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Abstract. In 2003, Fernando Rodriguez-Villegas discovered four supercongru-
ences modulo p2 (p an odd prime) for truncated 2F1 hypergeometric series re-
lated to Calabi–Yau manifolds of dimension d = 1. These four supercongruences
were confirmed by Mortenson using Gaussian hypergeometric series and the p-
adic Gamma function. q-Analogues of Rodriguez-Villegas’ supercongruences were
later established by Guo–Zeng and Guo–Pan–Zhang. In this paper, employing
the ‘creative microscoping’ method developed by Guo–Zudilin, we give further
extensions of these four q-supercongruences, which can also be considered as q-
analogues of four supercongruences obtained by Liu. For example, we prove that,
for all positive odd integers m and n, modulo Φn(q)2,

(mn−1)/2∑

k=0

(q; q2)2k
(q2; q2)2k

q2k ≡ (−1)(n−1)/2q(n2−1)/4

(m−1)/2∑

k=0

(qn2
; q2n2

)2k
(q2n2 ; q2n2)2k

q2n2k,

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) and Φn(q) is the n-th cyclotomic
polynomial in q.

1. Introduction

Rodriguez-Villegas [26] observed some astonishing supercongruences between a
truncated hypergeometric function associated to Calabi-Yau manifolds at a prime
p and the number of its Fp-points. In particular, he [26, (36)] mentioned four such
supercongruences associated to elliptic curves:

p−1∑

k=0

(
2k
k

)2

16k
≡

(−1

p

)
(mod p2) for p > 2, (1.1)

p−1∑

k=0

(
3k
2k

)(
2k
k

)

27k
≡

(−3

p

)
(mod p2) for p > 3, (1.2)

p−1∑

k=0

(
4k
2k

)(
2k
k

)

64k
≡

(−2

p

)
(mod p2) for p > 2, (1.3)
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p−1∑

k=0

(
6k
3k

)(
3k
k

)

432k
≡

(−1

p

)
(mod p2) for p > 3, (1.4)

where (a
b
) denotes the Kronecker symbol. It should be pointed out that the sum in

(1.1) can be truncated at (p−1)/2, since
(
2k
k

) ≡ 0 (mod p) for (p−1)/2 < k 6 p−1.
Rodriguez-Villegas’ supercongruences (1.1)–(1.4) were first confirmed by Mortenson
[21, 22] using the theory of Gaussian hypergeometric series and properties of the
p-adic Gamma function (following a strategy devised by Ahlgren and Ono [1]). For
an elementary proof of them, see [27]. Some q-analogues of (1.1)–(1.4) can be found
in [7, 10,12,23]. For instance, Guo, Pan, and Zhang [10] proved that, for odd n,

n−1∑

k=0

(q; q2)2
k

(q2; q2)2
k

q2k ≡
(−1

n

)
q(n2−1)/4 (mod Φn(q)2), (1.5)

n−1∑

k=0

(q; q3)k(q
2; q3)k

(q3; q3)2
k

q3k ≡
(−3

n

)
q(n2−1)/3 (mod Φn(q)2) if gcd(n, 3) = 1, (1.6)

n−1∑

k=0

(q; q4)k(q
3; q4)k

(q4; q4)2
k

q4k ≡
(−2

n

)
q3(n2−1)/8 (mod Φn(q)2), (1.7)

n−1∑

k=0

(q; q6)k(q
5; q6)k

(q6; q6)2
k

q6k ≡
(−1

n

)
q5(n2−1)/12 (mod Φn(q)2) if gcd(n, 3) = 1, (1.8)

(the n = p case of (1.5) was first given by Guo and Zeng [12]). Here we need
to familiarize ourselves with the standard q-notation. The q-integer is defined by
[n]q = 1 + q + · · ·+ qn−1, the q-shifted factorial is defined as

(a; q)n =

{
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1,

1, if n = 0,

and the n-th cyclotomic polynomial in q is given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. More recent q-supercongruences can be
found in [4, 8, 11,13–15,19,20,24,25,31,32].

Note that we can truncate the sum in (1.5) at (n−1)/2, since (q; q2)k/(q
2; q2)k ≡ 0

(mod Φn(q)) for (n− 1)/2 < k 6 n− 1. In this paper, we first give a generalization
of this shortened form of (1.5).

