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Abstract. We give four families of q-supercongruences modulo the square and cube of a
cyclotomic polynomial from Gasper and Rahman’s quadratic summation. As conclusions,
we obtain four new supercongruences modulo p2 or p3, such as: for d > 2, r > 1 with
gcd(d, r) = 1 and d + r odd, and any prime p ≡ d + r (mod 2d) with p > d + r,
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where (x)n = x(x + 1) · · · (x + n− 1) is the Pochhammer symbol. We also propose three
related conjectures on q-supercongruences.
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1. Introduction

Following the work of [13, 14, 16], applying a 7F6 summation of Gessel and Stanton [2],
He [6] established the following supercongruence:
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−pΓp(

1
4
)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.1)

where (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer symbol and Γp(x) is Morita’s
p-adic Gamma function [15]. Soon afterwards, Liu [8] further proved that (1.1) holds
modulo p3 by employing another 7F6 summation in [2].

Recently, using a summation formula of Gasper and Rahman (see (1.9)) and the
method of ‘creative microscoping’ introduced by the author and Zudilin [5], among other
things, Wei [18] gave the following q-analogue of Liu’s generalization of (1.1) modulo p3:
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for any positive odd integer n, modulo [n]Φn(q)2,

n−1∑
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, if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(1.2)

Here and throughout the paper, the q-integer is defined as [n] = (1− qn)/(1− q), the q-
shifted factorial is defined as (a; q)0 = 1 and (a; q)n = (1−a)(1−aq) · · · (1−aqn−1) for n > 1
or n = ∞. For convenience, we also adopt the abbreviated notation (a1, a2, . . . , am; q)n =
(a1; q)n(a2; q)n · · · (am; q)n for n = 0, 1, . . . , or n = ∞. Moreover, let Φn(q) be the n-th
cyclotomic polynomial, which can be written as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. For two rational functions A(q) and B(q), and
a polynomial P (q) with integer coefficients, we say that A(q) is congruent to B(q) modulo
P (q), denoted A(q) ≡ B(q) (mod P (q)), if the numerator of the reduced fraction A(q)−
B(q) is divisible by P (q) in the polynomial ring Z[q]. If A(q) ≡ 0 (mod P (q)), then we will
also say that A(q) is divisible by P (q). It should be mentioned that q-supercongruences
have been widely studied in recent years. See, for example, [3, 4, 7, 9–12,17,19].

In this paper, we shall give some generalizations of (1.2), where the modulo [n]Φn(q)2

condition will be replaced by the weaker condition modulo Φn(q)3 or Φn(q)2. Our first
result can be formulated as follows.

Theorem 1.1. Let d > 2 and r > 1 be integers such that d + r is odd and gcd(d, r) = 1.
Let n be a positive integer satisfying n ≡ d + r (mod 2d) and n > d + r. Then
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qdk ≡ 0 (mod Φn(q)3). (1.3)

It is easy to see that the (d, r) = (2, 1) case of (1.3) is just the second part of (1.2)
modulo Φn(q)3. Besides, taking n = p to be a prime and q → 1 in (1.3), we arrive at the
following result: for d, r > 0 with gcd(d, r) = 1 and d + r odd, and any prime p ≡ d + r
(mod 2d) with p > d + r,
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≡ 0 (mod p3),

which is a generalization of (1.1) for p ≡ 3 (mod 4).
We shall also give another two generalizations of the n ≡ 3 (mod 4) case of (1.2)

modulo Φn(q)2.
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Theorem 1.2. Let d and r be positive integers with r < d 6 2r. Let n be a positive
integer with n ≡ −1 (mod 2d). Then

n−1∑

k=0
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qdk ≡ 0 (mod Φn(q)2). (1.4)

Likewise, taking n = p to be a prime and q → 1 in (1.4), we get the following result:
for 0 < r < d 6 2r, and any prime p ≡ −1 (mod 2d),
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≡ 0 (mod p2). (1.5)

Theorem 1.3. Let d and r be positive integers such that r is odd, d > r and gcd(d, r) =
1. Let n be a positive integer satisfying n ≡ −r (mod 2d). Suppose that (d, r) /∈
{(3, 1), (4, 3)}. Then
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qdk ≡ 0 (mod Φn(q)2). (1.6)

It is easy to see that (1.6) implies the following result: for the same (d, r) in Theo-
rem 1.3 and any prime p ≡ −r (mod 2d),
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≡ 0 (mod p2). (1.7)

Both (1.5) and (1.7) are generalizations of (1.1) for p ≡ 3 (mod 4).
The last aim of this paper is to give a generalization of (1.2) modulo Φn(q)3 for n ≡ 1

(mod 4).

