A generalization of a g-congruence of Liu and Wang
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Abstract. In 2017, He proved that, for primes p = 1 (mod 4),

Z_:(6k + 1)—(5]3!@)’“ = (1)@ 0 (M0, (L2 (mod p?),

where (z), = I'(x + n)/I'(x) is the Pochhammer symbol and I',(z) is the p-adic Gamma
function. Liu proved that the above congruence is true modulo p®. Liu and Wang gave
a g-analogue Liu’s congruence. In this note, we give a further generalization of Liu and
Wang’s ¢-congruence.

Keywords: g-congruences; p-adic Gamma function; Rahman’s transformation; creative
microscoping

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In 2017, He [5] proved the following congruence: for any prime p =1 (mod 4),

p—1 1\3/1
(2)i(5)x
(6k + 1)~

(]

= (—1)#* L, (5)0,(3)°  (mod p?). (1.1)
k=0

Here and in what follows, (z), = I'(x + n)/I'(z) denotes the Pochhammer symbol also
for n not being a non-negative integer, and I',(z) is the p-adic Gamma function (see [8]).
Note that the sign (—1)®P*3)/4 was lost in He’s paper. Liu [6] further proved that (1.1)
also holds modulo p3.

Applying the ‘creative microscoping’ method introduced by the second author and
Zudilin [4], Liu and Wang [7] gave a g-analogue of (1.1) modulo p?: for positive integers
n =1 (mod 4), modulo [n]®,(q)?,
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k=0 )k(q 4 )k; (q 4 )(n—l)/4
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Here we need to recall the standard g-notation. The q-shifted factorial is defined by

(1—a)(1—aq)---(1—ag"™t), ifn=1,2...,
. _J1 ifn=20,
(a;q)n = . |
ifn=-1,-2,...

(1—ag )1 —ag2)--- (1 —aqr)’

For simplicity, we will often use the condensed notation

(a1, a2, ..., am;@)n = (a1;¢)n(a2;q)n - - (@m; @n

for n = 0,+1,42,..., or n = 0o. The g-integer is defined as [n] = (1 —¢")/(1 — ¢q), and
®,,(q) represents the n-th cyclotomic polynomial. Namely,

()= J] (a—¢)

1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. For more results on g-congruences, see [2-4,9-
12).
In this note, we shall give a generalization of (1.2) modulo ®,(q)? as follows.

Theorem 1.1. Let n > 1 be an integer with n = 1 (mod 4). Let s be a non-negative
integer with s < (n —1)/2. Then, modulo ®,(q)3,

n—s—1 ( )

4 q
> [6k + 1] p

— (¢%
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(@ a")e—s(a% q)rrs (g )
(65 + 1)(q: 4*)35(: 46 (@°F%%5 4" (no1-26)/a (0¥ 41 n1420) 20>
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, if s is even,

[65 + 1](q; ¢35 (43 4)s (6> 4" 120 /a(8* "5 4" 1420 0> _
- , otherwise.

(@%0®)s(@3, a*, 4% 4h) s (@225 %) (nr1-25) /4 (@57 ¢ (nr1426) /4

(1.3)

It is easy to see that, for n =1 (mod 4),
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and so the g-congruence (1.3) reduces to the modulus ®,(q)? case of (1.2). Moreover, for
n prime, taking the limits as ¢ — 1 in (1.3), we get the congruence: for any prime p = 1



(mod 4), and non-negative integer s < (p — 1)/2, modulo p?,

p§1(6k n 1)<%)k723(%)k+25(%>k<}1)k
2 (k= s)1(k + 5)k124F
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PO r1-2a (D) paya |

Summation and transformation formulas for basic hypergeometric series are very useful
in the investigation of ¢-congruences. Here we would like to mention Gasper and Rahman’s
quadratic summation (see [1, (3.8.12)]), which may be written as

i 1 — ag* (a,0,9/b; @)x(d, f,a*q/df; ¢*)x "
~ 1—a (ag/d,aq/f.df /a;q)r(¢* ag® /b, abg; ¢*)r

