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Abstract. Using the Bailey transformation formula together with the ‘creative
microscoping’ method (recently introduced by the author and Zudilin), we give
q-analogues of two supercongruences of He:
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where p is an odd prime. One of our results implies that He’s second super-
congruence is still true modulo p3 for p ≡ 3 (mod 4). We also give two similar
q-supercongruences.

1. Introduction

Summation and transformation formulas for hypergeometric series play an impor-
tant role in the study of supercongruences. See, for example, [15,17]. In particular,
using the q = 1 case of the Bailey transformation formula, He [15] proved the fol-
lowing supercongruences: for any odd prime p,
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where (a)n = a(a + 1) · · · (a + n − 1) is the rising factorial. Note that Sun [24]
established the following result: for odd primes p,
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(1.3)
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where x, y ∈ Z, and Sun [23] has already proved that, for any prime p ≡ 1 (mod 4),
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where p = x2 + y2 with x, y ∈ Z and x ≡ 1 (mod 4).
Recently, the author and Zudilin [12] gave a partial q-analogue of (1.3) as follows:

for any positive integer n ≡ 1 (mod 4), modulo Φn(q),
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Here and throughout the paper, |q| < 1, the q-shifted factorial is defined by (a; q)0 =
1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n > 1, or n = ∞, and the n-th
cyclotomic polynomial Φn(q) is given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − e2πik/n) ∈ Z[q].

It is easy to see that Φn(q2) = Φn(q)Φn(−q) for any odd integer n. Moreover, we
define the q-integer by [n] = [n]q = (1− qn)/(1− q). For some other recent progress
on q-congruences, we refer the reader to [2–11,13,14,16,18,19,22,25,27,28,30].

The aim of this paper to deduce some q-congruences from the Bailey transforma-
tion formula (see Andrews [1, Equation (2.9)] or Liu [20, Proposition 11.4]):
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where |α2ab/q2| < 1. Our first result is a q-analogue of (1.1).

Theorem 1.1. Let n be a positive odd integer. Then
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It is easy to see that when n = p and q → 1, the q-supercongruence (1.5) reduces
to the supercongruence (1.1). Furthermore, if we let n = p and q → −1 in (1.5),
then we get the following result:
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≡ p(−1)(p−1)/2 (mod p3). (1.6)

Note that the above supercongruence was observed by Van Hamme [26] in 1997
(tagged (B.2) in Van Hamme’s list). The supercongruence (1.5) was first proved by
Mortenson [21] using a 6F5 hypergeometric transformation, and was later reproved
by Zudilin [29] via the WZ (Wilf–Zeilberger) method. It should be pointed out that
other different q-analogues of (1.6) can be found in [4, 5, 13].

Our second result is the following q-analogue of (1.2).

Theorem 1.2. Let n be a positive odd integer. Then
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(mod Φn(q)2Φn(−q)3) if n ≡ 1 (mod 4),

(mod Φn(q)3Φn(−q)3) if n ≡ 3 (mod 4).
(1.7)

Likewise, the supercongruence (1.2) follows from (1.7) by taking n = p and q → 1.
In fact, the q-supercongruence (1.7) implies the following more stronger result: for
any prime p ≡ 3 (mod 4), the supercongruence (1.2) is true modulo p3. However,
for the n = p and q → −1 case, the q-supercongruence (1.7) gives a less interesting
supercongruence modulo p3 (we omit it here), since both sides have closed forms in
this case.

The paper is organized as follows. We shall use the method of ‘creative micro-
scoping’, recently introduced by the author and Zudilin [11], to prove Theorems 1.1
and 1.2 in Sections 2 and 3, respectively. Then we shall give two similar results in
Section 4.

2. Proof of Theorem 1.1

We first establish the following parametric generalization of Theorem 1.1.
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Theorem 2.1. Let n > 1 be an odd integer and a an indeterminate. Then, modulo
Φn(−q)(1− aq2n)(a− q2n),

(n−1)/2∑
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by the Bailey transformation (1.4) with the parameter substitutions q 7→ q2, α = q,
a = q2+2n, b = q2−2n, and λ = q2. It is not difficult to see that
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(q2; q4)(n+1)/2

(q4−2n; q4)(n+1)/2

= [n]q2(−1)(n−1)/2q(n−1)2/2. (2.2)

This proves that the congruence (2.1) holds modulo 1− aq2n and a− q2n.
Moreover, by [10, Lemma 3.1], for 0 6 k 6 (n− 1)/2, we have

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)). (2.3)

From this q-congruence we can easily deduce that, for 0 6 k 6 (n − 1)/2, the k-th
and ((n − 1)/2 − k)-th terms on the left-hand side of (2.1) modulo Φn(−q) cancel
each other, i.e.,

(−1)(n−1)/2−k (1 + q2n−4k−1)(aq2; q4)(n−1)/2−k(q
2/a; q4)(n−1)/2−k(q

2; q4)(n−1)/2−k
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q2k2+2k (mod Φn(−q)).