Theorem 1.4. Let d and r be positive integers such that r is odd and gcd(r, d) = 1. Let
n be a positive integer satisfying n ≡ r (mod 2d) with n > r. Then

n−1∑

k=0

[3dk + r]
(qr, qd−r; qd)k(q

r, qr, qd; q2d)k
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qdk
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(mod Φn(q)3). (1.8)

It is clear that the (d, r) = (2, 1) case of (1.8) reduces to the first part of (1.2). Similarly
as before, the q-supercongruence (1.8) leads to the following result: for the same (d, r) in
Theorem 1.4 and any prime p ≡ r (mod 2d) with p > r,
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Recall that the basic hypergeometric series r+1φr (see [1]) is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k

.

The Gasper and Rahman quadratic summation (see [1, (3.8.12)]) can be stated as follows:

∞∑

k=0

1− aq3k

1− a

(a, b, q/b; q)k(d, f, a2q/df ; q2)k

(aq/d, aq/f, df/a; q)k(q2, aq2/b, abq; q2)k

qk

+
(aq, f/a, b, q/b; q)∞(d, aq2/df, fq2/d, df2q/a2; q2)∞

(a/f, fq/a, aq/d, df/a; q)∞(aq2/b, abq, fq/ab, bf/a; q2)∞

× 3φ2

[
f, bf/a, fq/ab

fq2/d, df2q/a2
; q2, q2

]

=
(aq, f/a; q)∞(aq2/bd, abq/d, bdf/a, dfq/ab; q2)∞
(aq/d, df/a; q)∞(aq2/b, abq, bf/a, fq/ab; q2)∞

. (1.9)

We shall prove Theorems 1.1–1.4 by applying the ‘creative microscoping’ method and
Gasper and Rahman’s quadratic summation (1.9) again.

2. Proof of Theorem 1.1

We first give the following generalization of Theorem 1.1 with an extra parameter a.

Theorem 2.1. Let d > 2 and r > 1 be integers such that d + r is odd and gcd(d, r) = 1.
Let n be a positive integer satisfying n ≡ d + r (mod 2d) and n > d + r, and let a be an
indeterminate. Then, modulo Φn(q)(1− aqdn+n)(a− qdn+n),

(dn+n−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [dn + n]
(qd, q2r; q2d)(dn+n−r)/(2d)

(q2d, qd+2r; q2d)(dn+n−r)/(2d)

. (2.1)

Proof. Letting q 7→ qd, a = qr−n, b = qr, d = aqr, f = qr/a in (1.9) and noticing that
(qd+r−n; qd)∞ = 0, we get

(n−r)/d∑

k=0

(1− q3dk+r−n)(qr−n, qr, qd−r; qd)k(aqr, qr/a, qd−2n; q2d)k

(1− qr−n)(aqd−n, qd−n/a, qr+n; qd)k(q2d, q2d−n, qd+2r−n; q2d)k

qdk = 0, (2.2)

where we have used (qr−n; qd)k = 0 for k > (n− r)/d. Since n ≡ d + r (mod 2d), d + r is
odd, and gcd(d, r) = 1, we have gcd(2d, n) = 1. Note that 1− qN ≡ 0 (mod Φn(q)) if and
only if N is a multiple of n. Thus, the smallest positive integer k such that (qr+n; qd)k ≡ 0
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(mod Φn(q)) is (n − r)/d + 1, and the smallest k for (qd+2r−n; q2d)k ≡ 0 (mod Φn(q)) is
(dn + 2n − d − 2r)/(2d) + 1. This implies that the polynomial (qr+n; qd)k(q

d+2r; q2d)k is
coprime with Φn(q) for 0 6 k 6 (n−r)/d (since 0 < (n−r)/d 6 (dn+2n−d−2r)/(2d)).
In view of qn ≡ 1 (mod Φn(q)), we deduce from (2.2) that

(n−r)/d∑

k=0

[3dk + r]
(qr, qd−r; qd)k(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d, q2d, qd+2r; q2d)k

qdk ≡ 0 (mod Φn(q)), (2.3)

and so (2.1) holds modulo Φn(q) since (n − r)/d < (dn + n − r)/(2d) 6 (dn + 2n − d −
2r)/(2d).

