
g-analogues of two supercongruences of He:
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where p is an odd prime. One of our results implies that He’s second super-
congruence is still true modulo p? for p = 3 (mod 4). We also give two similar
g-supercongruences.

1. INTRODUCTION

Summation and transformation formulas for hypergeometric series play an impor-
tant role in the study of supercongruences. See, for example, [15,17]. In particular,
using the ¢ = 1 case of the Bailey transformation formula, He [15] proved the fol-
lowing supercongruences: for any odd prime p,
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where (a), = a(a+ 1)---(a +n — 1) is the rising factorial. Note that Sun [24]
established the following result: for odd primes p,

(p—1)/2 ' (1)3 {(_1)(p1)/2(4x2 —2p) (mod p?), if p=a?+ 2y,

0, ifp=5,7 (mod 8).
(1.3)
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where z,y € Z, and Sun [23] has already proved that, for any prime p = 1 (mod 4),
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where p = 2% +y? with z,y € Z and z =1 (mod 4).
Recently, the author and Zudilin [12] gave a partial g-analogue of (1.3) as follows:
for any positive integer n = 1 (mod 4), modulo ®,(q),
(n— 1)/2 )
q q q q k
4q
Z AU (=a)
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0 ifn=>5 (mod 8).

ifn=1 (mod 8),

Here and throughout the paper, || < 1, the g-shifted factorial is defined by (a; q)o =
1 and (a;q), = (1 —a)(1 —aq)---(1 —ag™ ) for n > 1, or n = oo, and the n-th
cyclotomic polynomial ®,(q) is given by

ou)= [ (a—em) ez,

1<k<n
ged(k,n)=1

It is easy to see that @,(¢*) = @,(q)®,(—q) for any odd integer n. Moreover, we
define the g-integer by [n] = [n], = (1 —¢")/(1 — ¢q). For some other recent progress
on g-congruences, we refer the reader to [2-11,13,14, 16, 18,19,22,25,27,28,30].

The aim of this paper to deduce some g-congruences from the Bailey transforma-
tion formula (see Andrews [1, Equation (2.9)] or Liu [20, Proposition 11.4]):
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2
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(1.4)
where |a?ab/q?| < 1. Our first result is a g-analogue of (1.1).
Theorem 1.1. Let n be a positive odd integer. Then
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(1.5)
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It is easy to see that when n = p and ¢ — 1, the g-supercongruence (1.5) reduces
to the supercongruence (1.1). Furthermore, if we let n = p and ¢ — —1 in (1.5),
then we get the following result:

(p—1)/2 133
Z (—1)F(4k + 1)% =p(—1)P V2 (mod p?). (1.6)
k=0 '

Note that the above supercongruence was observed by Van Hamme [26] in 1997
(tagged (B.2) in Van Hamme’s list). The supercongruence (1.5) was first proved by
Mortenson [21] using a ¢F5 hypergeometric transformation, and was later reproved
by Zudilin [29] via the WZ (Wilf-Zeilberger) method. It should be pointed out that
other different g-analogues of (1.6) can be found in [4,5,13].

Our second result is the following g-analogue of (1.2).

Theorem 1.2. Let n be a positive odd integer. Then

(n—1)/2

(—1) (1+¢"™ (¢ q4)iq2k2+k
— (1+a)(a* ¢*)3
(n—1/2

— (_1)(n—1)/2q(n—1)2/2[n]q2 Z
k=0

(4% qrg*
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(mod ®,(q)*®,(—q)®) #fn=1 (mod 4), )
(mod @,(¢)®,(—¢)®) fn=3 (mod 4). '

Likewise, the supercongruence (1.2) follows from (1.7) by taking n = p and ¢ — 1.
In fact, the g-supercongruence (1.7) implies the following more stronger result: for
any prime p = 3 (mod 4), the supercongruence (1.2) is true modulo p3. However,
for the n = p and ¢ — —1 case, the g-supercongruence (1.7) gives a less interesting
supercongruence modulo p* (we omit it here), since both sides have closed forms in
this case.

The paper is organized as follows. We shall use the method of ‘creative micro-
scoping’, recently introduced by the author and Zudilin [11], to prove Theorems 1.1
and 1.2 in Sections 2 and 3, respectively. Then we shall give two similar results in
Section 4.

