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Abstract. We give four families of ¢-supercongruences modulo the square and cube of a
cyclotomic polynomial from Gasper and Rahman’s quadratic summation. As conclusions,
we obtain four new supercongruences modulo p? or p?, such as: for d > 2,7 > 1 with
ged(d,r) =1 and d 4 r odd, and any prime p = d + r (mod 2d) with p > d +r,
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where (2), = z(x +1)---(z +n — 1) is the Pochhammer symbol. We also propose three
related conjectures on g-supercongruences.
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1. Introduction

Following the work of [13,14, 16|, applying a 7Fg summation of Gessel and Stanton [2],
He [6] established the following supercongruence:
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where (z), = z(x +1)---(x +n — 1) is the Pochhammer symbol and I',(x) is Morita’s
p-adic Gamma function [15]. Soon afterwards, Liu [8] further proved that (1.1) holds
modulo p? by employing another ;Fs summation in [2].

Recently, using a summation formula of Gasper and Rahman (see (1.9)) and the
method of ‘creative microscoping’ introduced by the author and Zudilin [5], among other
things, Wei [18] gave the following g-analogue of Liu’s generalization of (1.1) modulo p*:



for any positive odd integer n, modulo [n]®,(q)?,
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Here and throughout the paper, the g-integer is defined as [n] = (1 — ¢")/(1 — q), the g¢-
shifted factorialis defined as (a; q)o = 1 and (a; q),, = (1—a)(1—aq) -+ - (1—aq™ ) forn > 1
or n = oo. For convenience, we also adopt the abbreviated notation (aq, asg, ..., am;q)n =
(a1;@)n(a2; Q)n -+ (am; q)n for n = 0,1,..., or n = co. Moreover, let ®,(q) be the n-th
cyclotomic polynomial, which can be written as

()= J] (a—¢)
1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. For two rational functions A(q) and B(q), and
a polynomial P(q) with integer coefficients, we say that A(q) is congruent to B(g) modulo
P(q), denoted A(q) = B(q) (mod P(q)), if the numerator of the reduced fraction A(q) —
B(q) is divisible by P(q) in the polynomial ring Z[g|. If A(q) =0 (mod P(q)), then we will
also say that A(q) is divisible by P(q). It should be mentioned that g-supercongruences
have been widely studied in recent years. See, for example, [3,4,7,9-12,17,19].

In this paper, we shall give some generalizations of (1.2), where the modulo [n|®,,(q)?
condition will be replaced by the weaker condition modulo ®,(q)* or ®,(¢)?. Our first
result can be formulated as follows.

Theorem 1.1. Let d > 2 and r > 1 be integers such that d + r is odd and ged(d,r) = 1.
Let n be a positive integer satisfying n = d +r (mod 2d) and n > d+r. Then
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It is easy to see that the (d,7) = (2,1) case of (1.3) is just the second part of (1.2)
modulo ®@,(q)?. Besides, taking n = p to be a prime and ¢ — 1 in (1.3), we arrive at the

following result: for d,r > 0 with ged(d,r) = 1 and d + r odd, and any prime p =d +r
(mod 2d) with p > d +r,
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which is a generalization of (1.1) for p =3 (mod 4).
We shall also give another two generalizations of the n = 3 (mod 4) case of (1.2)
modulo ®,,(q)?.



Theorem 1.2. Let d and r be positive integers with r < d < 2r. Let n be a positive
integer with n = —1 (mod 2d). Then
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Likewise, taking n = p to be a prime and ¢ — 1 in (1.4), we get the following result:
for 0 <r < d < 2r, and any prime p = —1 (mod 2d),
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Theorem 1.3. Let d and r be positive integers such that r is odd, d > r and ged(d,r) =

1. Let n be a positive integer satisfying n = —r (mod 2d). Suppose that (d,r) ¢
{(3,1),(4,3)}. Then
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It is easy to see that (1.6) implies the following result: for the same (d,r) in Theo-
rem 1.3 and any prime p = —r (mod 2d),

(3dk + ) (g)k(kizdi(Q%)k(i)k =0 (mod p?). (1.7)
k=0 2d /k

Both (1.5) and (1.7) are generalizations of (1.1) for p =3 (mod 4).
The last aim of this paper is to give a generalization of (1.2) modulo ®,,(q)? for n = 1
(mod 4).

