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Abstract. Employing a quadratic transformation formula of Rahman and the method
of ‘creative microscoping’ (introduced by the author and Zudilin in 2019), we provide
some new g-supercongruences for truncated basic hypergeometric series. In particular, we
confirm two recent conjectures of Liu and Wang. We also propose some related conjectures
on supercongruences and g-supercongruences.
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1. Introduction

In his first letter to Hardy on the 16th January 1913, Ramanujan mentioned the following
formula:
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(see [1, p. 25, (2)]), where (a), = a(a+1)---(a+n — 1) is the Pochhammer symbol and
['(x) denotes the Gamma function. Recently, Chen and Chu [2] gave a g-analogue of (1.1)
as follows:
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They also obtained the following similar formula:
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Here and in what follows, (a;q), = (1 —a)(1—aq)--- (1 —aq"™") is the g-shifted factorial,
and [n] := [n], = (1 — ¢")/(1 — ¢) denotes the g-integer. For simplicity, we also write
(a1, a2, am; Qo = (a15@)n(a2; @)n -+ - (@m; ¢)n for n = 0 or n = oo.



For any odd prime p, let I',(x) be the p-adic Gamma function [18]. In 2015, Swisher [21]
proved the following p-adic analogue of (1.1):
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which was originally conjectured by Van Hamme [22, (G.2)]. Liu and Wang [16] showed
that (1.4) can also be deduced from the following g-supercongruence:
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(for a more general form, see [8, Theorem 4.3]). On the other hand, Guo and Schlosser |7,
Theorem 2 with d = 4] proved that,
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Here, ®,,(q) is the n-th cyclotomic polynomial in g, which may be given by

Ouq)= [[ (a—¢)

1<k<n
ged(n,k)=1

where ( is an n-th primitive root of unity. Moreover, two rational functions A(q) and B(q)
in ¢ are called congruent modulo a polynomial P(q), denoted by A(q) = B(q) (mod P(q)),
if P(q) divides the numerator of the reduced form of A(q) — B(g) in the polynomial ring
Zlg).

Recall that the basic hypergeometric series ,11¢, (see Gasper and Rahman’s mono-
graph [4]) is defined as
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A quadratic transformation of Rahman [4, (3.8.13)] can be stated as follows:
(1 B aqgk)(aa d? GQ/dv q2)k(b7 ) GQ/bC7 Q)k qk
(1 - CL) (aq/da d7 q; Q)k(aq2/b, aqz/c, bCQ7 QQ)k
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provided that d or ag/d is not of the form ¢~ (n is a non-negative integer).

The author and Zudilin [11] introduced a method, called ‘creative microscoping’; to
prove g-supercongruences through inserting one or more additional parameters and con-
sidering asymptotics at roots of unity. More concretely, to prove a g-supercongruence
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modulo @,,(q)?3, we first establish a parametric g-congruence modulo ®,,(¢)(1—aq")(a—q")
and then take a = 1 to accomplish the proof. The crucial virtue is that this parametric
g-congruence can be established modulo ®,(¢), 1 — a¢™, and a — ¢" individually, since
these three moduli are pairwise coprime as polynomials in ¢. Meanwhile, each parametric
g-congruence can usually be easily verified by employing summation and transformation
formulas for basic hypergeometric series. For instance, the author and Zudilin settled two
particular cases of [11, Conjecture 4.6] by using the ‘creative microscoping’ method and
Rahman’s quadratic transformation (1.6). Later the author and Schlosser [9, Theorem 6.1]
completely confirmed this conjecture by applying a special case of (1.6).

Recently, using the ‘creative microscoping’ method together with Rahman’s quadratic
transformation (1.6) again, Liu and Wang [17] proved that, modulo [n]®,,(q)?,
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where M = (n—1)/2 or n — 1. They also gave the following generalization of the second
case of (1.7) modulo ®,(q)?, for any positive integer d > 2 and positive odd integer n
with n = d+ 1 (mod 2d),
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For some other recent work on g-supercongruences, see the literature [3,5,6,10,12-15,19,
20,23-25].

The first aim of this paper is to establish a stronger version of (1.8) for even d as
follows.