Theorem 1.1. Let m and n be positive odd integers. Then

(mn−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

q2k ≡
(−1

n

)
q(n2−1)/4

(m−1)/2∑

k=0

(qn2
; q2n2

)2
k

(q2n2 ; q2n2)2
k

q2n2k (mod Φn(q)2).

(1.9)
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Liu [17] proved the following generalizations of (1.1)–(1.4): for any prime p > 3
and positive odd integer m,

mp−1∑

k=0

(
2k
k

)2

16k
≡

(−1

p

) m−1∑

k=0

(
2k
k

)2

16k
(mod p2), (1.10)

mp−1∑

k=0

(
3k
k

)(
2k
k

)

27k
≡

(−3

p

) m−1∑

k=0

(
3k
k

)(
2k
k

)

27k
(mod p2), (1.11)

mp−1∑

k=0

(
4k
2k

)(
2k
k

)

64k
≡

(−2

p

) m−1∑

k=0

(
4k
2k

)(
2k
k

)

64k
(mod p2), (1.12)

mp−1∑

k=0

(
6k
3k

)(
3k
k

)

432k
≡

(−1

p

) m−1∑

k=0

(
6k
3k

)(
3k
k

)

432k
(mod p2). (1.13)

Let 〈x〉n denote the least nonnegative residue of x modulo n. In this paper, we shall
also give a common generalization of (1.5)–(1.8) and (1.10)–(1.13) by establishing
the following q-supercongruence.

Theorem 1.2. Let d,m, r be positive integers with r < d. Let n > 1 be an odd
integer satisfying n ≡ ±1 (mod d). Then, modulo Φn(q)2,

mn−1∑

k=0

(qr; qd)k(q
d−r; qd)k

(qd; qd)2
k

qdk

≡ (−1)〈−r/d〉nqr(d−r)(n2−1)/(2d)

m−1∑

k=0

(qrn2
; qn2

)k(q
(d−r)n2

; qdn2
)k

(qdn2 ; qdn2)2
k

qdn2k. (1.14)

It is easy to see that, for any positive odd n,

(−1)〈−1/2〉n =

(−1

n

)
, (−1)〈−1/4〉n =

(−2

n

)
,

and for any positive n with gcd(n, 6) = 1,

(−1)〈−1/3〉n =

(−3

n

)
, (−1)〈−1/6〉n =

(−1

n

)
.

Thus, for d = 2, 3, 4, 6, letting m = 1 in Theorem 1.2, we get the q-supercongruences
(1.5)–(1.8). It is well known that Φp(1) = 1 for any prime p. Moreover, for d =
2, 3, 4, 6, and any prime p > 3, we always have p ≡ ±1 (mod d). Thus, for these d
with r = 1, letting n be a prime and then taking q → 1 in Theorem 1.2, we are led
to the supercongruences (1.10)–(1.13).

The paper is arranged as follows. We prove Theorem 1.1 in the next section
by adopting the method of ‘creative microscoping’, which was recently developed
by Guo and Zudilin [13]. More precisely, we shall first give a generalization of
Theorem 1.1 with an extra parameter a, and then educe Theorem 1.1 from this
generalization by choosing a = 1. Here we want to emphasize that our method of
inserting the parameter a is a little different from that of the paper [14], where many
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Dwork-type q-supercongruences are proved. In Section 3, we first give a parametric
generalization of the aforementioned result of Guo, Pang, and Zhang [10], and then
prove Theorem 1.2 using the ‘creative microscoping’ method again.

2. Proof of Theorem 1.1

We need the following generalization of (1.5), which was proved by the first author
[7, Corollary 4.3].

Lemma 2.1. Let n be a positive odd integer. Then

(n−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)kq

2k

(q2; q2)2
k

≡
(−1

n

)
q(n2−1)/4 (mod (1− aqn)(a− qn)). (2.1)

We have the following parametric generalization of Theorem 1.1.