Theorem 1.4. Let d and r be positive integers such that r is odd and ged(r,d) = 1. Let
n be a positive integer satisfying n = r (mod 2d) with n > r. Then
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It is clear that the (d,r) = (2, 1) case of (1.8) reduces to the first part of (1.2). Similarly
as before, the g-supercongruence (1.8) leads to the following result: for the same (d,r) in
Theorem 1.4 and any prime p = r (mod 2d) with p > r,

. (%)k ( Or(5)r 5k (3)(p-m/a) (5) p-r)/ 2a)
o(gdk+ ) S W0 BE) o)/ eo

[aay

bS]

(mod p?).

B
Il

3



Recall that the basic hypergeometric series ,11¢, (see [1]) is defined as

00 k
A1,Q2,...,0p41 | o (alaa27---7ar+l;Q)kz
T+1¢T|: bl,bg,...,br 4 Z:| _kz:% (q,bl,...,br;(J)k ’

The Gasper and Rahman quadratic summation (see [1, (3.8.12)]) can be stated as follows:
i 1— a’q3k (CL, b7 Q/bu Q)k(da f7 GQQ/dfv q2)k k
~ 1—a (ag/d,aq/f.df /a;q)r(¢* ag® /b, abg; ¢*)r
(aq, f/a,b,q/b; @)oo(d, aq®/df, f¢?/d, df*q/a?; ¢*)o
(a/f; fa/a;aq/d, df [a;q)oc(ag® /b, abg, fq/ab,bf [a; ¢*) o
f>bf/a7fQ/ab 9 9
fa#/d,df*qfa>

_ (agq, f/a;q)x(aq®/bd, abq/d, bdf /a, df g/ ab; ¢*)
(ag/d, df a; q)sc(aq®/b, abg, bf /a, fq/ab; ¢*)o

We shall prove Theorems 1.1-1.4 by applying the ‘creative microscoping’ method and
Gasper and Rahman’s quadratic summation (1.9) again.
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(1.9)

2. Proof of Theorem 1.1

We first give the following generalization of Theorem 1.1 with an extra parameter a.

Theorem 2.1. Let d > 2 and r > 1 be integers such that d + r is odd and ged(d,r) = 1.
Let n be a positive integer satisfying n = d +r (mod 2d) and n > d+r, and let a be an
indeterminate. Then, modulo ®,(q)(1 — aqg®™)(a — ¢@"*"),

(dn+n—r)/(2d) r . .o ]
(q", q* 7qd)k(aq q/a qd,qzd)k ik

3dk +r .
(¢%, 6”3 ") @n+n—r)/20)
= ' 2.1
[ ] (% 45 ) (dnimr) 2d) (2.1)

Proof. Letting q — ¢%,a = ¢""",b = ¢", d = aq", f = ¢"/a in (1.9) and noticing that
(g q%) 0 = 0, we get

(n—r)/d

3dk+r— n)( d—2n.

Z 1 —q qrfn’qr qu;qd)k(aq’",QT/a q aq ) qdk -0 (2 2)
— 1 _qr n aqd n d n/a qr+n q )k(q2d7q2d—n7qd+2r n’q2d)k ) :

where we have used (¢""; q¢%), = 0 for k > (n —r)/d. Since n = d+r (mod 2d), d +r is
odd, and ged(d,r) = 1, we have ged(2d,n) = 1. Note that 1 —¢"¥ =0 (mod ®,(q)) if and
only if N is a multiple of n. Thus, the smallest positive integer k such that (¢""; ¢%), = 0
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(mod ®,,(q)) is (n —r)/d + 1, and the smallest k for (¢¢72"~";¢*!),, = 0 (mod ® ( ) is
(dn +2n —d — 2r)/(2d) + 1. This implies that the polynomial (¢"*"; ¢%)x(q?+%"; ¢*); i
coprime with ®,,(¢) for 0 < k < (n—r)/d (since 0 < (n—r)/d < (dn—|—2n—d—27")/(2d)).
In view of ¢" =1 (mod ®,(q)), we deduce from (2.2) that

(n—r)/d r . d—r. d roor d. 2d
(@ a" "5 q(aq" ¢ Ja, ¢ e g
3dk +1r =0 (mod ®,(q)), 2.3
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and so (2.1) holds modulo ®,,(q) since (n —7r)/d < (dn+n —r)/(2d) < (dn+2n —d —
2r)/(2d).