On the other hand, performing the substitutions q 7→ qd, a = qr, b = qr, d = qr−dn−n,
and f = qr+dn+n in (1.9), and noticing that (qr−dn−n; q2d)∞ = 0, we obtain

(dn+n−r)/(2d)∑

k=0

(1− q3dk+r)(qr, qd−r; qd)k(q
r−dn−n, qr+dn+n, qd; q2d)k

(1− qr)(qd+dn+n, qd−dn−n; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

=
(qd+r, qdn+n; qd)∞(qdn+n+2d−r, qdn+n+d+r, q2r, qd; q2d)∞
(qd+dn+n, qr; qd)∞(q2d, qd+2r, qdn+n+r, qdn+n+d−r; q2d)∞

=
(1− qdn+n)(qd, q2r; q2d)(dn+n−r)/(2d)

(1− qr)(q2d, qd+2r; q2d)(dn+n−r)/(2d)

, (2.4)

where we have used (qr−dn−n; q2d)k = 0 for k > (dn + n − r)/(2d). This proves that
the left-hand side of (2.1) is also equal to 0 for a = q−dn−n or a = qdn+n. Namely, the
q-congruence (2.1) is true modulo 1− aqdn+n and a− qdn+n.

Since Φn(q), 1 − aqdn+n, and a − qdn+n are pairwise coprime polynomials in q, we
complete the proof of the theorem. 2

Proof of Theorem 1.1. Since gcd(d, n) = 1, the polynomial (qd; qd)k is coprime with Φn(q)
for any 0 6 k 6 n−1. Further, the polynomial (1−qn)2 contains the factor Φn(q)2. Letting
a = 1 in (2.1), we get

(dn+n−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(q

r, qr, qd; q2d)k

(qd, qd; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [dn + n]
(qd, q2r; q2d)(dn+n−r)/(2d)

(q2d, qd+2r; q2d)(dn+n−r)/(2d)

(mod Φn(q)3). (2.5)

It is easy to see that (qd; q2d)(dn+n−r)/(2d)) contains the factor 1−qdn, and (q2r; q2d)(dn+n−r)/(2d)

contains the factor 1−q2n, and so the right-hand side of (2.5) is divisible by Φn(q)3. More-
over, for (dn + n− r)/(2d) < k 6 n− 1, the k-th summand on the left-hand side of (1.3)
is divisible by Φn(q)3 too. This completes the proof. 2
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3. Proof of Theorem 1.2

Similarly as before, we first give the following parametric generalization of Theorem 1.2.

Theorem 3.1. Let d and r be positive integers with r < d 6 2r. Let n be a positive integer
with n ≡ −1 (mod 2d), and let a be an indeterminate. Then, modulo (1− aq(2d−r)n)(a−
q(2d−r)n),

(2dn−rn−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [2dn− rn]
(qd, q2r; q2d)(2dn−rn−r)/(2d)

(q2d, qd+2r; q2d)(2dn−rn−r)/(2d)

. (3.1)

Proof. The proof is similar to that of Theorem 2.1. Taking q 7→ qd, a = qr, b = qr,
d = qr−(2d−r)n, and f = qr+(2d−r)n in (1.9), and noticing that (qr−(2d−r)n; q2d)∞ = 0, we
obtain

(2dn−rn−r)/(2d)∑

k=0

(1− q3dk+r)(qr, qd−r; qd)k(q
r−(2d−r)n, qr+(2d−r)n, qd; q2d)k

(1− qr)(qd+(2d−r)n, qd−(2d−r)n; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

=
(qd+r, q(2d−r)n; qd)∞(q(2d−r)n+2d−r, q(2d−r)n+d+r, q2r, qd; q2d)∞
(qd+(2d−r)n, qr; qd)∞(q2d, qd+2r, q(2d−r)n+r, q(2d−r)n+d−r; q2d)∞

