A new q-analogue of Van Hamme's (G.2) supercongruence for primes $p \equiv 3(\bmod 4)$

Victor J. W. Guo and Xiuguo Lian
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China
jwguo@hytc.edu.cn, lianxiuguo@126.com

Abstract

Van Hamme's (G.2) supercongruence modulo p^{4} for primes $p \equiv 3(\bmod 4)$ and $p>3$ was first established by Swisher. A q-analogue of this supercongruence was implicitly given by the author and Schlosser. In this paper, we present a new q-analogue of Van Hamme's (G.2) supercongruence for $p \equiv 3(\bmod 4)$.

Keywords: cyclotomic polynomials; q-supercongruences; supercongruences; Jackson's ${ }_{6} \phi_{5}$ summation; creative microscoping
AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In his first letter to Hardy in 1913, Ramanujan asserted that (see [2, p. 25, eq. (2)]):

$$
\begin{equation*}
\sum_{k=0}^{\infty}(8 k+1) \frac{\left(\frac{1}{4}\right)_{k}^{4}}{k!^{4}}=\frac{2 \sqrt{2}}{\sqrt{\pi} \Gamma\left(\frac{3}{4}\right)^{2}} \tag{1}
\end{equation*}
$$

without proof. Here $(a)_{n}=a(a+1) \cdots(a+n-1)$ is the Pochhammer symbol and $\Gamma(x)$ is the Gamma function. The formula (1) was later proved by Hardy [10]. In 1997, Van Hamme [9] listed thirteen p-adic analogues of Ramanujan-type series, such as: for $p \equiv 1$ $(\bmod 4)$,

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 4}(8 k+1) \frac{\left(\frac{1}{4}\right)_{k}^{4}}{k!^{4}} \equiv p \frac{\Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)}{\Gamma_{p}\left(\frac{3}{4}\right)} \quad\left(\bmod p^{3}\right) \tag{2}
\end{equation*}
$$

(tagged (G.2) in Van Hamme's list). Here and in what follows, p is an odd prime and $\Gamma_{p}(x)$ denotes the p-adic Gamma function [19]. Swisher [20] and He [11] proved that (2) is true modulo the higher power p^{4}. Swisher [20, (3)] also proved the following generalization of Van Hamme's (G.2) supercongruence: for $p \equiv 3(\bmod 4)$ and $p>3$,

$$
\begin{equation*}
\sum_{k=0}^{(3 p-1) / 4}(8 k+1) \frac{\left(\frac{1}{4}\right)_{k}^{4}}{k!^{4}} \equiv-\frac{3 p^{2} \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)}{2 \Gamma_{p}\left(\frac{3}{4}\right)}\left(\bmod p^{4}\right) \tag{3}
\end{equation*}
$$

(The factor (-1) was neglected by Swisher in her original supercongruence).
In the past few years, q-analogues of Van Hamme's supercongruences have been widely studied. For example, the author and Schlosser [5, Corollary 1.2 with $d=4$] gave the following q-analogue of (3) : for $n \equiv 3(\bmod 4)$,

$$
\begin{equation*}
\sum_{k=0}^{M}[8 k+1] \frac{\left(q ; q^{4}\right)_{k}^{4}}{\left(q^{4} ; q^{4}\right)_{k}^{4}} q^{2 k} \equiv \frac{\left(q^{2} ; q^{4}\right)_{(3 n-1) / 4}}{\left(q^{4} ; q^{4}\right)_{(3 n-1) / 4}}[3 n] q^{(1-3 n) / 4} \quad\left(\bmod [n] \Phi_{n}(q)^{3}\right), \tag{4}
\end{equation*}
$$

where $M=(3 n-1) / 4$ or $n-1$. Here, the q-shifted factorial is defined by $(a ; q)_{0}=1$ and $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n=1,2, \ldots$. For convenience, we also adopt the abbreviated notation $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$. Moreover, the q-integer is defined as $[n]=[n]_{q}=\left(1-q^{n}\right) /(1-q)$, and $\Phi_{n}(q)$ denotes the n-th cyclotomic polynomial, i.e.,

