A generalization of a q-congruence of Liu and Wang

Qi Chen¹ and Victor J. W. Guo^{2*}

¹School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China

chenqi2022@zjnu.edu.cn

²School of Mathematics, Hangzhou Normal University, Hangzhou 311121, People's Republic of China jwguo@math.ecnu.edu.cn

Abstract. In 2017, He proved that, for primes $p \equiv 1 \pmod{4}$,

$$\sum_{k=0}^{p-1} (6k+1) \frac{(\frac{1}{2})_k^3 (\frac{1}{4})_k}{k!^4 4^k} \equiv (-1)^{(p+3)/4} p \Gamma_p(\frac{1}{2}) \Gamma_p(\frac{1}{4})^2 \pmod{p^2},$$

where $(x)_n = \Gamma(x+n)/\Gamma(x)$ is the Pochhammer symbol and $\Gamma_p(x)$ is the p-adic Gamma function. Liu proved that the above congruence is true modulo p^3 . Liu and Wang gave a q-analogue Liu's congruence. In this note, we give a further generalization of Liu and Wang's q-congruence.

Keywords: q-congruences; p-adic Gamma function; Rahman's transformation; creative microscoping

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In 2017, He [5] proved the following congruence: for any prime $p \equiv 1 \pmod{4}$,

$$\sum_{k=0}^{p-1} (6k+1) \frac{(\frac{1}{2})_k^3(\frac{1}{4})_k}{k!^4 4^k} \equiv (-1)^{(p+3)/4} p \Gamma_p(\frac{1}{2}) \Gamma_p(\frac{1}{4})^2 \pmod{p^2}. \tag{1.1}$$

Here and in what follows, $(x)_n = \Gamma(x+n)/\Gamma(x)$ denotes the Pochhammer symbol also for n not being a non-negative integer, and $\Gamma_p(x)$ is the p-adic Gamma function (see [8]). Note that the sign $(-1)^{(p+3)/4}$ was lost in He's paper. Liu [6] further proved that (1.1) also holds modulo p^3 .

Applying the 'creative microscoping' method introduced by the second author and Zudilin [4], Liu and Wang [7] gave a q-analogue of (1.1) modulo p^3 : for positive integers $n \equiv 1 \pmod{4}$, modulo $[n]\Phi_n(q)^2$,

$$\sum_{k=0}^{n-1} [6k+1] \frac{(q;q^2)_k^3 (q;q^4)_k}{(q^2;q^2)_k (q^4;q^4)_k^3} q^{k^2+k} \equiv \frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} [n] q^{(1-n)/4}. \tag{1.2}$$

^{*}Corresponding author.

Here we need to recall the standard q-notation. The q-shifted factorial is defined by

$$(a;q)_n = \begin{cases} (1-a)(1-aq)\cdots(1-aq^{n-1}), & \text{if } n=1,2,\ldots,\\ 1, & \text{if } n=0,\\ \frac{1}{(1-aq^{-1})(1-aq^{-2})\cdots(1-aq^n)}, & \text{if } n=-1,-2,\ldots \end{cases}$$

For simplicity, we will often use the condensed notation

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n$$

for $n = 0, \pm 1, \pm 2, \ldots$, or $n = \infty$. The *q-integer* is defined as $[n] = (1 - q^n)/(1 - q)$, and $\Phi_n(q)$ represents the *n*-th cyclotomic polynomial. Namely,

$$\Phi_n(q) = \prod_{\substack{1 \leqslant k \leqslant n \\ \gcd(k,n)=1}} (q - \zeta^k),$$

where ζ is an *n*-th primitive root of unity. For more results on *q*-congruences, see [2–4,9–12].

In this note, we shall give a generalization of (1.2) modulo $\Phi_n(q)^3$ as follows.