(aq, f/a,b,q/b;Q)so(d, aq? /df, f¢?/d, df*q/a®; )
(a/f, fa/a,aq/d,df |a; q)sc(aq? /b, abg, fq/ab,bf /a; ¢*)o

f7bf/a7fQ/ab' 2 9
X302 [ f¢2/d, df?qfa? T ]

_ (aq, f/a;q)(aq /bd, abq/d, bdf /a, df q/ab; ¢*)o
(agq/d, df /a; q)oo(ag? /b, abg, bf [a, fq/ab; ¢*)o

where the basic hypergeometric series ,1¢, is defined by

+

(1.4)

Q1,025 -« Qg1 _ = (a17a27"'7a7'+1;q)k2k
T+1¢T|: bl,bg,...,br 4 Z:| _kz:; (q,bl,...,bT;Q)k ’

We shall prove Theorem 1.1 by employing the method of ‘creative microscoping’ and
Gasper and Rahman’s summation (1.4).

2. Proof of Theorem 1.1

We require the following three lemmas.

Lemma 2.1. Let n > 1 be an odd integer, and let s be a non-negative integer with
s<(n—1)/2. Then

n—s—1 14+6k—n

> 1—gq (aq; @) k-25(0" ™ ) ir2s(a/a; )i (q/b; )i
— 1=q" (g% )e(qh ¢ e-s(q* /a5 4" ks (ag™ "5 41

(bg )" " =0. (21)



Proof. 1t is easy to see that the left-hand side of (2.1) can be written as

n—2s—1 s—mn _n

3 (1= g% ) (ag; ¢*)k—s (0" ) h135(0/ @ 4 )r s (0/ 05 ¢ ks (b H s
(1= ") (0% ¢®)rrs(ah )r(q* /a5 4 hras(@q* ™5 ¢ kps
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n—2s— 1 —2s s—n s s
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(bq7n>sqs +s

(2.2)

If s > (n—1)/6, then (¢ ";¢%)3s = 0 or (1 — gtTokF65=n) (g H6s7m. ¢2), = (0, and so the
right-hand side of (2.2) vanishes. We now assume that 0 < s < (n — 1)/6. Putting
d = ¢~*" and then taking n — oo in (1.4), we get

i 1—ag®  (a,b,¢/5;0)(f; 6 (g) kq(kgl)
—~ 1—a (¢°aq’/b,abq;¢*)r(aq/f; Q)x \ f

_ (ag,aq®,aq?/bf, abq/f; ¢*)s
(aq/f,aq?/ f.aq? /b, abq; ¢*)oo

Then, performing the parameter substitutions ¢ — ¢%, a — ¢7%™ b — ag'™%, and
f — ¢ /b in the above identity yields that

(2.3)

(n—1)/6—s s—n —2s s—n s S /1.
(1 — gl H6k+6s—n)(ggl=2s o146 a2 Ja; ¢*)r(q % /b q4)k(bq25_")qu2+k —0
Zk « (1 _ q1+6sfn)<bq2+2s; q2)k(q47 q4+8s n/a7 aq4+4sfn; q4>k )

where we have used the fact that (¢'™%*~":¢?), = 0 for k > (n — 1)/6 — s. Thus, the
right-hand side of (2.2) vanishes. O

Lemma 2.2. Let n > 1 be an integer with n = 1 (mod 4), and let s be a non-negative
integer with s < (n —1)/2. Then, modulo a — ¢",

"_s_l[6k+ N (005 ¢ )24 4 42(0/ 05 )i/ 56" 2
p (0a% ¢*)(a*; a*)n-s(a*/a; q*)k+s(ag*; ¢*)i
(a¢; 4*) (43 4*)ss(a/ 5 4*)s (/b 4)s ) e
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= [6s + 1]

5+65 3+4s n

, if s is even,

n—1-2s)/4
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(4 , otherwise.
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Proof. For a = q", the left-hand side of (2.4) can be written as

n—s—1

S 6k + 1] (@' ) i—2s(q; ¢t (@ @) i(a/b; )i g+
P (0g%; ¢*)k(a*; a4 )i-s(a* "5 4 s (@75 ¢ i