On the other hand, performing the substitutions ¢ — ¢¢, a = ¢", b= ¢", d = ¢" ™,
and f = ¢"t9* in (1.9), and noticing that (¢"~9""; ¢*?), = 0, we obtain

(dnt+n—r)/(2d) r T —r r—dn— T

Z (1 _ q3dk+ )(q ’qd ;qd)k(q dn n7q +dn+n’qd;q2d)k "
— (1 _ qr)(qd+dn+n’ qdfdnfn; qd)k(q2d, q2d’ qd+2r; q2d)k
qd+7" dn+n.

’q> <qdn+n+2d—r dn+n+d—+r

.q 7 0% )

d-+d: 2d  d+2 d d d—r. ,2d
tdntn grsqd) oo (g3, qdt2r, gdntrtr gdnintdor, g2d)

_
(g
(1 dn+n)(q yq T; qu)(dn+n—r)/(2d)
(1

, (2.4)
— "), ¢ %) (antn—r) ) (24)

where we have used (¢"~9""";¢*?), = 0 for k > (dn +n — r)/(2d). This proves that
the left-hand side of (2.1) is also equal to 0 for a = ¢~ or a = ¢®*". Namely, the
g-congruence (2.1) is true modulo 1 — ag™*" and a — ¢+,

Since ®,(q), 1 — ag®™, and a — ¢¥™ are pairwise coprime polynomials in ¢, we
complete the proof of the theorem. |

Proof of Theorem 1.1. Since ged(d,n) = 1, the polynomial (¢%; ¢%) is coprime with ®,,(q)
for any 0 < k < n—1. Further, the polynomial (1—¢")? contains the factor ®,(q)?. Letting
a=11in (2.1), we get

(dn+n—r)/(2d) -, _r o
3dk 11 (¢, g% " g (q q q% @)k .
—~ (¢4 g% q")k(g*%, ¢*4, g2 )y

(@ ¢ ") (dnsn—r)/(20)

= [dn + n]
(@, ¢4 %) (dnrn—r)24)

(mod ®,,(q)?). (2.5)

It is easy to see that (¢% ¢*?) (dn+n—r)/(24)) contains the factor 1—¢*, and (¢*; ¢**) (dgn-+n—r)/(2d)
contains the factor 1 —¢*", and so the right-hand side of (2.5) is divisible by ®,,(¢q)*. More-
over, for (dn+n —r)/(2d) < k < n — 1, the k-th summand on the left-hand side of (1.3)
is divisible by ®,(¢)? too. This completes the proof. O



3. Proof of Theorem 1.2

Similarly as before, we first give the following parametric generalization of Theorem 1.2.

Theorem 3.1. Let d and r be positive integers withr < d < 2r. Let n be a positive integer

with n = —1 (mod 2d), and let a be an indeterminate. Then, modulo (1 — aq®**"")(a —
(2d—r)n
q ),

(2dn—rn—r)/(2d) . - o
S Bkt (¢4 0)klaq’, 6/a. €5 D
— (ag?, q%/a; ¢*) (g, g2, 2 g*4)y,
(qd7 q2r; q2d>(2dn—rn—r)/(2d)
(q2d7 qd+2r; q2d)(2dnfrnfr)/(2d)

= [2dn — rn)] (3.1)

Proof. The proof is similar to that of Theorem 2.1. Taking ¢ — ¢¢, a = ¢", b = ¢,
d = ¢~ and f = ¢"*24=)" in (1.9), and noticing that (¢"~??""; ¢??) = 0, we
obtain

(2dn—rn—r)/(2d) r\( T —r r—(2d—r)n v —r)n
(1= ™) (q", g5 q")r(g"= B, gt B g D)y

— (1 —g) (gt Cd=rn, gd=@d=rin; gd), (g2, g2, qd+2r; g2),,
qd—i-r’ q(Qd—r)n; qd)oo(q(Qd—r)n—i-Qd—r, q(2d—7“)n—|—d—§—7“7 q27"7 qd’ qu>OO

qd+(2d—r)n7 q; qd>oo(q2d7 qd+2'r7 q(2d—'r‘)n—§—r7 q(2d—7‘)n+d—'r; q2d)oo

— ¢ ) (¢ ¢ ) 2dn—rn—r)/2d)