Theorem 1.1. Let n > 1 be an integer with $n \equiv 1 \pmod{4}$. Let s be a non-negative integer with $s \leq (n-1)/2$. Then, modulo $\Phi_n(q)^3$,

$$\sum_{k=s}^{n-s-1} [6k+1] \frac{(q;q^2)_{k-2s}(q;q^2)_{k+2s}(q;q^2)_k(q;q^4)_k}{(q^2;q^2)_k(q^4;q^4)_{k-s}(q^4;q^4)_{k+s}(q^4;q^4)_k} q^{k^2+k}$$

$$\equiv \begin{cases} \frac{[6s+1](q;q^2)_{3s}(q;q^4)_s(q^{5+6s};q^4)_{(n-1-2s)/4}(q^{3-n};q^4)_{(n-1+2s)/4}q^{2s^2+s}}{(q^2;q^2)_s(q^3,q^4,q^4;q^4)_s(q^{4+2s};q^4)_{(n-1-2s)/4}(q^{4+4s-n};q^4)_{(n-1+2s)/4}}, & if s is even, \\ -\frac{[6s+1](q;q^2)_{3s}(q;q^4)_s(q^{3+6s};q^4)_{(n+1-2s)/4}(q^{3-n};q^4)_{(n+1+2s)/4}q^{2s^2+s}}{(q^2;q^2)_s(q^3,q^4,q^4;q^4)_s(q^{2+2s};q^4)_{(n+1-2s)/4}(q^{4+4s-n};q^4)_{(n+1+2s)/4}}, & otherwise. \end{cases}$$

It is easy to see that, for $n \equiv 1 \pmod{4}$,

$$\frac{(q^5; q^4)_{(n-1)/4}(q^{3-n}; q^4)_{(n-1)/4}}{(q^4; q^4)_{(n-1)/4}(q^{4-n}; q^4)_{(n-1)/4}} = \frac{(q^2; q^4)_{(n-1)/4}}{(q^4; q^4)_{(n-1)/4}} [n] q^{(1-n)/4},$$

and so the q-congruence (1.3) reduces to the modulus $\Phi_n(q)^3$ case of (1.2). Moreover, for n prime, taking the limits as $q \to 1$ in (1.3), we get the congruence: for any prime $p \equiv 1$

(mod 4), and non-negative integer $s \leq (p-1)/2$, modulo p^3 ,

$$\sum_{k=s}^{p-s-1} (6k+1) \frac{\left(\frac{1}{2}\right)_{k-2s} \left(\frac{1}{2}\right)_{k+2s} \left(\frac{1}{2}\right)_{k} \left(\frac{1}{4}\right)_{k}}{(k-s)!(k+s)!k!^{2}4^{k}}$$

$$\equiv \begin{cases} \frac{(6s+1)\left(\frac{1}{2}\right)_{3s} \left(\frac{1}{4}\right)_{s} \left(\frac{5+6s}{4}\right)_{(p-1-2s)/4} \left(\frac{3-p}{4}\right)_{(p-1+2s)/4}}{4^{s} \left(1\right)_{s}^{3} \left(\frac{3}{4}\right)_{s} \left(1+\frac{s}{2}\right)_{(p-1-2s)/4} \left(\frac{4+4s-p}{4}\right)_{(p-1+2s)/4}}, & \text{if } s \text{ is even,} \\ -\frac{(6s+1)\left(\frac{1}{2}\right)_{3s} \left(\frac{1}{4}\right)_{s} \left(\frac{3+6s}{4}\right)_{(p+1-2s)/4} \left(\frac{3-p}{4}\right)_{(p+1+2s)/4}}{4^{s} \left(1\right)_{s}^{3} \left(\frac{3}{4}\right)_{s} \left(\frac{1+s}{2}\right)_{(p+1-2s)/4} \left(\frac{4+4s-p}{4}\right)_{(p+1+2s)/4}}, & \text{otherwise.} \end{cases}$$

Summation and transformation formulas for basic hypergeometric series are very useful in the investigation of q-congruences. Here we would like to mention Gasper and Rahman's quadratic summation (see [1, (3.8.12)]), which may be written as

$$\sum_{k=0}^{\infty} \frac{1 - aq^{3k}}{1 - a} \frac{(a, b, q/b; q)_k (d, f, a^2 q/df; q^2)_k}{(aq/d, aq/f, df/a; q)_k (q^2, aq^2/b, abq; q^2)_k} q^k$$

$$+ \frac{(aq, f/a, b, q/b; q)_{\infty} (d, aq^2/df, fq^2/d, df^2 q/a^2; q^2)_{\infty}}{(a/f, fq/a, aq/d, df/a; q)_{\infty} (aq^2/b, abq, fq/ab, bf/a; q^2)_{\infty}}$$

$$\times {}_{3}\phi_{2} \begin{bmatrix} f, bf/a, fq/ab \\ fq^2/d, df^2 q/a^2 ; q^2 \end{bmatrix}$$