(@' ) —s(q5 ¢*)as(q* "5 ¢%)s (/b ¢*)s e
(bq 9 q2)8(q4in; q4)2$(q4+n; q4)s

n—2s—1 1-2s+n 1465 1+2s—n. g+ Jb: g
< 3 [k + 0541 e T
Putting d = ¢~*" and then taking n — oo in (1.4), we get
i 1—ag®  (a,0,¢/0;Q)k(f; ¢k (g) kq(k;l)
— 1—a (¢?aq®/b,abg; ¢*)r(aq/f; ) \ f
_ (ag,aq®, ag?/bf, abq/f; ¢*)s (2.6)

 (ag/f,aq®/ f,aq®/b,abg; ¢*)s’

Making the parameter substitutions q — ¢%, a — ¢**%, b+ ¢'=2%" and f +— ¢ /b in
(2.6), we arrive at

n—2s—1 —2s+n s s—n s
[Gk 1 65+ 1]<q1 2s+ ,C]1+6 7q1+2 q ) ( 1+4 /b, q4)k’bqu2+25k+k
Z [63 + 1](bq2+23; q2) (q4 q4+85 n7 q4+4s+n; q4)k
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k=0

(q
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(q5+63 bq3+4s n. 4

1425 _g+8 7q4)(n = 28)/4, if s is even,
— (bq % Mg )(n 1-2s)/4
( 3+68 3+4s n7q4)(n+1 28)/4 ‘
(bq2+25 4+83 ) er1ze1 otherwise,

where we have utilized (¢'™*";¢*), = 0 for k > (n — 1)/2 — 5. Substituting the above
identity into (2.5), we conclude that both sides of (2.4) are equal for a = ¢". That is, the
g-congruence (2.4) holds. O

Lemma 2.3. Let n > 1 be an integer with n = 1 (mod 4), and let s be a non-negative
integer with s < (n — 1)/2. Then, modulo b — q",
n—s—1 2 2 2 4
14 )k—2s(¢; s(q/a; b;
S 6k + 1 (aq;qz)k 24((14(1 )k+z4(Q/a 4 )k(Q/4Q4)k gk
(065 ¢*)k(a"; 4" )i-s(a"/a; ¢*) s (ag*; ¢
(04; 4*) (a3 4*)36(2/ @ )50/ 010 )s s 2s (@77 07 4 01y 4

q
(ba?; ¢)s(q*/a; q*)2s(ag*; ¢*)s (aghs, ¢4+ [a; ¢*) (n-1)a—
(2.7)

k=s

= [6s + 1]




Proof. For b = ¢", the left-hand side of (2.4) is equal to

(aq; ¢*)—s(q; ¢*)3s(q/a; %) s (@™ ¢)s gt
(T ¢2)s(q4/a; q*)2s(agh; *)s
-2

s—1 1-2s 1+46s 142s5/,. 2 14+4s—n. 4
y [6k+68+1](aq 4 g as ¢)klg Y4k ok (2.8)

prt (g*T21m g2k (g, g8 /a, ag™s; Yy

n

If s > (n—1)/4, then (¢'™"; ¢*)s = 0 and so both sides of (2.7) are equal to 0. We now
assume that 0 < s < (n — 1)/4. Letting ¢ — ¢%, a — ¢'™%, b+ aq'™%, and f s ¢'T4s™m
in (2.6), and noticing (¢**** " ¢*), = 0for k > (n—1)/4—sandn—2s—1> (n—1)/4—s.
(2.8) may be written as

(aq; 4%)—s(q:0*)3s(a/a; @) s (@ 70" 2imnsis
(@®* ¢2)s(q*/a; ¢*)as(ag?; ¢*)s
((]3—&—657 q5+68’ q3+45+n/a’ aq3+n; q4)oo
<q2+23+n’ q4+2s+n’ q4+8s/&’ aq4+43; q4)oo ’

[6s + 1]

X

which is just the b = ¢ case of the right-hand side of (2.7). This completes the proof. O