2. PROOF OF THEOREM 1.1

We first establish the following parametric generalization of Theorem 1.1.
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Theorem 2.1. Let n > 1 be an odd integer and a an indeterminate. Then, modulo
®,(—q)(1 — ag®™)(a — ¢™),

(n— 1)/2
(0 0 gDl O 0 e
k=0 (14 q)(agq; ¢*)i(q*/a; ¢*)i(a*; ¢*)
(n— 1)/2
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Proof. For a = q~*" or a = ¢*", the left-hand side of (2.1) is equal to
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k=0
by the Bailey transformation (1.4) with the parameter substitutions q — ¢*, a = ¢,
a=q¢" b=¢*>2" and X\ = ¢*. It is not difficult to see that
(€% 400 _ (50 mene
(@2 0o (@72 000 (@710 nr1) 2

This proves that the congruence (2.1) holds modulo 1 — a¢*" and a — ¢*"
Moreover, by [10, Lemma 3.1], for 0 < k < (n — 1)/2, we have

n— n—1)2
— [ (—1) D22 (2.9)

(aq; q2)(”*1)/2*k (n—1)/2—2k (aq; q2)k (n—1)2/4+k
=(—a)" —q\" mod ®,(q)). 2.3
(4/@5 6*)(n-1) /21 (4*/a; ¢*) ( @) (23)
From this ¢-congruence we can easily deduce that, for 0 < k < (n — 1)/2, the k-th

and ((n — 1)/2 — k)-th terms on the left-hand side of (2.1) modulo ®,,(—¢q) cancel
each other, i.e.,

(— 1)(n 1)/2— k(1+q2n 1) (ag*; q )(n 1)/2-5(q *Ja;q )n 1)/2*k(q2;q4)(n71)/27k
(1+ q)(ag*; ¢*) n—1y2-k(a*/a; ¢*) (n—1)/2-6 (0% ¢*) -1y j2-k

2k((n—1)/2—k)2+2((n—1)/2—k)

xXq

_ _(_1)k(1 +¢% ) (ag? ¢")u(@® /a5 4)i(@* 0 o2 pon
(14 q)(ag*; ¢*)r(q*/a; *)r(q* ¢*)n

Notice that the above congruence is also true for k¥ = (n — 1)/2 — k. In other

words, if the (n — 1)/4 term exists (n = 1 (mod 4)), then it must be congruent to

0 modulo ®,,(—¢). Thus, we conclude that the left-hand side of (2.1) is congruent

to 0 modulo ®,(—¢q). It is clear that the right-hand side of (2.1) is congruent to 0

modulo @,,(—q). and so the congruence (2.1) holds modulo ®,,(—¢). Since 1 — ag*"

a—¢*" and ®,(—q) are pairwise relatively prime polynomials, we complete the proof
of (2.1). O

(mod ®,,(—q)).
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Proof of Theorem 1.1. It is easy to see that the denominators of the left-hand side of
(2.1) are relatively prime to ®,(¢?) as a — 1, and the denominators of the reduced
form of the right-hand side of (2.1) are also relatively prime to @,,(¢*) because of the
factor [n],2 before the summation. On the other hand, the limit of (1—ag®")(a—¢*")
as a — 1 has the factor ®,(¢?). Therefore, letting @ — 1 in (2.1), we obtain the
g-congruence (1.5). O]

3. PROOF OF THEOREM 1.2

Similarly as before, we first establish the following parametric generalization of
Theorem 1.2.

Theorem 3.1. Let n > 1 be an odd integer and a an indeterminate. Then

(n=1)/2
3 () (L2005 O/ 0 D e
k=0

(1 + q)(ag*; ¢*)r(q*/a; e

(n— 1)/2
= (—1)Dr2g 2] S (ag* q*) 2/a§q4)kq2k
= k1% gkt gt

(mod ®,(—q)(1 — ag?)(a — ¢*)) #fn=1 (mod 4),

(3.1)
(mod @,(¢*)(1 — ag®)(a —¢*")) ifn=3 (mod 4).
Proof. For a = q~*" or a = ¢*", the left-hand side of (3.1) is equal to
(n—1)/2 n. n
Z 1+q4k+1>(92 2 Q) (q2+2 §q4)k 2k2+k
) (L4 @)@ 2" g)u(d2" ¢
6. 4 2. 6 (n— 1/2 22 24+2n. 4
_ (@759Y)%0(0% 4" Z BIACRRET WU DI
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by the Bailey transformation (1.4) with ¢ — ¢, a = ¢, a = ¢**?", b = ¢* 2", and

A =q. By (2.2) and (¢; ¢*)r/ (¢ ¢*)r = 1/[4k + 1], we see that (3.1) holds modulo
1 —ag* and a — ¢*".

From (2.3) we can deduce that, for 0 < k& < (n — 1)/2, the k-th term plus the
((n —1)/2 — k)-th terms on the left-hand side of (3.1) is congruent to 0 modulo
®,(—q) if n =1 (mod 4) and modulo ®,,(¢*) if n = 3 (mod 4). This means that
the left-hand side of (3.1) is congruent to 0 under the same modulus, and so the
congruence (3.1) is true modulo ®,(—¢) if n = 1 (mod 4) and modulo ®,(¢*) if
n =3 (mod 4). The proof of (3.1) then follows from the fact that 1 — a¢®", a — ¢*"
and ®,,(¢?) are pairwise relatively prime polynomials. O

Proof of Theorem 1.2. The denominators of (the reduced forms) on both sides of
(3.1) are relatively prime to ®,(¢?) as @ — 1 and the limit of (1 — ag¢**)(a — ¢*")
contains the factor @,(¢*) as a — 1. We immediately get (1.5) by taking a — 1 in

(3.1). 0
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4. TWO SIMILAR ¢-SUPERCONGRUENCES

In this section, we give two results similar to Theorems 1.1 and 1.2.