=
(1− qdn+n)(qd, q2r; q2d)(2dn−rn−r)/(2d)

(1− qr)(q2d, qd+2r; q2d)(2dn−rn−r)/(2d)

, (3.2)

where we have used (qr−(2d−r)n; q2d)k = 0 for k > (2dn − rn − r)/(2d). Thus, we have
proved that the left-hand side of (3.1) is also equal to 0 for a = q−(2d−r)n or a = q(2d−r)n.
This means that (3.1) is true modulo 1− aq(2d−r)n and a− q(2d−r)n. 2

Proof of Theorem 1.2. Since n ≡ −1 (mod 2d), we have gcd(2d, n) = 1. Thus, the small-
est positive integer k such that (qm; q2d)k ≡ 0 (mod Φn(q)) is (2d−m)(n + 1)/(2d) for m
in the range 0 < m < 2d. By the condition r < d 6 2r, we get 0 6 (d + 2r)− 2d < r, and
therefore (qd+2r; q2d)k is coprime with Φn(q) for k in the range 0 6 k 6 (2dn−rn−r)/(2d).
Meanwhile, the polynomials (qd; qd)k and (q2d; q2d)k are both coprime with Φn(q) for
0 6 k 6 n− 1. Hence, specializing a = 1 in (3.1), we are led to

(2dn−rn−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(q

r, qr, qd; q2d)k

(qd, qd; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [2dn− rn]
(qd, q2r; q2d)(2dn−rn−r)/(2d)

(q2d, qd+2r; q2d)(2dn−rn−r)/(2d)

(mod Φn(q)2).

Since the right-hand of the above q-supercongruence is clearly divisible by Φn(q)3 and so
is the k-th summand on the left-hand side of (1.4) for (2dn− rn− r)/(2d) < k 6 n− 1,
we complete the proof of the theorem. 2
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4. Proof of Theorem 1.3

We first present a parametric generalization of Theorem 1.3.

Theorem 4.1. Let d and r be positive integers such that r is odd, d > r and gcd(d, r) = 1.
Let n be a positive integer satisfying n ≡ −r (mod 2d), and let a be an indeterminate.
Then, modulo (1− aq2dn−n)(a− q2dn−n),

(2dn−n−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [2dn− n]
(qd, q2r; q2d)(2dn−n−r)/(2d)

(q2d, qd+2r; q2d)(2dn−n−r)/(2d)

. (4.1)

Proof. The proof is again very similar to that of Theorem 2.1. This time we take q 7→ qd,
a = qr, b = qr, d = qr−(2d−1)n, and f = qr+(2d−1)n in (1.9) to get

(2dn−n−r)/(2d)∑

k=0

(1− q3dk+r)(qr, qd−r; qd)k(q
r−(2d−1)n, qr+(2d−1)n, qd; q2d)k

(1− qr)(qd+(2d−1)n, qd−(2d−1)n; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

=
(1− qdn−n)(qd, q2r; q2d)(2dn−n−r)/(2d)

(1− qr)(q2d, qd+2r; q2d)(2dn−n−r)/(2d)

, (4.2)

This proves that the q-congruence (4.1) is true modulo 1− aq(2d−1)n and a− q(2d−1)n. 2

Proof of Theorem 1.3. Note that d 6= 3. For d = 2 (and so r = 1), the q-supercongruence
(1.4) follows from (1.2) immediately. It is easy to see that gcd(2d, n) = 1, and the smallest
positive integer k such that (qd−r; qd)k ≡ 0 (mod Φn(q)) is (n + r − d)/d + 1, while the
smallest k satisfying (qd+2r; q2d)k ≡ 0 (mod Φn(q)) is (dn−2n−d−2r)/(2d)+1 (We can
verify that dn− 2n− d− 2r > 0 according to d = 4, and d > 5, respectively).