Theorem 2.2. Let m and n be positive odd integers with n > 1. Then, modulo

(m−1)/2∏
j=0

(1− aq(2j+1)n)(a− q(2j+1)n), (2.2)

we have
(mn−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)k

(q2; q2)2
k

q2k

≡
(−1

n

)
q(n2−1)/4

(m−1)/2∑

k=0

(anqn2
; q2n2

)k(a
−nqn2

; q2n2
)k

(q2n2 ; q2n2)2
k

q2n2k. (2.3)

Proof. It suffices to show that both sides of (2.3) are equal for a = q−(2j+1)n and
a = q(2j+1)n with j = 0, 1, . . . , (m− 1)/2, i.e.,

(mn−1)/2∑

k=0

(q1−(2j+1)n; q2)k(q
1+(2j+1)n; q2)k

(q2; q2)2
k

q2k

=

(−1

n

)
q(n2−1)/4

(m−1)/2∑

k=0

(q−2jn2
; q2n2

)k(q
(2j+2)n2

; q2n2
)k

(q2n2 ; q2n2)2
k

q2n2k. (2.4)

Clearly, (mn−1)/2 > ((2j+1)n−1)/2 for 0 6 j 6 (m−1)/2, and (q1−(2j+1)n; q2)k = 0
for k > ((2j +1)n− 1)/2. By the a = q−n case of (2.1) (it becomes an identity), the

left-hand side of (2.4) is equal to
( −1

(2j+1)n

)
q((2j+1)2n2−1)/4. Similarly, the right-hand

side of (2.4) can be simplified as(−1

n

)
q(n2−1)/4

( −1

2j + 1

)
qn2((2j+1)2−1)/4 =

( −1

(2j + 1)n

)
q((2j+1)2n2−1)/4,

where
(−1

1

)
is understood to be 1. This proves the identity (2.4), and so the q-

congruence (2.3) holds. ¤
Now we can prove Theorem 1.1.



5

Proof of Theorem 1.1. It is well known that, for any positive integer N ,

qN − 1 =
∏

d|N
Φd(q).

Thus, the a = 1 case of (2.2) has the factor Φn(q)m+1. On the other hand, the
least common denominator of the left-hand side of (2.3) is (q2; q2)2

(mn−1)/2, and its

factor related to Φn(q) is Φn(q)m−1. Likewise, the least common denominator of the
right-hand side of (2.3) only has the factor Φn(q)m−1 related to Φn(q) too. Hence,
letting a = 1 in (2.3), we conclude that the q-congruence (1.9) holds. ¤

3. Proof of Theorem 1.2

We first establish a parametric generalization of the n ≡ 1 (mod 2) case of [10,
Corollary 3.1].

Lemma 3.1. Let d, n > 2 with gcd(d, n) = 1 and n odd. Let r be an integer. Then,
modulo

(1− aqr+d〈−r/d〉n)(a− qd−r+d〈(r−d)/d〉n),

we have
n−1∑

k=0

(aqr; qd)k(a
−1qd−r; qd)k

(qd; qd)2
k

qdk ≡ (−1)sa(n−1)/2−sqd(s+1
2 )−(r+ds)(s−(n−1)/2), (3.1)

where s = 〈−r/d〉n.
Proof. Recall that the q-Chu–Vandermonde summation formula [3, Appendix (II.6)]
can be stated as follows:

n∑

k=0

(q−n; q)k(b; q)k

(q; q)k(c; q)k

qk =
(c/b; q)n

(c; q)n

bn.

Thus, for a = q−r−d〈−r/d〉n = q−r−ds, the left-hand side of (3.1) is equal to

n−1∑

k=0

(q−ds; qd)k(q
d+ds; qd)k

(qd; qd)2
k

qdk =
(q−ds; qd)s

(qd; qd)s

q(d+ds)s

= (−1)sq−d(s+1
2 )+(d+ds)s

= (−1)sq−(r+ds)((n−1)/2−s)+d(s+1
2 )−(r+ds)(s−(n−1)/2),

which is just the right-hand side of (3.1). This proves that the congruence (3.1)
holds modulo (1− aqr+d〈−r/d〉n).

Let t = 〈−(d− r)/d〉n. It is not difficult to see that s + t = n− 1. Similarly, for
a = qd−r+d〈(r−d)/d〉n = q(d−r)+dt, the left-hand side of (3.1) is equal to

n−1∑

k=0

(qd+dt; qd)k(q
−dt; qd)k

(qd; qd)2
k

qdk = (−1)tqd(t+1
2 )

= (−1)sq(d−r+dt)((n−1)/2−s)+d(s+1
2 )−(r+ds)(s−(n−1)/2),
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which is again the right-hand side of (3.1). This proves that the congruence (3.1)
holds modulo (a− qd−r+d〈(r−d)/d〉n). Since (1−aqr+d〈−r/d〉n) and (a− qd−r+d〈(r−d)/d〉n)
are relatively prime polynomials, we complete the proof. ¤

We now give a parametric generalization of Theorem 1.2 for n ≡ 1 (mod d).

