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Abstract. We establish a new family of q-congruences modulo the third power of a
cyclotomic polynomial from a quadratic summation formula due to Gasper and Rahman.
The main ingredient of our proof is the creative microscoping method developed by the
author in collaboration with Zudilin. Two special cases of our result partially confirm a
recent conjecture by He and Wang [Proc. Amer. Math. Soc. 152 (2024), 4775–4784]. A
related conjecture on q-congruences is also proposed at the end of this paper.
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1. Introduction

Employing the Wilf–Zeilberger (abbr. WZ) method [20,21], Guillera and Zudilin [3] suc-
ceeded in proving the following supercongruence: for any prime p > 2,

(p−1)/2∑

k=0

3k + 1

16k

(
2k

k

)3

≡ p (mod p3). (1.1)

Note that, on the left-hand side of (1.1), we can also sum over k from 0 to p−1, since the
p-adic order of (1

2
)k/k! is 1 for k satisfying (p−1)/2 < k 6 p−1. Still by the WZ method

and the summation package Sigma [14], Wang [17] gave the following supercongruence:
for any prime p > 3,

p−1∑

k=0

(3k − 1)
(1

2
)k(−1

2
)2
k

k!3
4k ≡ p− 2p3 (mod p4), (1.2)

which generalizes a result conjectured by the author and Schlosser [9, Conjecture 6.2].
By making use of the method of creative microscoping introduced in [11] and the Chi-

nese reminder theorem for coprime polynomials, the author [5] established the following
q-supercongruence: for any positive odd integer n,

n−1∑

k=0

[3k + 1]
(q; q2)3

kq
−(k+1

2 )

(q; q)2
k(q

2; q2)k

≡ q(1−n)/2[n] +
(n2 − 1)(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)3). (1.3)
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which was originally conjectured in [4]. Letting n = pm be a prime power and q → 1 in
(1.3), we are led to the supercongruence:

pm−1∑

k=0

(1
2
)3
k

k!3
(3k + 1)22k ≡ pm (mod pm+3) for p > 3. (1.4)

A stronger version of (1.4) modulo pm+4 was formulated by Sun [15, Conjecture 5.1(ii)],
and has recently been confirmed by Wang and Hu [18]. On the basis of (1.3), using the
q-WZ method again, the author [6] obtained a q-analogue of (1.2) as follows:

n−1∑

k=0

[3k − 1]
(q; q2)k(q

−1; q2)2
k

(q; q)2
k(q

2; q2)k

q(3k−k2)/2

≡ [n]q−(n+1)/2 − (1 + q)[n]3 +
(n2 − 1)(1− q)2

24
[n]3q−(n+1)/2 (mod [n]Φn(q)3). (1.5)

Here we need to recall the standard q-notation. The q-shifted factorial is defined as
(a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n = 1, 2, . . . , or n = ∞, and
the q-integer is defined by [n] = (1− qn)/(1− q). For simplicity, we will often adopt the
shorthand notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. In addition, the n-th
cyclotomic polynomial Φn(q) is given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
Recently, among other things, He and Wang [12] proved the following q-supercongruence:

for any odd integer n > 1 and ε = ±1, modulo [n]Φn(q)2,

n−1∑

k=0

[6k + ε]
(qε, qε, q2; q4)k

(q2; q2)2
k(q

4; q4)k

q(1−ε)k−k2 ≡
{

[n]q(ε−n)/2, if n ≡ ε (mod 4),

[3n]q(ε−3n)/2, if n ≡ −ε (mod 4).
(1.6)

In this paper, we shall establish a new family of q-supercongruences similar to (1.3),
(1.5), and (1.6) in the modulus [n]Φn(q)2 case as follows.

Theorem 1.1. Let d be a positive integer and r an arbitrary integer. Let n > 1 be an
odd integer with gcd(d, n) = 1. Suppose that λ is an integer satisfying λn ≡ r (mod 2d)
and (n− 1)/2 6 (λn− r)/d 6 n− 1.Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [λn]q(r−λn)/2 (mod [n]Φn(q)2).