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity.
Liu and Wang [15] showed that Van Hamme's original (G.2) supercongruence can be deduced from the following q-supercongruence: for $n \equiv 1(\bmod 4)$,

$$
\begin{equation*}
\sum_{k=0}^{M}[8 k+1] \frac{\left(q ; q^{4}\right)_{k}^{4}}{\left(q^{4} ; q^{4}\right)_{k}^{4}} q^{2 k} \equiv \frac{\left(q^{2} ; q^{4}\right)_{(n-1) / 4}}{\left(q^{4} ; q^{4}\right)_{(n-1) / 4}}[n] q^{(1-n) / 4} \quad\left(\bmod [n] \Phi_{n}(q)^{2}\right), \tag{5}
\end{equation*}
$$

where $M=(n-1) / 4$ or $n-1$. Very recently, Liu and Wang [17] gave a generalization of (5) modulo $[n] \Phi_{n}(q)^{3}$. For another generalization of (5), see [5, Theorem 4.3]. Liu and Wang [15] also established the following q-supercongruence: for $n \equiv 1(\bmod 4)$, modulo $[n]_{q^{2}} \Phi_{n}\left(q^{2}\right)^{2}$,

$$
\begin{equation*}
\sum_{k=0}^{M}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(q^{2} ; q^{8}\right)_{k}^{4}}{\left(q^{8} ; q^{8}\right)_{k}^{4}} q^{-4 k} \equiv-\frac{2\left(q^{4} ; q^{8}\right)_{(n-1) / 4}}{\left(1+q^{2}\right)\left(q^{8} ; q^{8}\right)_{(n-1) / 4}}[n]_{q^{2}} q^{(3-n) / 2} \tag{6}
\end{equation*}
$$

where $M=(n-1) / 4$ or $n-1$.
It is easy to see that the $n=p$ and $q \rightarrow-1$ case of (6) reduces to (2). Moreover, letting $n=p$ and $q \rightarrow 1$ in (6), Liu and Wang obtained the following new supercongruence: for $p \equiv 1(\bmod 4)$,

$$
\sum_{k=0}^{(p-1) / 4}(8 k+1)^{3} \frac{\left(\frac{1}{4}\right)_{k}^{4}}{k!^{4}} \equiv-p \frac{\Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)}{\Gamma_{p}\left(\frac{3}{4}\right)}\left(\bmod p^{3}\right) .
$$

In this paper, we shall establish the following new q-analogue of (3).

Theorem 1.1. Let $n \equiv 3(\bmod 4)$ be a positive integer. Then, modulo $[n]_{q^{2}} \Phi_{n}\left(q^{2}\right)^{3}$,

$$
\begin{equation*}
\sum_{k=0}^{M}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(q^{2} ; q^{8}\right)_{k}^{4}}{\left(q^{8} ; q^{8}\right)_{k}^{4}} q^{-4 k} \equiv-\frac{2\left(q^{4} ; q^{8}\right)_{(3 n-1) / 4}}{\left(1+q^{2}\right)\left(q^{8} ; q^{8}\right)_{(3 n-1) / 4}}[3 n]_{q^{2}} q^{(3-3 n) / 2}, \tag{7}
\end{equation*}
$$

where $M=(3 n-1) / 4$ or $n-1$.
For some other recent work on q-supercongruences, see $[1,6-8,12-14,16,21,22]$.
To see that the q-supercongruences (4) and (7) are indeed q-analogues of (3), we need to prove the following result.

Proposition 1.2. Let $p \equiv 3(\bmod 4)$ and $p>3$. Then

$$
\begin{equation*}
\frac{\left(\frac{1}{2}\right)_{(3 p-1) / 4}}{(1)_{(3 p-1) / 4}} \equiv-\frac{p \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)}{2 \Gamma_{p}\left(\frac{3}{4}\right)} \quad\left(\bmod p^{3}\right) . \tag{8}
\end{equation*}
$$

It is easy to see that the $n=p$ and $q \rightarrow-1$ case of (7) reduces to (3). Meanwhile, taking $n=p$ and $q \rightarrow 1$ in (7), we get the following new result: for $p \equiv 3(\bmod 4)$ and $p>3$,

$$
\sum_{k=0}^{(3 p-1) / 4}(8 k+1)^{3} \frac{\left(\frac{1}{4}\right)_{k}^{4}}{k!^{4}} \equiv \frac{3 p^{2} \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)}{2 \Gamma_{p}\left(\frac{3}{4}\right)}\left(\bmod p^{4}\right)
$$

We shall prove Theorem 1.1 in the next section employing the method of 'creative microscoping', introduced by the author and Zudilin [7]. A simple proof of Proposition 1.2 using properties of the p-adic Gamma function will be given in Section 3.