Theorem 3.2. Let d,m, r be positive integers with r < d. Let n > 1 be an odd
integer satisfying n ≡ 1 (mod d). Then, modulo

m−1∏
j=0

(1− aq(dj+r)n)(a− q(dj+d−r)n), (3.2)

we have
mn−1∑

k=0

(aqr; qd)k(a
−1qd−r; qd)k

(qd; qd)2
k

qdk ≡ (−1)〈−r/d〉na(n−1)/2−〈−r/d〉nqr(d−r)(n2−1)/(2d)

×
m−1∑

k=0

(anqrn2
; qdn2

)k(a
−nq(d−r)n2

; qdn2
)k

(qdn2 ; qdn2)2
k

qdn2k.

(3.3)

Proof. Similarly as before, we need to show that both sides of (3.3) are equal for
a = q−(dj+r)n and a = q(dj+d−r)n (j = 0, 1, 2, . . . , m − 1). We first prove the a =
q−(dj+r)n case. Namely,

mn−1∑

k=0

(qr−(dj+r)n; qd)k(q
d−r+(dj+r)n; qd)k

(qd; qd)2
k

qdk

= (−1)〈−r/d〉nq−(dj+r)n((n−1)/2−〈−r/d〉n)+r(d−r)(n2−1)/(2d)

×
m−1∑

k=0

(q−djn2
; qdn2

)k(q
dn2(j+1); qdn2

)k

(qdn2 ; qdn2)2
k

qdn2k. (3.4)

It is clear that mn − 1 > nj + r(n − 1)/d and mn − 1 > nj + (d − r)(n − 1)/d
for j = 0, 1, 2, . . . , m− 1. Since n ≡ 1 (mod d), we have 〈−r/d〉n = r(n− 1)/d and
〈(r − d)/d〉n = (d− r)(n− 1)/d. By Lemma 3.1, the left-hand side of (3.4) is equal
to

(−1)nj+r(n−1)/dqd(jn+r(n−1)/d+1
2 ).

Similarly, the right-hand side of (3.4) is equal to

(−1)j+r(n−1)/dq−(dj+r)n((n−1)/2−r(n−1)/d)+r(d−r)(n2−1)/(2d)+dn2(j2+j)/2

= (−1)j+r(n−1)/dqd(jn+r(n−1)/d+1
2 ),

thus establishing (3.4). In the same way, we can prove that both sides of (3.4) are

equal to (−1)j+r(n−1)/dqd(jn+n−r(n−1)/d
2 ) for a = q(dj+d−r)n (j = 0, 1, 2, . . . , m−1). This

proves the q-congruence (3.3). ¤
Likewise, we have the following parametric generalization of Theorem 1.2 for

n ≡ −1 (mod d).
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Theorem 3.3. Let d,m, r be positive integers with r < d. Let n > 1 be an odd
integer satisfying n ≡ −1 (mod d). Then, modulo

m−1∏
j=0

(1− aq(dj+d−r)n)(a− q(dj+r)n),

we have

mn−1∑

k=0

(aqr; qd)k(a
−1qd−r; qd)k

(qd; qd)2
k

qdk ≡ (−1)〈−r/d〉na(n−1)/2−〈−r/d〉nqr(d−r)(n2−1)/(2d)

×
m−1∑

k=0

(a−nqrn2
; qdn2

)k(a
nq(d−r)n2

; qdn2
)k

(qdn2 ; qdn2)2
k

qdn2k.

(3.5)

Proof. For a = q(dj+r)n with 0 6 j 6 m − 1, by Lemma 3.1, the left-hand side of
(3.5) is equal to

mn−1∑

k=0

(qr+(dj+r)n; qd)k(q
d−r−(dj+r)n; qd)kq

dk

(qd; qd)2
k

= (−1)j−1+r(n+1)/dqd(jn+r(n+1)/d
2 ),

and the right-hand side of (3.5) is equal to

(−1)〈−r/d〉n+jq(dj+r)n((n−1)/2−〈−r/d〉n)+r(d−r)(n2−1)/(2d)+dn2(j2+j)/2

= (−1)1−(n+1)r/d+jqd(jn+r(n+1)/d
2 ),

where we have used the fact that 〈−r/d〉n = n− r(n + 1)/d since n ≡ −1 (mod d).
Hence, the q-congruence (3.5) is true modulo

∏m−1
j=0 (a− q(dj+r)n).