Theorem 4.1. Let n be a positive odd integer. Then

(n+1)/2 _ _
Z (_1)k (1 +q4k 1)((] 2§q4)%q2k2+6k
e (L+q ) (g" ")}
(n+1)/2 o 4\o( 2. 4
_ n=1)/2. (n—1)? (% q")n(a% 4w
= (—1)(»= /24D /Z[n]q2 Z ( k

(g a)e(@® a)elas 4

6k

(mod ,,(q)*®,(—q)*).
(4.1)

Proof. This time we need to establish the following ¢-congruence with an extra
parameter a: modulo ®,(—q)(1 — ag**)(a — ¢*")

)

(n+1)/2 iy - -
(_1)k(1+q4’“ D(aq? ¢ )ilq2/a; 4072 0k o2 e

p (L+ g Y)(agh; ¢)ilq*/a; ¢*)r(a*; ¢*)x

(]

(n+1)/2 _ -~
— (_1)(n—1)/2q(n—1)2/2[n] ) Z (ag % q")i(q 2/a§q4)k(q2§q4)kq6k” (4.2)
S (0% ¢k (a® a*)i(g; ¢4

The g-congruence (4.2) modulo (1 — ag**)(a — ¢**) follows from the Bailey transfor-
mation (1.4) with ¢ — ¢*, a=q¢7', a=¢""" b= ¢ and A\ = ¢*>. On the other
hand, using the following g-congruence (see [10, (5.4)])

(09" ¢%) (nr1) /2 (n+1)/2—2k (ag™"; 4% (n—1)2/4+3k—1
_ (g g 54 )k do, 43
(4°/a; 4% (ns1) /2 (=) (¢%/a; ¢*)x (mod (9)) - (43)
with ¢ — ¢*, we can show that (4.2) also holds modulo ®,,(—q).
Finally, letting a — 1 in (4.2), we obtain (4.1). O

When n = p is an odd prime and ¢ — 1, the ¢g-supercongruence (4.1) reduces to
the following supercongruence:

(p+1)/2 ( 1) +1)/2
k

3
> (-1 k!23kz )P=D/2p Z 0

k=0

)’;( )i (mod p?).

,M,_. wna
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Besides, letting n = p be an odd prime and ¢ — —1 in (1.5), we get

(p+1)/2 133
Z (—=1)*(4k — 1)( k'23)k = p(—1)P*V/2 (mod p?). (4.4)

Note that a different g-analogue of (4.4) was already given in [11, Theorem 4.9] with
r=—1,d=2and a =1 (see also [10, Section 5]).



Theorem 4.2. Let n be a positive odd integer. Then

(1) (1+ " (%)% arean
(1+q71) (g g7

i
[e)

3
‘M+
=
~
[\

n+1)/2 9.

(
n— n—1)2 )
= (—1)(n"/24n=D) /2[n]q2 =

(@5 d a6 g
(¢*:q")

(4
e k(@ "k

(mod ®,(q)3®,(—q)®) ifn=1 (mod 4),

(4.5)
(mod ®,(q)?®,(—q)®) ifn=3 (mod 4).
Proof. We first establish the following parametric generalization of (4.5):
(n+1)/2 _ _ _
Y Y ) Lk S [ Gl BT N UL W PV
= (1 +q7")(agq*; q*)r(q*/a; ¢*)n
(n+1)/2 - _ _
= ()R, S (ag™% q")rlg?/a; ¢ )ele™Y q4)kq6k
= (@5 a6(@ k(a2 ¢ )k
(mod @,(¢*)(1 —ag®)(a —¢**)) ifn=1 (mod4),
(4.6)

(mod @,(—q)(1 — ag*)(a —¢**)) ifn=3 (mod4).

This g-congruence modulo (1 —ag*")(a—¢*") follows from the Bailey transformation
(1.4) with ¢ — ¢*, a = ¢!, a = ¢, b= ¢ and A = ¢"'. On the other hand,
using (4.3) with ¢ — ¢, we can show that (4.2) also holds modulo ®,(¢?) if n = 1
(mod 4) and modulo ®,,(—¢) if n =3 (mod 4).

Finally, letting a — 1 in (4.6), we are led to (4.5). O]

We can also deduce some supercongruences from Theorem 4.2 as before. In the
case n = p is an odd prime and ¢ — 1, the g-supercongruence (4.5) reduces to

(p+1)/2
g (=3)

TN

(p+1)/2 5 e
ey S flmed ) Sy =1 e )
e LIC

Meanwhile, letting n = p be an odd prime and ¢ — —1 in (1.5), we can also obtain
another supercongruence modulo p®. But this supercongruence is not so interesting
because both sides are summable.

(mod p?) ifp=3 (mod 4).
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