Notice that the above congruence is also true for k = (n − 1)/2 − k. In other
words, if the (n − 1)/4 term exists (n ≡ 1 (mod 4)), then it must be congruent to
0 modulo Φn(−q). Thus, we conclude that the left-hand side of (2.1) is congruent
to 0 modulo Φn(−q). It is clear that the right-hand side of (2.1) is congruent to 0
modulo Φn(−q). and so the congruence (2.1) holds modulo Φn(−q). Since 1− aq2n,
a−q2n and Φn(−q) are pairwise relatively prime polynomials, we complete the proof
of (2.1). ¤
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Proof of Theorem 1.1. It is easy to see that the denominators of the left-hand side of
(2.1) are relatively prime to Φn(q2) as a → 1, and the denominators of the reduced
form of the right-hand side of (2.1) are also relatively prime to Φn(q2) because of the
factor [n]q2 before the summation. On the other hand, the limit of (1−aq2n)(a−q2n)
as a → 1 has the factor Φn(q2). Therefore, letting a → 1 in (2.1), we obtain the
q-congruence (1.5). ¤

3. Proof of Theorem 1.2

Similarly as before, we first establish the following parametric generalization of
Theorem 1.2.

Theorem 3.1. Let n > 1 be an odd integer and a an indeterminate. Then
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(mod Φn(−q)(1− aq2n)(a− q2n)) if n ≡ 1 (mod 4),

(mod Φn(q2)(1− aq2n)(a− q2n)) if n ≡ 3 (mod 4).
(3.1)

Proof. For a = q−2n or a = q2n, the left-hand side of (3.1) is equal to

(n−1)/2∑

k=0

(−1)k (1 + q4k+1)(q2−2n; q4)k(q
2+2n; q4)k

(1 + q)(q4−2n; q4)k(q4+2n; q4)k

q2k2+k

=
(q6; q4)∞(q2; q6)∞

(q4+2n; q4)∞(q4−2n; q4)∞

(n−1/2∑

k=0

(q2−2n; q4)k(q
2+2n; q4)k(q; q

4)k

(q4; q4)k(q5; q4)k(q2; q4)k

q2k.

by the Bailey transformation (1.4) with q 7→ q2, α = q, a = q2+2n, b = q2−2n, and
λ = q. By (2.2) and (q; q4)k/(q

5; q4)k = 1/[4k + 1], we see that (3.1) holds modulo
1− aq2n and a− q2n.

From (2.3) we can deduce that, for 0 6 k 6 (n − 1)/2, the k-th term plus the
((n − 1)/2 − k)-th terms on the left-hand side of (3.1) is congruent to 0 modulo
Φn(−q) if n ≡ 1 (mod 4) and modulo Φn(q2) if n ≡ 3 (mod 4). This means that
the left-hand side of (3.1) is congruent to 0 under the same modulus, and so the
congruence (3.1) is true modulo Φn(−q) if n ≡ 1 (mod 4) and modulo Φn(q2) if
n ≡ 3 (mod 4). The proof of (3.1) then follows from the fact that 1− aq2n, a− q2n

and Φn(q2) are pairwise relatively prime polynomials. ¤
Proof of Theorem 1.2. The denominators of (the reduced forms) on both sides of
(3.1) are relatively prime to Φn(q2) as a → 1 and the limit of (1 − aq2n)(a − q2n)
contains the factor Φn(q2) as a → 1. We immediately get (1.5) by taking a → 1 in
(3.1). ¤
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4. Two similar q-supercongruences

In this section, we give two results similar to Theorems 1.1 and 1.2.

Theorem 4.1. Let n be a positive odd integer. Then

(n+1)/2∑

k=0

(−1)k (1 + q4k−1)(q−2; q4)3
k

(1 + q−1)(q4; q4)3
k

q2k2+6k

≡ (−1)(n−1)/2q(n−1)2/2[n]q2

(n+1)/2∑

k=0
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k(q

2; q4)kq
6k
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(mod Φn(q)2Φn(−q)3).