Similarly, for a = q−(dj+d−r)n with 0 6 j 6 m − 1, the left-hand side of (3.5) is
equal to

mn−1∑

k=0

(qr−(dj+d−r)n; qd)k(q
(d−r)+(dj+d−r)n; qd)kq

dk

(qd; qd)2
k

= (−1)j−1−r(n+1)/dqd(jn+n−r(n+1)/d+1
2 ),

which is the same as the right-hand side of (3.5). This proves that (3.5) is also true
modulo

∏m−1
j=0 (1− aq(dj+d−r)n). ¤

Proof of Theorem 1.2. We first consider the n ≡ 1 (mod d) case. It is clear that the
a = 1 case of (3.2) has the factor Φn(q)2m. On the other hand, the least common
denominator of the left-hand side of (3.3) only has the factor Φn(q)2m−2 related to
Φn(q), and so is the left-hand side of (3.3). Thus, taking a = 1 in (3.3), we deduce
that the q-congruence (1.14) is true modulo Φn(q)2 for n ≡ 1 (mod d).

Similarly, we can prove the d = −1 case of (1.14) by taking a = 1 in (3.5). ¤
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4. Two more such q-supercongruences

Sun [29, (1.7) and (1.8)] proved that, for any odd prime p and positive integer r,

(pr−1)/2∑

k=0

1

8k

(
2k

k

)
≡

(
2

pr

)
(mod p2), (4.1)

(pr−1)/2∑

k=0

1

16k

(
2k

k

)
≡

(
3

pr

)
(mod p2). (4.2)

The first author and Liu [9] gave the following q-analogue of (4.1): for any positive
odd integer n,

(n−1)/2∑

k=0

(q; q2)kq
k2

(q4; q4)k

≡ (−q)(1−n2)/8 (mod Φn(q)2). (4.3)

Here we give a generalization of (4.3) similar to Theorem 1.1.

Theorem 4.1. Let m and n be positive odd integers. Then

(mn−1)/2∑

k=0

(q; q2)kq
k2

(q4; q4)k

≡ (−q)(1−n2)/8

(m−1)/2∑

k=0

(qn2
; q2n2

)kq
n2k2

(q4n2 ; q4n2)k

(mod Φn(q)2). (4.4)

Proof. We need the following parametric version of (4.3) (see [5, (5.1)]):

(n−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)kq

k2

(q; q2)k(q4; q4)k

≡ (−q)(1−n2)/8 (mod (1− aqn)(a− qn)). (4.5)

As before, we first give a parametric generalization of (4.4): modulo
∏(m−1)/2

j=0 (1 −
aq(2j+1)n)(a− q(2j+1)n),

(mn−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)kq

k2

(q; q2)k(q4; q4)k

≡ (−q)(1−n2)/8

(m−1)/2∑

k=0

(anqn2
; q2n2

)k(a
−nqn2

; q2n2
)kq

n2k2

(qn2 ; q2n2)k(q4n2 ; q4n2)k

. (4.6)

For a = q−(2j+1)n or q(2j+1)n with j = 0, 1, . . . , (m − 1)/2, the left-hand side of
(4.6) is equal to

(mn−1)/2∑

k=0

(q1−(2j+1)n; q2)k(q
1+(2j+1)n; q2)k

(q; q2)k(q4; q4)2
k

qk2

. (4.7)

Note that the above sum is in fact truncated at ((2j + 1)n− 1)/2. By the a = q−n

case of (4.5) (an identity), the sum (4.7) is equal to (−q)(1−(2j+1)2n2)/8. Similarly,
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for the same a, the right-hand side of (4.6) may be written as

(−q)(1−n2)/8

(m−1)/2∑

k=0

(q−2jn2
; q2n2

)k(q
(2j+2)n2

; q2n2
)k

(qn2 ; q2n2)k(q4n2 ; q4n2)k

qn2k2

= (−q)(1−n2)/8(−qn2

)(1−(2j+1)2)/8 = (−q)(1−(2j+1)2n2)/8.

This proves that both sides of (4.6) are equal for a = q−(2j+1)n and a = q(2j+1)n with
j = 0, 1, . . . , (m− 1)/2. Namely, the q-congruence (4.6) holds.