Theorem 1.1. Let d > 2 be an even integer and e an indeterminate. Let n = d + 1
(mod 2d) be a positive integer. Then

(dn+n—1)/(2d) ad /. 24 "
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Note that the g-supercongruence (1.9) modulo ®,(q)? also follows from (1.8), since
the k-th summand on the left-hand side of (1.8) is congruent to 0 modulo ®,,(q)? for all
(n—1)/d < k < (dn+n—1)/(2d). However, the g-supercongruence (1.8) does not hold
modulo ®,,(¢)? in general.
Letting e — 0 and e = —¢ in (1.9), respectively, we obtain

(dntn—1)/(2d)

(@ PNe(a, ¢, 05Nk gz o
3dk +1 ' ! K*4R0)/2 = (0 (mod ®,(q)%),
kz:% | ](qd;qd)k(qm,q?d,qd”;q?d)kq ( @)

(dn4+n—1)/(2d) (

d. 2d d—1. ,d
¢, =459 3
E 3dk +1 ¢ =0 (mod ®,(q)°).
prt | ](q —¢, —q% g (¢*%, 4%, ¢ ) ( (@)



Letting n = p be an odd prime and ¢ — 1 in each of the above g-supercongruences,
we get the following result: for even d > 2 and p =d + 1 (mod 2d),

(dp+p—1)/(2d)
(DR
> (3dk+1)-4 WO (222,
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For d = 4, we have &1 = 42 = 3 Tt is easy to see (3)r = (1)x = 0 (mod p) for
(B3p—1)/4 < k < p—1. Thus, from the d = 4 case of (1.10) we deduce the following

supercongruence, which was conjectured by Liu and Wang [17, Conjecture 4].
Corollary 1.2. Let p =5 (mod 8) be a prime. Then
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=0 (mod p*).
The second aim of this paper is to establish the following g-supercongruence, which is
a generalization of [17, Theorem 8| for the second case with d even.

Theorem 1.3. Let d > 2 be an even integer and e an indeterminate. Let n = d + 1
(mod 2d) be a positive integer. Then, modulo ®,(q)3,
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where M = (n—1)/2 if d =2, and M = (dn — n + 1)/(2d) otherwise.

The third aim of this paper is to prove the following ¢-supercongruence, which was
conjectured by Liu and Wang [17, Conjecture 5.

Theorem 1.4. Let n be a positive odd integer. Then, modulo ®,(q)3,
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Liu and Wang’s original conjecture states that (1.12) holds modulo [n]®,,(¢)?, which
is in fact not true (the first counterexample is n = 15).

We shall prove Theorems 1.1, 1.3, and 1.4 by using the method of ‘creative microscop-
ing’ and Rahman’s quadratic transformation (1.6) once more. At the end of this paper,
we put forward several open problems on supercongruences and g-supercongruences.



2. Proof of Theorem 1.1

We first give a generalization of Theorem 1.1 with an extra parameter a. Note that this
g-congruence modulo (1 — ag")(a — ¢") was actually indicated by Liu and Wang [17]. In
order to make the paper self-contained, we give a complete proof here.

Theorem 2.1. Let d > 2 be an even integer and a, e indeterminates. Let n = d + 1
(mod 2d) be a positive integer. Then, modulo ®,,(q)(1 — aq™)(a — q"),

(dn4+n—1)/(2d) -
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Proof. Put ¢ — ¢¢, a = ¢'=% " b =aq, c = q/a and d = e in Rahman’s transformation
(1.6). Then, for n =d+ 1 (mod 2d), we have
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where we have used (¢??T174n: ¢?d) =0 for n =d+1 (mod 2d). It is easy to see that,
for 0 < k < (dn+n —1)/(2d), the polynomial
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is relatively prime to ®,(q). Since ¢" = 1 (mod ¥,(q)), from (2.2) we deduce that the
g-congruence (2.1) is true modulo ®,,(q).
On the other hand, letting ¢ — ¢%,a = ¢,b = ¢' ™", ¢ = ¢'*" and d = e in (1.6), we get
(n—1)/d —n n _
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since (¢ ¢??) o = 0 for n = d+1 (mod 2d). Noticing that (dn—1)/(2d) > (n—1)/d,
we conclude that the left-hand side of (2.1) is equal to 0 for a = ¢~™ and a = ¢". Namely,
the g-congruence (2.1) is true modulo 1 —ag¢" and a — ¢". Since ®,,(q), 1 —aq™, and a —¢"
are pairwise relatively prime polynomials in ¢, we complete the proof. O