(4.1)

Proof. This time we need to establish the following q-congruence with an extra
parameter a: modulo Φn(−q)(1− aq2n)(a− q2n),

(n+1)/2∑

k=0

(−1)k (1 + q4k−1)(aq−2; q4)k(q
−2/a; q4)k(q

−2; q4)k

(1 + q−1)(aq4; q4)k(q4/a; q4)k(q4; q4)k

q2k2+6k

≡ (−1)(n−1)/2q(n−1)2/2[n]q2

(n+1)/2∑

k=0

(aq−2; q4)k(q
−2/a; q4)k(q

2; q4)k

(q4; q4)k(q3; q4)k(q; q4)k

q6k.. (4.2)

The q-congruence (4.2) modulo (1− aq2n)(a− q2n) follows from the Bailey transfor-
mation (1.4) with q 7→ q2, α = q−1, a = q6+2n, b = q6−2n, and λ = q2. On the other
hand, using the following q-congruence (see [10, (5.4)])

(aq−1; q2)(n+1)/2−k

(q2/a; q2)(n+1)/2−k

= (−a)(n+1)/2−2k (aq−1; q2)k

(q2/a; q2)k

q(n−1)2/4+3k−1 (mod Φn(q)) (4.3)

with q 7→ q2, we can show that (4.2) also holds modulo Φn(−q).
Finally, letting a → 1 in (4.2), we obtain (4.1). ¤

When n = p is an odd prime and q → 1, the q-supercongruence (4.1) reduces to
the following supercongruence:

(p+1)/2∑

k=0

(−1)k (−1
2
)3
k

k!3
≡ (−1)(p−1)/2p

(p+1)/2∑

k=0

(−1
2
)2
k(

1
2
)k

k!(1
4
)k(

3
4
)k

(mod p2).

Besides, letting n = p be an odd prime and q → −1 in (1.5), we get

(p+1)/2∑

k=0

(−1)k(4k − 1)
(−1

2
)3
k

k!3
≡ p(−1)(p+1)/2 (mod p3). (4.4)

Note that a different q-analogue of (4.4) was already given in [11, Theorem 4.9] with
r = −1, d = 2 and a = 1 (see also [10, Section 5]).
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Theorem 4.2. Let n be a positive odd integer. Then

(n+1)/2∑

k=0

(−1)k (1 + q4k−1)(q−2; q4)2
k

(1 + q−1)(q4; q4)2
k

q2k2+3k

≡ (−1)(n−1)/2q(n−1)2/2[n]q2

(n+1)/2∑

k=0

(q−2; q4)k(q
−1; q4)k

(q4; q4)k(q3; q4)k

q6k





(mod Φn(q)3Φn(−q)3) if n ≡ 1 (mod 4),

(mod Φn(q)2Φn(−q)3) if n ≡ 3 (mod 4).
(4.5)

Proof. We first establish the following parametric generalization of (4.5):

(n+1)/2∑

k=0

(−1)k (1 + q4k−1)(aq−2; q4)k(q
−2/a; q4)k

(1 + q−1)(aq4; q4)k(q4/a; q4)k

q2k2+3k

≡ (−1)(n−1)/2q(n−1)2/2[n]q2

(n+1)/2∑

k=0

(aq−2; q4)k(q
−2/a; q4)k(q

−1; q4)k

(q4; q4)k(q3; q4)k(q−2; q4)k

q6k





(mod Φn(q2)(1− aq2n)(a− q2n)) if n ≡ 1 (mod 4),

(mod Φn(−q)(1− aq2n)(a− q2n)) if n ≡ 3 (mod 4).
(4.6)

This q-congruence modulo (1−aq2n)(a−q2n) follows from the Bailey transformation
(1.4) with q 7→ q2, α = q−1, a = q6+2n, b = q6−2n, and λ = q−1. On the other hand,
using (4.3) with q 7→ q2, we can show that (4.2) also holds modulo Φn(q2) if n ≡ 1
(mod 4) and modulo Φn(−q) if n ≡ 3 (mod 4).

Finally, letting a → 1 in (4.6), we are led to (4.5). ¤
We can also deduce some supercongruences from Theorem 4.2 as before. In the

case n = p is an odd prime and q → 1, the q-supercongruence (4.5) reduces to

(p+1)/2∑

k=0

(−1)k (−1
2
)2
k

k!2

≡ (−1)(p+1)/2p

(p+1)/2∑

k=0

(−1
2
)k

k!(4k − 1)





(mod p3) if p ≡ 1 (mod 4),

(mod p2) if p ≡ 3 (mod 4).

Meanwhile, letting n = p be an odd prime and q → −1 in (1.5), we can also obtain
another supercongruence modulo p3. But this supercongruence is not so interesting
because both sides are summable.
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