- qr)(q2d7 qurZT; q2d)(2dn—rn—r)/(2d) 7

(3.2)

where we have used (q"~24=")"; ¢24), = 0 for k > (2dn — rn — r)/(2d). Thus, we have
proved that the left-hand side of (3.1) is also equal to 0 for a = ¢~ %" or g = ¢(24=")",
This means that (3.1) is true modulo 1 — ag*")" and a — ¢>4=")". 0

Proof of Theorem 1.2. Since n = —1 (mod 2d), we have gcd(2d,n) = 1. Thus, the small-
est positive integer k such that (¢™;¢*")r =0 (mod ®,,(q)) is (2d —m)(n +1)/(2d) for m
in the range 0 < m < 2d. By the condition r < d < 2r, we get 0 < (d+2r) —2d < r, and
therefore (¢%+2"; ¢°?);, is coprime with ®,,(¢) for k in the range 0 < k < (2dn—rn—r)/(2d).
Meanwhile, the polynomials (¢%; %), and (¢*?;¢*?), are both coprime with ®,(q) for
0 < k <n— 1. Hence, specializing a = 1 in (3.1), we are led to
o %T)/(Qd)[g PPRRTC Y el W UL B T LI
— (a2, ¢% ¢ (g2, g2, g2 g2d) .

(4%, @ @) 2dn—rn—r))24)
(®1, ¢ ¢*2) (2dn—rn—r) ) (2d)

= [2dn — rn] (mod ®,(q)*).

Since the right-hand of the above g-supercongruence is clearly divisible by ®,(¢)* and so
is the k-th summand on the left-hand side of (1.4) for (2dn —rn —1r)/(2d) < k <n —1,
we complete the proof of the theorem. O



4. Proof of Theorem 1.3

We first present a parametric generalization of Theorem 1.3.

Theorem 4.1. Let d and r be positive integers such that r is odd, d > r and ged(d,r) = 1.
Let n be a positive integer satisfying n = —r (mod 2d), and let a be an indeterminate.

Then, modulo (1 — ag®™")(a — g2,

(2dn—n—r)/(2d) r . roor .
S Bkt (" 4" "5 qDrlag”, 4" Ja, %5 ¢ .
— (ag?, q%/a; M)k (¢**, ¢*%, "+ ¢* )i,
(qd? q2r; q2d)(2dn—n—r)/(2d)
(q2d7 qd+2r; qu)(Zdnfnfr)/(Qd)

= [2dn — n]

(4.1)

Proof. The proof is again very similar to that of Theorem 2.1. This time we take g — ¢,
a=q¢,b=q,d=q¢ D and f = ¢ +@=Yn in (1.9) to get

(2dn—n—r)/(2d) T r —r r—(2d—1)n ,r —1)n
(1= @) (g7, g g (g7 B gt @a=bn gd: g2dy, -

(1 _ qr)(qd-i-(Zd—l)n’ qd—(2d—1)n; qd)k(qu’ q2d7 qd+2r; q2d)k

k=0
_ (1 - qdn_n)(qd> q2r; q2d)(2dn—n—r)/(2d) (4 2)
(]- - qr)(quv qd+2r; qzd)(anfnfr)/(Zd) 7
This proves that the g-congruence (4.1) is true modulo 1 — ag®?*~Y" and a — ¢?¢=1". O

Proof of Theorem 1.3. Note that d # 3. For d = 2 (and so r = 1), the g-supercongruence
(1.4) follows from (1.2) immediately. It is easy to see that ged(2d,n) = 1, and the smallest
positive integer k such that (¢¢=";¢%), = 0 (mod ®,(q)) is (n + 7 — d)/d + 1, while the
smallest k satisfying (¢?*%";¢*!), =0 (mod ®,(q)) is (dn—2n—d —2r)/(2d) +1 (We can
verify that dn — 2n — d — 2r > 0 according to d = 4, and d > 5, respectively).