Proof of Theorem 1.1. Since ¢ =1 (mod ®,(q)), we deduce from (2.1) that

n—s—1

(94; 4*)—25 (03 4*)r25(0/ %5 )k (9/ 050Nk w2k — g (o
2 [ok=1 (bfﬂ;qQ)k(CJ“;q4)k—s(q4/a;q4)k+s(aq4;q4)kb 77 =0 (mod 2.(q)). (29)

k=s

It is easily seen that the right-hand sides of (2.4) and (2.7) are both congruent to 0 modulo
®,,(¢q). Thus, applying the following congruences:

b _ 4N
7 —qa =1 (moda—q"),
aa_—qb =1 (modb—q"),

and the Chinese remainder theorem for coprime polynomials, we derive from (2.4), (2.7),
and (2.9) that, for even s with 0 < s < (n —1)/2, modulo ®,,(q)(a — ¢")(b — ¢"),

n—s—1
S 6k + 1] (043 4*)—25(03 4* )k 25(a/ 5 )i (9/ 056 Dk 1 s

(bg%; ¢*)r(a*; a*)e—s(a*/a; ¢*)irs(agh; g*)x
(0¢; 4*) ~5(4; 4*)s5(2/ 4 *)s (/b1 05 )24
(bg% ¢*)s(q*/a; ¢*)2s(agq*; ¢*)s

{ (q5+637 bq3+4s—n; q4)(n_1_2s)/4 bh— qn (q3+657 q5+68; q4)(n—1)/4—s a— qn }

(bg™2, g8 D) pom b—a  (ag™ % ¢ Jaiq ) e a4 —b |

(2.10)

k=s

= [6s + 1]




It is not difficult to see that

(bq3+4s n’q )(n_1_28)/4 _ (bq3/a; q4)(n—1+2s) ( 4+4s/a q ) (mod a— qn)
(357 ) (1204 (g% /a; ") (n—142¢)/4(® /a5 ¢*) s ’

and, modulo b — ¢",

3+6s 5+6s

(1%, "% ¢") (n—1)ja—s
(g™ 55 /a5 %) 1) /s
(q3;q4)(n_1+25)/4(q ;q4)(n—1—2s)/4( /a q )33/2(abq q )35/2
(@3 4%)35/2(0¢* 255 0%) 512 (0425 @5 ¢*) (n—1-26) /4 (083 [ @5 ¢*) s (@q %5 ¢*) (n—1426) /4

5+6s 4+2s

Thus, the g-congruence (2.10) is equivalent to the following one: modulo ®,,(¢)(a—q¢")(b—
q"),
”ilm o (04; 425 (0 020/ 0 )0/ 020 )i 1 42
(bg?; @)k (" ¢*)—s(0*/ a5 ¢*) ks s(ag; g
_ 65+ 1)\ ¢*) (a3 4*)35(a/ @ 4°)s (4/0:0")s s 2
(bg?; 4*)s(q*/a; q*)2s(aq*; q*)s

{ (@ ¢") (n-1-25)/4(06%/ 05 ¢*) (n-1425)/4(0 a5 ¢%)s b — ¢"

(bq4+28; q4)(n7172s)/4< 4+4s/a. q4)(n71+23)/4(q3/a' q4)s b—a

5+46s. 4425

(0% ¢") (n—1425)/4(0° 0% ¢*) (n1-25) (@72 Ja; ¢*) 352 (abg?; ¢*)
(435 0%)3s/2(0g* 2% %) s 12(q* 125 [ a5 ¢* ) (n—1-25)/4(bG% [ a5 ¢*) s (aq* 455 ¢ )<n71+2s)/4

(Note that both sides are congruent to 0 modulo ®,(q)). By first letting b = 1 and
then taking the limits as a — 1 in the above g-congruence, we are led to the following
g-supercongrunece: for even s with 0 < s < (n—1)/2,

ni1[6k+1] (4 4)k—25(05 )25 (@ )i (G 0k g2,

p— (a2 a®)i(a" a")e—s(a% a"rrs(a% ¢
(0;0%)=s(0;0)35(0; 0%)s (@ ¢")s g2y

(@2 0%)s(a* ¢*)2s(a q*)s
(q )(n 1— 25)/4(61 q )(n—1+25)/4< 7Q)
<q4+287 q4>(n7172s)/4(q4+4sa q4)(n71+2s)/4(q 14 )s

= [6s + 1]

5+65 4+4s.

(mod ®,(q)%),

which is just the the first part of (1.3) after simplifications.
In the same way, we can prove the second part of (1.3). a
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