Proof of Theorem 1.1. Since n = d + 1 (mod 2d), we have ged(2d,n) = 1. Hence,
(¢4 ¢*1), is relatively prime to ®,(g) for any 0 < k < n — 1. Tt is clear that (dn +
n —1)/(2d) < n — 1. Moreover, the polynomial 1 — ¢" contains the factor @, (q). The

proof of (1.9) then follows from (2.1) by taking a = 1. O



3. Proof of Theorem 1.3

Like before, we first establish the following generalization of Theorem 1.3 with an addi-
tional parameter a.

Theorem 3.1. Let d > 2 be an even integer and a,e indeterminates. Let n = d + 1
(mod 2d) be a positive integer. Then, modulo ®,,(q)(1 — aq™)(a — q"),

M _ _ _
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where M = (n—1)/2 ifd =2, and M = (dn — n + 1)/(2d) otherwise.

Proof. Set q — ¢, a=q """ b =aq, c=q/aand d = e in (1.6). Then, forn=d+1
(mod 2d), we have
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where we have utilized (¢?¢=17%+"; ¢24) = 0 for n = d+1 (mod 2d). Moreover, it is not
difficult to see that (¢?¢=2; ¢*%); is relatively prime to @, (q) for 0 < k < M (in fact, this
is true for 0 < k < (d — 1)(n — 1)/d). Noticing ¢" = 1 (mod ®,(q)) again, the modulus
®,,(q) case of the g-congruence (3.1) follows from (3.2) immediately (for d = 2, we need
to use the fact that (¢7%;¢*)r =0 (mod ®,(q)) for (n+1)/4 <k < (n—1)/2).

On the other hand, letting ¢ — ¢%,a = ¢7*,b = ¢'™, ¢ = ¢'*" and d = e in (1.6), we
obtain
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as was first given by Liu and Wang [17]. In view of (dn —n —1)/(2d) < (n — 1)/2 for
d=2,and (dn —n —1)/(2d) > (n —1)/d for d > 4, one sees that the left-hand side of
(3.1) is equal to 0 for a = ¢~ and a = ¢". Thus, the g-congruence (3.1) holds modulo
1 —aq™ and a — ¢™. Since the polynomials ®,,(¢q), 1 — aq™, and a — g™ are relatively prime
to one another, we accomplish the proof. O



Proof of Theorem 1.3. In the proof of Theorem 3.1, we have mentioned that (¢*?~2; ¢*®),
is relatively prime to ®,(¢) for 0 < k < (dn —n + 1)/(2d). The proof of (1.11) then
follows from the a = 1 case of (3.1). O

4. Proof of Theorem 1.4

We require the following result, which was first given in [5, Lemma 2.1]. For the reader’s
convenience, we include a short proof here.

Lemma 4.1. Let n be a positive odd integer and a an indeterminate. Then

1— an)q(l—nQ)/zl
(1 —a)an=1/2

(aq,q/a; ¢*) (n-1)/2 = (—1)(”‘1)/2( (mod ®,(q)). (4.1)

Proof. 1t is easy to see that
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Hence, the left-hand side of (4.1) is congruent to
=)/
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For any n-th primitive root of unity (, we have

(a¢;Q)n-1 = (4 On = L-a
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and so (aq; q),_1 is congruent to (1 —a")/(1—a) modulo ®,,(¢). This completes the proof.
O

We have the following parametric generalization of Theorem 1.4 for n =1 (mod 4).