It is not difficult to see that 0 < (n+r—d)/d < (dn—2n—d—2r)/(2d) by the conditions
in the theorem. Hence, the denominator of reduced form of (¢?";q¢%),/(q?+%; ¢*); is
coprime with ®,(q) for 0 < k < (dn —n —r)/d. Thus, taking the value a = 1 in (4.1), we
arrive at

(2dn. %)/(261)[30% o (@ " gD 0 a5 ) "
ar (g%, q% qM)i(q2?, 24, qit2r; g2,

(qd, q%; q2d)(2dn—n—r)/(2d)
(%, ¢ ¢*) (2dn—n—r)/(2d)

= [2dn — n] (mod @,(q)?),

which is equivalent to (1.6) for the same reason as before. O



5. Proof of Theorem 1.4

Likewise, we have the following parametric generalization of Theorem 1.4.

Theorem 5.1. Let d and r be positive integers such that r is odd and ged(d,r) = 1. Letn
be a positive integer satisfying n = r (mod 2d) with n > r, and let a be an indeterminate.
Then, modulo ®,,(q)(1 — aq™)(a — q"),

(¢" q" 5 qYe(aq", " Ja, q% ¢* )k o
(aq?,q%/a; qM)k(q??, ¢4, q1+27; ¢24),,

] (@, ¢ ) (n=r)/(20) .
(@24, 25 @) (-1 /(20)

[3dk + 1]

(5.1)

Proof. When n = r, both sides of (4.1) are equal to [r] and so (5.1) holds. We now suppose
that n > 2d +r. Letting ¢ — ¢%,a = ¢ ", b=¢q", d = aq", f = ¢"/a in (1.9) and noticing
that (¢t ¢%)s = 0 leads to (2.2) again. By the condition in the theorem, we have
ged(2d,n) = 1. Moreover, the same arguments imply that (2.3) holds, or equivalently
(5.1) is true modulo ®,,(q).

On the other hand, making the substitutions ¢ — ¢, a = ¢", b = ¢", d = ¢"™", and
f=¢ " in (1.9), we get

(1= q") (g™, ¢4 q) e (2, 4%, q427; ?4),,

1— g™ d 2r. 2d _—
_ (A =g")(e" ¢ ) m-r)/2a) (5.2)

(1 —q")(¢*, g% %) (n—r)/20)
Since (¢""; ¢*)), = 0 for k > (n —r)/(2d), one sees that both sides of (5.1) are equal for

a =¢q " and a = ¢". In other words, the g-congruence (5.1) holds modulo 1 — ag¢™ and
a — qn. 0

(n—r)/(2d) r\( AT —r. r—m . r+n .
3 e i [ T S P VY L o
k=0

Proof of Theorem 1.3. Since ged(2d,n) = 1, the polynomial (¢??;¢*?), is coprime with
®,(q) for any 0 < k < (n —r)/d. Putting a = 1 in (4.1) and noticing that the k-th
summand on the left-hand side of (1.8) is divisible by ®,,(¢q)* too, we obtain (1.8). O

6. Concluding remarks

We point out that Wei [18] gave a generalization of (1.2) modulo [n]®,(¢)* by using
the method of ‘creative microscoping’ together with the Chinese remainder theorem for
coprime polynomials. However, it seems difficult to give such generalizations of Theorems
1.1-1.4, even in the modulus ®,,(q)* case.

Although the condition r < d < 2r is necessary in the proof of Theorem 1.2, we believe
that this condition can be weakened as only r < d, which we formulate as follows.
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Conjecture 6.1. Let d and r be positive integers with d > r. Let n be a positive integer
with n = —1 (mod 2d). Then

n—1

S i3dk 4 1] (g ,qd*;;qd)k(qﬁqr,qd;q“)kqdk
pa (g% q")3(a*, ¢*, q*+2r; g*4)y

r

=0 (mod ®,(q)?). (6.1)

It is easy to see that we may truncate the left-hand side of (6.1) at k = (2dn — rn —
r)/(2d), just like the left-hand side of (1.4).

Similarly, Theorem 1.3 has the following generalization.

Conjecture 6.2. Let d and r be positive integers such that r is odd and ged(d,r) = 1.
Let n be a positive integer satisfying n = —r (mod 2d) and dn = n+r. Then (6.1) holds.
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