For n ≡ ±r,±1 (mod 2d), we obtain the following four corollaries.
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Corollary 1.2. Let d > 1 and r be integers with r odd gcd(d, r) = 1. Let n > 1 be an
integer satisfying n ≡ r (mod 2d) and (n− 1)/2 6 (n− r)/d 6 n− 1. Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [n]q(r−n)/2 (mod [n]Φn(q)2). (1.7)

Taking n = pm to be a prime power and q → 1 in (1.7), we obtain the following
supercongruence: for any integers d,m, r such that d,m > 1, r odd, and gcd(d, r) = 1,
and any prime p with pm ≡ r (mod 2d) and (pm − 1)/2 6 (pm − r)/d 6 pm − 1, there
holds

pm−1∑

k=0

(3dk + r)
( r

2d
)2
k(

1
2
)k

k!3
4k ≡ pm (mod pm+2).

Corollary 1.3. Let d > 1 and r be integers with r odd gcd(d, r) = 1. Let n > 1 be an
integer satisfying n ≡ −r (mod 2d) and (n− 1)/2 6 (2dn− n− r)/d 6 n− 1. Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)kq

k(d−dk−2r)/2

(qd; qd)2
k(q

2d; q2d)k

≡ [2dn− n]q(r+n−2dn)/2 (mod [n]Φn(q)2).

(1.8)

Likewise, letting n = pm be a prime power and q → 1 in (1.8), we are led to the
following result: for any integers d,m, r such that d,m > 1, r odd, and gcd(d, r) = 1, and
any prime p with pm ≡ −r (mod 2d) and (pm−1)/2 6 (2dpm−pm−r)/d 6 pm−1, there
holds

pm−1∑

k=0

(3dk + r)
( r

2d
)2
k(

1
2
)k

k!3
4k ≡ (2d− 1)pm (mod pm+2).

Note that Corollaries 1.2 and 1.3 partially confirm a recent conjecture of He and
Wang [12, Conjecture 2.6].

Corollary 1.4. Let d and r be positive integers with gcd(d, r) = 1 and r 6 d 6 2r. Let
n > 1 be an integer satisfying n ≡ 1 (mod 2d). Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [rn]qr(1−n)/2 (mod [n]Φn(q)2). (1.9)

It is not difficult to see that (1.9) indicates the following result: for any positive integers
d,m, r such that gcd(d, r) = 1 and r 6 d 6 2r, and any prime p with pm ≡ 1 (mod 2d),
there holds

pm−1∑

k=0

(3dk + r)
( r

2d
)2
k(

1
2
)k

k!3
4k ≡ rpm (mod pm+2).

3



Corollary 1.5. Let d and r be positive integers with gcd(d, r) = 1. Let n > 1 be an
integer satisfying n ≡ −1 (mod 2d) and (n− 1)/2 6 (2dn− rn− r)/d 6 n− 1. Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [(2d− r)n]q(r+rn−2dn)/2 (mod [n]Φn(q)2).

(1.10)

Similarly, the q-supercongruence (1.10) implies that, for any positive integers d,m, r
such that gcd(d, r) = 1, and any prime p with pm ≡ −1 (mod 2d) and (pm − 1)/2 6
(2dpm − rpm − r)/d 6 pm − 1, there holds

pm−1∑

k=0

(3dk + r)
( r

2d
)2
k(

1
2
)k

k!3
4k ≡ (2d− r)pm (mod pm+2).

We can also give another four corollaries for n ≡ d± r, d± 1 (mod 2d), which are left
to the interested reader.

Recall that a quadratic summation of Gasper and Rahman (see [1, (3.8.12)]) can be
written as follows:

∞∑

k=0

1− aq3k

1− a

(a, b, q/b; q)k(d, f, a2q/df ; q2)k

(aq/d, aq/f, df/a; q)k(q2, aq2/b, abq; q2)k

qk

+
(aq, f/a, b, q/b; q)∞(d, aq2/df, fq2/d, df2q/a2; q2)∞

(a/f, fq/a, aq/d, df/a; q)∞(aq2/b, abq, fq/ab, bf/a; q2)∞

× 3φ2

[
f, bf/a, fq/ab

fq2/d, df2q/a2
; q2, q2

]

=
(aq, f/a; q)∞(aq2/bd, abq/d, bdf/a, dfq/ab; q2)∞
(aq/d, df/a; q)∞(aq2/b, abq, bf/a, fq/ab; q2)∞

, (1.11)

where the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k

.