Theorem 4.2. Let n = 1 (mod 4) be a positive integer and a an indeterminate. Then,
modulo ®,(q)(1 — aq™)(a — q"),
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Proof. Letting d — 0 in (1.6), we have
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We then take ¢ — ¢* a=q '™ b= aq, c = ¢/a in the above formula to obtain
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Since ¢" =1 (mod ®,,(q)), we conclude from the above equality that
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Namely,
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By Lemma 4.1, we have

(mod ®,(q)).  (4.5)
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Moreover, modulo ®,,(q),
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Employing the above three g-congruences, we see that the right-hand side of (4.5) reduces
to

<q27 q4)(n—1)/4 (n—1)/4

— 4" (mod ®,,(q)).
(0% ¢*) (n—1)/4



This proves that (4.2) is true modulo ®,,(q).

The modulus (1—aq™)(a—q™) case of (4.2) was already given by Liu and Wang [17, (4.2)
with e — 0], and this can be easily checked by putting ¢ — ¢*, a = ¢~ b= ¢'™, c = ¢'*"
n (4.3). Since the polynomials ®,,(¢) and (1 —ag")(a — ¢") are relatively prime, we finish
the proof of the theorem. O

Proof of Theorem 1.4. Letting a = 1 in (4.2), we arrive at (1.12) for n =1 (mod 4). On
the other hand, letting d = 2 and e — 0 in (1.11), we are led to (1.12) for n =3 (mod 4).
]

5. Concluding remarks and open problems

Numerical calculation suggests that we can replace the upper bound of the sum in (1.10)
by p — 1. Namely, the following variation of (1.10) should be true.

Conjecture 5.1. Let d > 2 be an even integer and let p = d + 1 (mod 2d) be a prime.
Then

Z(3dk+1)( ;!54 <) 2()2 )k =0 (mod p*).

Furthermore, it seems that (1.9) is also true modulo ®,,(q)* for N = n — 1, which we
state as the following conjecture (which is also a generalization of Conjecture 5.1).

Conjecture 5.2. Let d > 2 be an even integer and e an indeterminate. Let n = d + 1
(mod 2d) be a positive integer. Then

n—

L 1+d /. ,2d d-1. ,d

k:() q €, q1+d/€; qd)k(q2d, q2d7 qd+2; q2d)k

It should be pointed out that the d = 2 case of (5. 1) was already proved by Liu and
Wang themselves [17, Theorem 1]. For d = 4, since (¢*~%; ¢%)1/(¢*%; ¢*)e = 1/(—=¢>; ¢* )i,
one can easily see that each k-th summand on the left-hand side of (1.9) is congruent
to 0 modulo @,(q)® for (3n —1)/4 < k < n — 1. Therefore, By Theorem 1.1, the g-
supercongruence (5.1) is also true for d = 4. However, the same argument does not work
for d > 6.

We find that Theorem 1.3 for d = 4 can be further strengthened as follows.

Conjecture 5.3. Let n =5 (mod 8) be a positive integer and e an indeterminate. Then

(3n+1)/8

Cplahed e @ ie™ _ "
% 2 = G e ey 0 et )



In particular, for any prime p =5 (mod 8),

7 (=D}
(12k — 1)—-8 =242 =0 (mod p*)
2 A

Recently, the author and Zudilin [12] have extended many classical g-supercongruences
to the so-called Dwork-type ¢-supercongruences through a creative ¢g-microscope. They
also proposed several difficult conjectures on Dwork-type g-supercongruences. Here we
would like to propose such extensions of (1.7) and (1.12) for n = 1 (mod 4). We notice
that a similar conjecture related to (1.5) was already made by Liu and Wang [16].

Conjecture 5.4. Let n = 1 (mod 4) be a positive integer and let r > 1. Then, modulo

[ 1Tt @i (0)?,

(n"—1)/d
Z 6k + 1] (; ff‘)k(%qg)i qk2+k
prd (4% ¢®)kla* a*)}
_ (@54 ) 1/a(@" 4" )11y alg=m/s
(% q4)(nr—1)/4(q2”; q4n)(n’“—1—1)/4
(nr=1-1)/d ,

(612”;612 )k(q“”, g'n )i ’

i
o

where d =1, 2.

Conjecture 5.5. Let n = 1 (mod 4) be a positive integer and let r > 1. Then, modulo

Dy (4) [Ty P (0)2,

(n"=1)/2
@@ PG PR e
D PR PIFIRPTDR
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2n. q
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( )(nr 1)/4( ) )n* 1-1)/4

" = (™ P )2
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