$$= \frac{(aq, f/a; q)_{\infty} (aq^2/bd, abq/d, bdf/a, dfq/ab; q^2)_{\infty}}{(aq/d, df/a; q)_{\infty} (aq^2/b, abq, bf/a, fq/ab; q^2)_{\infty}},$$
(1.4)

where the basic hypergeometric series $_{r+1}\phi_r$ is defined by

$${}_{r+1}\phi_r \left[\begin{array}{c} a_1, a_2, \dots, a_{r+1} \\ b_1, b_2, \dots, b_r \end{array} ; q, z \right] = \sum_{k=0}^{\infty} \frac{(a_1, a_2, \dots, a_{r+1}; q)_k z^k}{(q, b_1, \dots, b_r; q)_k}.$$

We shall prove Theorem 1.1 by employing the method of 'creative microscoping' and Gasper and Rahman's summation (1.4).

2. Proof of Theorem 1.1

We require the following three lemmas.

Lemma 2.1. Let n > 1 be an odd integer, and let s be a non-negative integer with $s \leq (n-1)/2$. Then

$$\sum_{k=s}^{n-s-1} \frac{1 - q^{1+6k-n}}{1 - q^{1-n}} \frac{(aq; q^2)_{k-2s}(q^{1-n}; q^2)_{k+2s}(q/a; q^2)_k(q/b; q^4)_k}{(bq^2; q^2)_k(q^4; q^4)_{k-s}(q^{4-n}/a; q^4)_{k+s}(aq^{4-n}; q^4)_k} (bq^{-n})^k q^{k^2+k} = 0. \quad (2.1)$$

Proof. It is easy to see that the left-hand side of (2.1) can be written as

$$\sum_{k=0}^{n-2s-1} \frac{(1-q^{1+6k+6s-n})(aq;q^2)_{k-s}(q^{1-n};q^2)_{k+3s}(q/a;q^2)_{k+s}(q/b;q^4)_{k+s}}{(1-q^{1-n})(bq^2;q^2)_{k+s}(q^4;q^4)_k(q^{4-n}/a;q^4)_{k+2s}(aq^{4-n};q^4)_{k+s}} (bq^{-n})^{k+s}q^{(k+s)^2+k+s}$$

$$= \frac{(aq;q^2)_{-s}(q^{1-n};q^2)_{3s}(q/a;q^2)_s(q/b;q^4)_s}{(bq^2;q^2)_s(q^{4-n}/a;q^4)_{2s}(aq^{4-n};q^4)_s} (bq^{-n})^s q^{s^2+s}$$

$$\times \sum_{k=0}^{n-2s-1} \frac{(1-q^{1+6k+6s-n})(aq^{1-2s},q^{1+6s-n},q^{1+2s}/a;q^2)_k(q^{1+4s}/b;q^4)_k}{(1-q^{1-n})(bq^{2+2s};q^2)_k(q^4,q^{4+8s-n}/a,aq^{4+4s-n};q^4)_k} (bq^{-n})^k q^{k^2+2sk+k}.$$

$$(2.2)$$

If $s \ge (n-1)/6$, then $(q^{1-n}; q^2)_{3s} = 0$ or $(1-q^{1+6k+6s-n})(q^{1+6s-n}; q^2)_k = 0$, and so the right-hand side of (2.2) vanishes. We now assume that $0 \le s < (n-1)/6$. Putting $d = q^{-2n}$ and then taking $n \to \infty$ in (1.4), we get

$$\sum_{k=0}^{\infty} \frac{1 - aq^{3k}}{1 - a} \frac{(a, b, q/b; q)_k (f; q^2)_k}{(q^2, aq^2/b, abq; q^2)_k (aq/f; q)_k} \left(\frac{a}{f}\right)^k q^{\binom{k+1}{2}}$$

$$= \frac{(aq, aq^2, aq^2/bf, abq/f; q^2)_{\infty}}{(aq/f, aq^2/f, aq^2/b, abq; q^2)_{\infty}}.$$
(2.3)

Then, performing the parameter substitutions $q\mapsto q^2$, $a\mapsto q^{1+6s-n}$, $b\mapsto aq^{1-2s}$, and $f\mapsto q^{1+4s}/b$ in the above identity yields that

$$\sum_{k=0}^{(n-1)/6-s} \frac{(1-q^{1+6k+6s-n})(aq^{1-2s},q^{1+6s-n},q^{1+2s}/a;q^2)_k(q^{1+2s}/b;q^4)_k}{(1-q^{1+6s-n})(bq^{2+2s};q^2)_k(q^4,q^{4+8s-n}/a,aq^{4+4s-n};q^4)_k} (bq^{2s-n})^k q^{k^2+k} = 0,$$

where we have used the fact that $(q^{1+6s-n}; q^2)_k = 0$ for k > (n-1)/6 - s. Thus, the right-hand side of (2.2) vanishes.