Wei [19] first utilized Gasper and Rahman’s summation (1.11) to give a q-analogue of a
supercongruence modulo p3 of Liu [13]. Inspired by Wei’s work, the author [7] deduced
more supercongruences from (1.11). He and Wang [12] made use of this summation to
prove the aforementioned q-supercongruence (1.6). Gu and Wang [2] also utilized (1.11) to
confirm two conjectures in [8,16]. Here we shall give a proof of Theorem 1.1 by using the
creative microscoping method and Gasper and Rahman’s summation (1.11) once more.
We shall consider a new special case of this summation, which is different from those
in [7, 12,19].
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2. Proof of Theorem 1.1

We first give the following parametric version of Theorem 1.1.

Lemma 2.1. Let d be a positive integer and r an arbitrary integer. Let n > 1 be an
odd integer with gcd(d, n) = 1, and let a be an indeterminate. Suppose that λ is an
integer satisfying λn ≡ r (mod 2d) and (n − 1)/2 6 (λn − r)/d 6 n − 1. Then, modulo
Φn(q)(1− aqλn)(a− qλn),

n−1∑

k=0

[3dk + r]
(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d; q2d)k

qk(d−dk−2r)/2 ≡ [λn]q(r−λn)/2. (2.1)

Proof. Putting b = q−2m in (1.11) and multiplying both sides by 1− a, we obtain

2m∑

k=0

(1− aq3k)(a, q−2m, q1+2m; q)k(d, f, a2q/df ; q2)kq
k

(aq/d, aq/f, df/a; q)k(q2, aq2+2m, aq1−2m; q2)k

= (1− a)
(aq, aq2, f/a, fq/a, aq2+2m/d, aq1−2m/d, dfq−2m/a, dfq1+2m/a; q2)∞
(aq/d, aq2/d, df/a, dfq/a, aq2+2m, aq1−2m, fq−2m/a, fq1+2m/a; q2)∞

= (1− a)
(aq2, dq/a, fq/a, aq2/df ; q2)2m

(q/a, aq2/d, aq2/f, dfq/a; q2)2m

, (2.2)

which was implicitly noticed by He and Wang [12].
Performing the parameter substitutions a = qr−λn, q 7→ qd, d = aqr, and f = qr/a in

(2.2), and then taking m →∞, we obtain

(λn−r)/d∑

k=0

(1− q3dk+r−λn)
(qr−λn; qd)k(aqr, qr/a, qd−2λn; q2d)k

(qd−λn/a, aqd−λn, qr+λn; qd)k(q2d; q2d)k

qd(k−k2)/2−k(r−λn)

=
(qr−λn, aqd+λn, qd+λn/a, q2d−r−λn; q2d)∞

(qd−r+λn, q2d−λn/a, aq2d−λn, qd+r+λn; q2d)∞
= 0, (2.3)

where we have used the fact that (qr−λn; qd)k = 0 for k > (λn−r)/d and (qr−λn; q2d)∞ = 0.
It is easy to see that all the denominators on the left-hand side of (2.3) are coprime with
Φn(q). In view of qn ≡ 1 (mod Φn(q)), we conclude that

(λn−r)/d∑

k=0

[3dk + r]
(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d; q2d)k

qk(d−dk−2r)/2 ≡ 0 (mod Φn(q)). (2.4)

Since (n − 1)/2 6 (λn − r)/d 6 n − 1, and (qd; q2d)k/(q
2d; q2d)k ≡ 0 (mod Φn(q)) for

(n− 1)/2 6 k 6 n− 1, we deduce from (2.4) that

n−1∑

k=0

[3dk + r]
(aqr, qr/a, qd; q2d)k

(aqd, qd/a; qd)k(q2d; q2d)k

qk(d−dk−2r)/2 ≡ 0 (mod Φn(q)). (2.5)
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Namely, the q-congruence (2.1) holds modulo Φn(q).
We now consider the q-congruence (2.1) modulo (1− aqλn)(a− qλn). For a = q−λn or

a = qλn, the left-hand side of (2.1) can be written as

(λn−r)/(2d)∑

k=0

[3dk + r]
(qr−λn, qr+λn, qd; q2d)k

(qd−λn, qd+λn; qd)k(q2d; q2d)k

qk(d−dk−2r)/2,

where we have used the fact that (qr−λn; q2d)k = 0 for k > (λn − r)/(2d). Making the
parameter substitutions a = qr, q 7→ qd, d = qr−λn, and f = qr+λn in (2.2), we see that
the above sum is equal to