In what follows, we deduce the q-supercongruence (4.4) from (4.6). The a = 1
case of the modulus in the congruence (4.6) has the factor Φn(q)m+1. Moreover, the
least common denominators of both sides of (4.6) merely have the factor Φn(q)m−1

related to Φn(q). Hence, letting a = 1 in (4.6), we conclude that (4.4) holds. ¤
Gu and the second author [5] also established the following q-analogue of (4.2):

(n−1)/2∑

k=0

(q; q2)kq
2k

(−q; q2)k(q4; q4)k

≡
(

3

n

)
q(n2−1)/12 (mod Φn(q)2), (4.8)

Here we shall give a generalization of (4.8) as well.

Theorem 4.2. Let m and n be positive odd integers. Then, modulo Φn(q)2,

(mn−1)/2∑

k=0

(q; q2)kq
2k

(−q; q2)k(q4; q4)k

≡
(

3

n

)
q(n2−1)/12

(m−1)/2∑

k=0

(qn2
; q2n2

)kq
2n2k

(−qn2 ; q2n2)k(q4n2 ; q4n2)k

. (4.9)

Sketch of proof. We need the following extension of (4.8) (see [5, (5.3)]):

(n−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)kq

2k

(q2; q4)k(q4; q4)k

≡
(

3

n

)
q(n2−1)/12 (mod (1− aqn)(a− qn)). (4.10)

Along the same lines as before, we can deduce the following congruence from (4.10):

modulo
∏(m−1)/2

j=0 (1− aq(2j+1)n)(a− q(2j+1)n),

(mn−1)/2∑

k=0

(aq; q2)k(a
−1q; q2)kq

2k

(q2; q4)k(q4; q4)k

≡
(

3

n

)
q(n2−1)/12

(m−1)/2∑

k=0

(anqn2
; q2n2

)k(a
−nqn2

; q2n2
)kq

2n2k

(q2n2 ; q4n2)k(q4n2 ; q4n2)k

. (4.11)

Finally, letting a = 1 in (4.11), we conclude that (4.9) holds. ¤

5. Concluding remarks and open problems

Recall that the q-binomial coefficient is defined as

[
m

n

]

q

=





(q; q)m

(q; q)n(q; q)m−n

, if 0 6 n 6 m,

0, otherwise.
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In 2019, the first author [6] proved the q-supercongruence: for any positive odd
integer n,

n−1∑

k=0

qk

(−q; q)k

[
2k

k

]

q

≡
(−1

n

)
q(n2−1)/4 (mod Φn(q)2), (5.1)

which was conjectured earlier by Tauraso [30] for n being a prime.
We conjecture that (5.1) has the following generalization.

Conjecture 5.1. Let m and n be positive integers with n odd. Then

mn−1∑

k=0

qk

(−q; q)k

[
2k

k

]

q

≡
(−1

n

)
q(n2−1)/4

m−1∑

k=0

qk

(−qn2 ; qn2)k

[
2k

k

]

qn2

(mod Φn(q)2),

(5.2)

The first author [6] also conjectured that

n−1∑

k=0

qk

[
2k

k

]

q

≡
(−3

n

)
q(n2−1)/3 (mod Φn(q)2), (5.3)

which was confirmed by Liu and Petrov [20]. On the other hand, Apagodu and
Zeilberger [2] conjectured that, for any prime p > 3 and positive integer m,

mp−1∑

k=0

(
2k

k

)
≡

(−3

n

) m−1∑

k=0

(
2k

k

)
(mod p2), (5.4)

which was later proved by Liu [16].
We believe the following common generalization of (5.3) and (5.4) should be true.

Conjecture 5.2. Let m and n be positive integers. Then

mn−1∑

k=0

qk

[
2k

k

]

q

≡
(−3

n

)
q(n2−1)/3

m−1∑

k=0

qn2k

[
2k

k

]

qn2

(mod Φn(q)2). (5.5)

The difficulty in proving (5.2) and (5.5) is that we do not know any parametric
generalizations of (5.1) and (5.4). Both of (5.1) and (5.3) are proved by very special
techniques (using curious q-identities). Note that the other two q-supercongruences
in [6, Conjecture 5.1] do not have such generalizations like (5.5). We hope that an
interested reader can make progress on Conjectures 5.1 and 5.2.
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