Lemma 2.2. Let n > 1 be an integer with $n \equiv 1 \pmod{4}$, and let s be a non-negative integer with $s \leq (n-1)/2$. Then, modulo $a - q^n$,

$$\sum_{k=s}^{n-s-1} [6k+1] \frac{(aq;q^2)_{k-2s}(q;q^2)_{k+2s}(q/a;q^2)_k(q/b;q^4)_k}{(bq^2;q^2)_k(q^4;q^4)_{k-s}(q^4/a;q^4)_{k+s}(aq^4;q^4)_k} b^k q^{k^2+k}$$

$$= [6s+1] \frac{(aq;q^2)_{-s}(q;q^2)_{3s}(q/a;q^2)_s(q/b;q^4)_s}{(bq^2;q^2)_s(q^4/a;q^4)_{2s}(aq^4;q^4)_s} b^s q^{s^2+s}$$

$$\times \begin{cases} \frac{(q^{5+6s},bq^{3+4s-n};q^4)_{(n-1-2s)/4}}{(bq^{4+2s},q^{4+8s-n};q^4)_{(n-1-2s)/4}}, & \text{if s is even,} \\ \frac{(q^{3+6s},bq^{3+4s-n};q^4)_{(n+1-2s)/4}}{(bq^{2+2s},q^{4+8s-n};q^4)_{(n+1-2s)/4}}, & \text{otherwise.} \end{cases}$$

$$(2.4)$$

Proof. For $a = q^n$, the left-hand side of (2.4) can be written as

$$\sum_{k=s}^{n-s-1} \left[6k+1 \right] \frac{(q^{1+n}; q^2)_{k-2s}(q; q^2)_{k+2s}(q^{1-n}; q^2)_k (q/b; q^4)_k}{(bq^2; q^2)_k (q^4; q^4)_{k-s}(q^{4-n}; q^4)_{k+s}(q^{4+n}; q^4)_k} b^k q^{k^2+k}
= \frac{(q^{1+n}; q^2)_{-s}(q; q^2)_{3s}(q^{1-n}; q^2)_s (q/b; q^4)_s}{(bq^2; q^2)_s (q^{4-n}; q^4)_{2s}(q^{4+n}; q^4)_s} b^s q^{s^2+s}
\times \sum_{k=0}^{n-2s-1} \left[6k+6s+1 \right] \frac{(q^{1-2s+n}, q^{1+6s}, q^{1+2s-n}; q^2)_k (q^{1+4s}/b; q^4)_k}{(bq^{2+2s}; q^2)_k (q^4, q^{4+8s-n}, q^{4+4s+n}; q^4)_k} b^k q^{k^2+2sk+k}.$$
(2.5)

Putting $d = q^{-2n}$ and then taking $n \to \infty$ in (1.4), we get

$$\sum_{k=0}^{\infty} \frac{1 - aq^{3k}}{1 - a} \frac{(a, b, q/b; q)_k (f; q^2)_k}{(q^2, aq^2/b, abq; q^2)_k (aq/f; q)_k} \left(\frac{a}{f}\right)^k q^{\binom{k+1}{2}}$$

$$= \frac{(aq, aq^2, aq^2/bf, abq/f; q^2)_{\infty}}{(aq/f, aq^2/f, aq^2/b, abq; q^2)_{\infty}}.$$
(2.6)