(qr, qd−λn, qd+λn, q2d−r; q2d)∞
(1− q)(qd−r, q2d+λn, q2d−λn, qd+r; q2d)∞

= [r]
(qd−λn, q2d+r; q2d)(λn−r)/(2d)

(qd+r, q2d−λn; q2d)(λn−r)/(2d)

= [λn]q(r−λn)/2,

which is just the right-hand side of (2.1). This proves the truth of (2.1) modulo (1−aqλn)
and (a − qλn). Since Φn(q), (1 − aqλn), and (a − qλn) are pairwise coprime polynomials,
we complete the proof of (2.1). 2

We also need to build the following lemma.

Lemma 2.2. Let d be a positive integer and r an arbitrary integer. Let n > 1 be an odd
integer with gcd(d, n) = 1. Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ 0 (mod [n]). (2.6)

Proof. The proof is similar to that of [10, Lemma 2.2]. Let ζ 6= 1 be an n-th root of unity.
In other words, ζ is a primitive root of unity of odd degree n1 subject to n1 | n. Let cq(k)
denote the k-th term on the left-hand side of (2.6), i.e.,

cq(k) = [3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2.

If r ≡ 0 (mod n1), then cζ(k) = 0 for any k > 0, and so

n−1∑

k=0

cζ(k) = 0.

We now consider the case where r 6≡ 0 (mod n1). The q-congruence (2.1) modulo Φn(q)
with n = n1 and a = 1 indicates that

n1−1∑

k=0

cζ(k) = 0.
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It is not difficult to see that, for all non-negative integers ` and k,

cζ(`n1 + k)

cζ(`n1)
= lim

q→ζ

cq(`n1 + k)

cq(`n1)
=

cζ(k)

[r]ζ
,

and so

n−1∑

k=0

cζ(k) =

n/n1−1∑

`=0

n1−1∑

k=0

cζ(`n1 + k) =
1

[r]

n/n1−1∑

`=0

cζ(`n1)

n1−1∑

k=0

cζ(k) = 0.

This means that the sum
∑n−1

k=0 cq(k) is congruent to 0 modulo Φn1(q). Letting n1 range
over all divisors of n greater than 1, we conclude that this sum is congruent to 0 modulo

∏

n1|n, n1>1

Φn1(q) = [n],

thus completing the proof of (2.6). 2

3. An open problem

Note that the condition (n−1)/2 6 (λn−r)/d is necessary in our proof of (2.5). Inspired
by [12, Conjecture 2.6], we believe that this condition in Theorem 1.1 can be weakened
as 0 6 (λn− r)/d. Namely, the following conjecture should be true.

Conjecture 3.1. Let d be a positive integer and r an arbitrary integer. Let n > 1 be an
odd integer with gcd(d, n) = 1. Suppose that λ is an integer satisfying λn ≡ r (mod 2d)
and 0 6 (λn− r)/d 6 n− 1.Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [λn]q(r−λn)/2 (mod [n]Φn(q)2).

It is easy to see that the n ≡ ±r (mod 2d) case of Conjecture 3.1 reduces to [12,
Conjecture 2.6]. On the other hand, the n ≡ 1 (mod 2d) case of Conjecture 3.1, which is
also a generalization of Corollary 1.4, can be restated as follows:

Conjecture 3.2. Let d and r be positive integers with gcd(d, r) = 1 and r 6 d. Let n > 1
be an integer satisfying n ≡ 1 (mod 2d). Then

n−1∑

k=0

[3dk + r]
(qr, qr, qd; q2d)k

(qd; qd)2
k(q

2d; q2d)k

qk(d−dk−2r)/2 ≡ [rn]qr(1−n)/2 (mod [n]Φn(q)2). (3.1)

Clearly, the r = d = 1 case of (3.1) immediately follows from (1.3).
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