It is not difficult to see that 0 < (n+r−d)/d 6 (dn−2n−d−2r)/(2d) by the conditions
in the theorem. Hence, the denominator of reduced form of (qd−r; qd)k/(q

d+2r; q2d)k is
coprime with Φn(q) for 0 6 k 6 (dn−n− r)/d. Thus, taking the value a = 1 in (4.1), we
arrive at

(2dn−n−r)/(2d)∑

k=0

[3dk + r]
(qr, qd−r; qd)k(q

r, qr, qd; q2d)k

(qd, qd; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [2dn− n]
(qd, q2r; q2d)(2dn−n−r)/(2d)

(q2d, qd+2r; q2d)(2dn−n−r)/(2d)

(mod Φn(q)2),

which is equivalent to (1.6) for the same reason as before. 2

7



5. Proof of Theorem 1.4

Likewise, we have the following parametric generalization of Theorem 1.4.

Theorem 5.1. Let d and r be positive integers such that r is odd and gcd(d, r) = 1. Let n
be a positive integer satisfying n ≡ r (mod 2d) with n > r, and let a be an indeterminate.
Then, modulo Φn(q)(1− aqn)(a− qn),

(n−r)/d∑

k=0

[3dk + r]
(qr, qd−r; qd)k(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

≡ [n]
(qd, q2r; q2d)(n−r)/(2d)

(q2d, qd+2r; q2d)(n−r)/(2d)

. (5.1)

Proof. When n = r, both sides of (4.1) are equal to [r] and so (5.1) holds. We now suppose
that n > 2d + r. Letting q 7→ qd, a = qr−n, b = qr, d = aqr, f = qr/a in (1.9) and noticing
that (qd+r−n; qd)∞ = 0 leads to (2.2) again. By the condition in the theorem, we have
gcd(2d, n) = 1. Moreover, the same arguments imply that (2.3) holds, or equivalently
(5.1) is true modulo Φn(q).

On the other hand, making the substitutions q 7→ qd, a = qr, b = qr, d = qr−n, and
f = qr+n in (1.9), we get

(n−r)/(2d)∑

k=0

(1− q3dk+r)(qr, qd−r; qd)k(q
r−n, qr+n, qd; q2d)k

(1− qr)(qd+n, qd−n; qd)k(q2d, q2d, qd+2r; q2d)k

qdk

=
(1− qn)(qd, q2r; q2d)(n−r)/(2d)

(1− qr)(q2d, qd+2r; q2d)(n−r)/(2d)

. (5.2)

Since (qr−n; q2d)k = 0 for k > (n− r)/(2d), one sees that both sides of (5.1) are equal for
a = q−n and a = qn. In other words, the q-congruence (5.1) holds modulo 1 − aqn and
a− qn. 2

Proof of Theorem 1.3. Since gcd(2d, n) = 1, the polynomial (q2d; q2d)k is coprime with
Φn(q) for any 0 6 k 6 (n − r)/d. Putting a = 1 in (4.1) and noticing that the k-th
summand on the left-hand side of (1.8) is divisible by Φn(q)3 too, we obtain (1.8). 2

6. Concluding remarks

We point out that Wei [18] gave a generalization of (1.2) modulo [n]Φn(q)4 by using
the method of ‘creative microscoping’ together with the Chinese remainder theorem for
coprime polynomials. However, it seems difficult to give such generalizations of Theorems
1.1–1.4, even in the modulus Φn(q)4 case.

Although the condition r < d 6 2r is necessary in the proof of Theorem 1.2, we believe
that this condition can be weakened as only r < d, which we formulate as follows.
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Conjecture 6.1. Let d and r be positive integers with d > r. Let n be a positive integer
with n ≡ −1 (mod 2d). Then

n−1∑

k=0

[3dk + r]
(qr, qd−r; qd)k(q

r, qr, qd; q2d)k

(qd; qd)2
k(q

2d, q2d, qd+2r; q2d)k

qdk ≡ 0 (mod Φn(q)2). (6.1)

It is easy to see that we may truncate the left-hand side of (6.1) at k = (2dn− rn−
r)/(2d), just like the left-hand side of (1.4).

Similarly, Theorem 1.3 has the following generalization.

Conjecture 6.2. Let d and r be positive integers such that r is odd and gcd(d, r) = 1.
Let n be a positive integer satisfying n ≡ −r (mod 2d) and dn > n+ r. Then (6.1) holds.
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