Making the parameter substitutions $q \mapsto q^2$, $a \mapsto q^{1+6s}$, $b \mapsto q^{1-2s+n}$, and $f \mapsto q^{1+4s}/b$ in (2.6), we arrive at

$$\sum_{k=0}^{n-2s-1} \frac{[6k+6s+1](q^{1-2s+n},q^{1+6s},q^{1+2s-n};q^2)_k(q^{1+4s}/b;q^4)_k}{[6s+1](bq^{2+2s};q^2)_k(q^4,q^{4+8s-n},q^{4+4s+n};q^4)_k} b^k q^{k^2+2sk+k}$$

$$= \frac{(q^{3+6s},q^{5+6s},bq^{3+4s-n},bq^{3+n};q^4)_{\infty}}{(bq^{2+2s},bq^{4+2s},q^{4+8s-n},q^{4+4s+n};q^4)_{\infty}}$$

$$= \begin{cases} \frac{(q^{5+6s},bq^{3+4s-n};q^4)_{(n-1-2s)/4}}{(bq^{4+2s},q^{4+8s-n};q^4)_{(n-1-2s)/4}}, & \text{if } s \text{ is even,} \\ \frac{(q^{3+6s},bq^{3+4s-n};q^4)_{(n-1-2s)/4}}{(bq^{2+2s},q^{4+8s-n};q^4)_{(n+1-2s)/4}}, & \text{otherwise,} \end{cases}$$

where we have utilized $(q^{1+2s-n}; q^2)_k = 0$ for k > (n-1)/2 - s. Substituting the above identity into (2.5), we conclude that both sides of (2.4) are equal for $a = q^n$. That is, the q-congruence (2.4) holds.

Lemma 2.3. Let n > 1 be an integer with $n \equiv 1 \pmod{4}$, and let s be a non-negative integer with $s \leq (n-1)/2$. Then, modulo $b-q^n$,

$$\sum_{k=s}^{n-s-1} \left[6k+1 \right] \frac{(aq;q^2)_{k-2s}(q;q^2)_{k+2s}(q/a;q^2)_k(q/b;q^4)_k}{(bq^2;q^2)_k(q^4;q^4)_{k-s}(q^4/a;q^4)_{k+s}(aq^4;q^4)_k} b^k q^{k^2+k}
= \left[6s+1 \right] \frac{(aq;q^2)_{-s}(q;q^2)_{3s}(q/a;q^2)_s(q/b;q^4)_s}{(bq^2;q^2)_s(q^4/a;q^4)_{2s}(aq^4;q^4)_s} b^s q^{s^2+s} \frac{(q^{3+6s},q^{5+6s};q^4)_{(n-1)/4-s}}{(aq^{4+4s},q^{4+8s}/a;q^4)_{(n-1)/4-s}}.$$
(2.7)

Proof. For $b = q^n$, the left-hand side of (2.4) is equal to

$$\frac{(aq;q^{2})_{-s}(q;q^{2})_{3s}(q/a;q^{2})_{s}(q^{1-n};q^{4})_{s}}{(q^{2+n};q^{2})_{s}(q^{4}/a;q^{4})_{2s}(aq^{4};q^{4})_{s}}q^{s^{2}+ns+s}$$

$$\times \sum_{k=0}^{n-2s-1} [6k+6s+1] \frac{(aq^{1-2s},q^{1+6s},q^{1+2s}/a;q^{2})_{k}(q^{1+4s-n};q^{4})_{k}}{(q^{2+2s+n};q^{2})_{k}(q^{4},q^{4+8s}/a,aq^{4+4s};q^{4})_{k}}q^{k^{2}+2sk+nk+k} \qquad (2.8)$$

If s > (n-1)/4, then $(q^{1-n}; q^4)_s = 0$ and so both sides of (2.7) are equal to 0. We now assume that $0 \le s \le (n-1)/4$. Letting $q \mapsto q^2$, $a \mapsto q^{1+6s}$, $b \mapsto aq^{1-2s}$, and $f \mapsto q^{1+4s-n}$ in (2.6), and noticing $(q^{1+4s-n}; q^4)_k = 0$ for k > (n-1)/4 - s and $n-2s-1 \ge (n-1)/4 - s$. (2.8) may be written as

$$[6s+1] \frac{(aq;q^2)_{-s}(q;q^2)_{3s}(q/a;q^2)_s(q^{1-n};q^4)_s}{(q^{2+n};q^2)_s(q^4/a;q^4)_{2s}(aq^4;q^4)_s} q^{s^2+ns+s} \times \frac{(q^{3+6s},q^{5+6s},q^{3+4s+n}/a,aq^{3+n};q^4)_{\infty}}{(q^{2+2s+n},q^{4+2s+n},q^{4+8s}/a,aq^{4+4s};q^4)_{\infty}},$$

which is just the $b=q^n$ case of the right-hand side of (2.7). This completes the proof. \square

Proof of Theorem 1.1. Since $q^n \equiv 1 \pmod{\Phi_n(q)}$, we deduce from (2.1) that

$$\sum_{k=s}^{n-s-1} [6k+1] \frac{(aq;q^2)_{k-2s}(q;q^2)_{k+2s}(q/a;q^2)_k(q/b;q^4)_k}{(bq^2;q^2)_k(q^4;q^4)_{k-s}(q^4/a;q^4)_{k+s}(aq^4;q^4)_k} b^k q^{k^2+k} \equiv 0 \pmod{\Phi_n(q)}.$$
 (2.9)

It is easily seen that the right-hand sides of (2.4) and (2.7) are both congruent to 0 modulo $\Phi_n(q)$. Thus, applying the following congruences:

$$\frac{b-q^n}{b-a} \equiv 1 \pmod{a-q^n},$$

$$\frac{a-q^n}{a-b} \equiv 1 \pmod{b-q^n},$$

and the Chinese remainder theorem for coprime polynomials, we derive from (2.4), (2.7), and (2.9) that, for even s with $0 \le s \le (n-1)/2$, modulo $\Phi_n(q)(a-q^n)(b-q^n)$,

$$\sum_{k=s}^{n-s-1} \left[6k+1 \right] \frac{(aq;q^2)_{k-2s}(q;q^2)_{k+2s}(q/a;q^2)_k(q/b;q^4)_k}{(bq^2;q^2)_k(q^4;q^4)_{k-s}(q^4/a;q^4)_{k+s}(aq^4;q^4)_k} b^k q^{k^2+k}
\equiv \left[6s+1 \right] \frac{(aq;q^2)_{-s}(q;q^2)_{3s}(q/a;q^2)_s(q/b;q^4)_s}{(bq^2;q^2)_s(q^4/a;q^4)_{2s}(aq^4;q^4)_s} b^s q^{s^2+s}
\times \left\{ \frac{(q^{5+6s},bq^{3+4s-n};q^4)_{(n-1-2s)/4}}{(bq^{4+2s},q^{4+8s-n};q^4)_{(n-1-2s)/4}} \frac{b-q^n}{b-a} + \frac{(q^{3+6s},q^{5+6s};q^4)_{(n-1)/4-s}}{(aq^{4+4s},q^{4+8s}/a;q^4)_{(n-1)/4-s}} \frac{a-q^n}{a-b} \right\}.$$
(2.10)

It is not difficult to see that

$$\frac{(bq^{3+4s-n};q^4)_{(n-1-2s)/4}}{(q^{4+8s-n};q^4)_{(n-1-2s)/4}} \equiv \frac{(bq^3/a;q^4)_{(n-1+2s)/4}(q^{4+4s}/a;q^4)_s}{(q^{4+4s}/a;q^4)_{(n-1+2s)/4}(q^3/a;q^4)_s} \pmod{a-q^n},$$

and, modulo $b - q^n$,

$$\begin{split} &\frac{(q^{3+6s},q^{5+6s};q^4)_{(n-1)/4-s}}{(aq^{4+4s},q^{4+8s}/a;q^4)_{(n-1)/4-s}} \\ &\equiv \frac{(q^3;q^4)_{(n-1+2s)/4}(q^{5+6s};q^4)_{(n-1-2s)/4}(q^{4+2s}/a;q^4)_{3s/2}(abq^3;q^4)_{3s/2}}{(q^3;q^4)_{3s/2}(bq^{4+2s};q^4)_{s/2}(q^{4+2s}/a;q^4)_{(n-1-2s)/4}(bq^3/a;q^4)_s(aq^{4+4s};q^4)_{(n-1+2s)/4}}. \end{split}$$

Thus, the q-congruence (2.10) is equivalent to the following one: modulo $\Phi_n(q)(a-q^n)(b-q^n)$,

$$\begin{split} &\sum_{k=s}^{n-s-1} \left[6k+1 \right] \frac{(aq;q^2)_{k-2s}(q;q^2)_{k+2s}(q/a;q^2)_k(q/b;q^4)_k}{(bq^2;q^2)_k(q^4;q^4)_{k-s}(q^4/a;q^4)_{k+s}(aq^4;q^4)_k} b^k q^{k^2+k} \\ &\equiv \left[6s+1 \right] \frac{(aq;q^2)_{-s}(q;q^2)_{3s}(q/a;q^2)_s(q/b;q^4)_s}{(bq^2;q^2)_s(q^4/a;q^4)_{2s}(aq^4;q^4)_s} b^s q^{s^2+s} \\ &\times \left\{ \frac{(q^{5+6s};q^4)_{(n-1-2s)/4}(bq^3/a;q^4)_{(n-1+2s)/4}(q^{4+4s}/a;q^4)_s}{(bq^{4+2s};q^4)_{(n-1-2s)/4}(q^{4+4s}/a;q^4)_{(n-1+2s)/4}(q^3/a;q^4)_s} \frac{b-q^n}{b-a} \right. \\ &\left. + \frac{(q^3;q^4)_{(n-1+2s)/4}(q^{5+6s};q^4)_{(n-1-2s)/4}(q^{4+2s}/a;q^4)_{3s/2}(abq^3;q^4)_{3s/2}\frac{a-q^n}{a-b}}{(q^3;q^4)_{3s/2}(bq^{4+2s};q^4)_{s/2}(q^{4+2s}/a;q^4)_{(n-1-2s)/4}(bq^3/a;q^4)_s(aq^{4+4s};q^4)_{(n-1+2s)/4}} \right\} \end{split}$$

(Note that both sides are congruent to 0 modulo $\Phi_n(q)$). By first letting b=1 and then taking the limits as $a \to 1$ in the above q-congruence, we are led to the following q-supercongruence: for even s with $0 \le s \le (n-1)/2$,

$$\sum_{k=s}^{n-s-1} [6k+1] \frac{(q;q^2)_{k-2s}(q;q^2)_{k+2s}(q;q^2)_k(q;q^4)_k}{(q^2;q^2)_k(q^4;q^4)_{k-s}(q^4;q^4)_{k+s}(q^4;q^4)_k} q^{k^2+k}$$

$$\equiv [6s+1] \frac{(q;q^2)_{-s}(q;q^2)_{3s}(q;q^2)_s(q;q^4)_s}{(q^2;q^2)_s(q^4;q^4)_{2s}(q^4;q^4)_s} q^{s^2+s}$$

$$\times \frac{(q^{5+6s};q^4)_{(n-1-2s)/4}(q^3;q^4)_{(n-1+2s)/4}(q^{4+4s};q^4)_s}{(q^{4+2s};q^4)_{(n-1-2s)/4}(q^{4+4s};q^4)_{(n-1+2s)/4}(q^3;q^4)_s} \quad (\text{mod } \Phi_n(q)^3),$$

which is just the first part of (1.3) after simplifications.

In the same way, we can prove the second part of (1.3).

References

[1] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.

- [2] G. Gu and X. Wang, Proof of two conjectures of Guo and of Tang, J. Math. Anal. Appl. 541 (2025), Art. 128712.
- [3] V.J.W. Guo and M.J. Schlosser, Some q-congruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155–200.
- [4] V.J.W. Guo and W. Zudilin, A q-microscope for congruences, Adv. Math. 346 (2019), 329-358.
- [5] B. He, Supercongruences and truncated hypergeometric series, Proc. Amer. Math. Soc. 145 (2017), 501–508.
- [6] J.-C. Liu, A p-adic congruence for truncated hypergeometric series $_7F_6$, Results Math 72 (2017), 2057–2066.
- [7] Y. Liu and X. Wang, Some q-congruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
- [8] Y. Morita, A p-adic analog of the Γ-function, J. Fac. Sci. Univ. Tokyo 22 (1975), 255–266.
- [9] H. Song and C. Wang, Further generalizations of the (A.2) and (H.2) supercongruences of Van Hamme, Results Math. 79 (2024), Art. 147.
- [10] C. Wang, A new q-extension of the (H.2) congruence of Van Hamme for primes $p \equiv 1 \pmod{4}$, Results Math. 76 (2021), Art. 205.
- [11] C. Wei, A q-supercongruence from a q-analogue of Whipple's $_3F_2$ summation formula, J. Combin. Theory Ser. A 194 (2023), Art. 105705.
- [12] C. Wei, q-supercongruences from Jackson's $_8\phi_7$ summation and Watson's $_8\phi_7$ transformation, J. Combin. Theory Ser. A 204 (2024), Art. 105853.