2. Proof of Theorem 1.1

We will make use of Watson's ${ }_{8} \phi_{7}$ transformation formula (see [3, Appendix (III.18)]):

$$
\left.\begin{array}{l}
{ }_{8} \phi_{7}\left[\begin{array}{cccccc}
a, & q a^{\frac{1}{2}}, & -q a^{\frac{1}{2}}, & b, & c, & d, \\
a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & a q / b, & a q / c, & a q / d, & a q / e, \\
& q^{-n}
\end{array} ; q, \frac{a^{2} q^{n+2}}{b c d e}\right.
\end{array}\right]
$$

where the basic hypergeometric series ${ }_{r+1} \phi_{r}$ is defined as

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{r} \cdots, a_{r+1} ; q\right)_{k}}{\left(q, b_{1}, \ldots, b_{r} ; q\right)_{k}} z^{k} .
$$

We shall also utilize the following easily proved q-congruence due to the author and Schlosser [4, Lemma 3].

Lemma 2.1. Let d, m and n be positive integers with $m \leqslant n-1$ and $d m \equiv-1(\bmod n)$. Then, for $0 \leqslant k \leqslant m$, we have

$$
\frac{\left(a q ; q^{d}\right)_{m-k}}{\left(q^{d} / a ; q^{d}\right)_{m-k}} \equiv(-a)^{m-2 k} \frac{\left(a q ; q^{d}\right)_{k}}{\left(q^{d} / a ; q^{d}\right)_{k}} q^{m(d m-d+2) / 2+(d-1) k} \quad\left(\bmod \Phi_{n}(q)\right)
$$

We first present the following q-congruence with two parameters a and b.
Theorem 2.2. Let $n \equiv 3(\bmod 4)$ be a positive integer, and let a, b be indeterminates. Then, modulo $\Phi_{n}\left(q^{2}\right)\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)$,

$$
\begin{align*}
& \sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a, q^{2} / b, q^{2} ; q^{8}\right)_{k}}{\left(a q^{8}, q^{8} / a, b q^{8}, q^{8} ; q^{8}\right)_{k}}\left(\frac{b}{q^{4}}\right)^{k} \\
& \quad \equiv b^{(3 n-1) / 4} q^{(1-3 n) / 2}[3 n]_{q^{2}} \frac{\left(q^{4} / b ; q^{8}\right)_{(3 n-1) / 4}^{\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) .}{} . \tag{10}
\end{align*}
$$

Proof. For $a=q^{-6 n}$ or $a=q^{6 n}$, the left-hand side of (10) is equal to

$$
\begin{align*}
& \sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(q^{2-6 n}, q^{2+6 n}, q^{2} / b, q^{2} ; q^{8}\right)_{k}}{\left(q^{8-6 n}, q^{8+6 n}, b q^{8}, q^{8} ; q^{8}\right)_{k}} b^{k} q^{-4 k} \\
& \quad={ }_{8} \phi_{7}\left[\begin{array}{ccccccc}
q^{2}, & q^{9}, & -q^{9}, & q^{9}, & q^{9}, & q^{2} / b, & q^{2+6 n}, \\
q, & -q, & q, & q, & q^{2-6 n} & q^{8}, & q^{8-6 n}, \\
q^{8+6 n} ; q^{8}, b q^{-4}
\end{array}\right] . \tag{11}
\end{align*}
$$

By Watson's ${ }_{8} \phi_{7}$ transformation formula (9), the right-hand side of (11) can be written as

$$
\begin{align*}
& \frac{\left(q^{10}, b q^{6-6 n} ; q^{8}\right)_{(3 n-1) / 4}}{\left(b q^{8}, q^{8-6 n} ; q^{8}\right)_{(3 n-1) / 4}}{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{-8}, q^{2} / b, q^{2+2 n} \\
q, q, q^{4} / b
\end{array}, q^{2-2 n} ; q^{8}, q^{8}\right] \\
& \quad=b^{(3 n-1) / 4} q^{(1-3 n) / 2}[3 n]_{q^{2}} \frac{\left(q^{4} / b ; q^{8}\right)_{(3 n-1) / 4}}{\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-q^{2-2 n}\right)\left(1-q^{2+2 n}\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) \tag{12}
\end{align*}
$$

This means that (10) holds modulo $1-a q^{6 n}$ and $a-q^{6 n}$.
Moreover, setting $q \mapsto q^{2}, d=4$, and $m=(3 n-1) / 4$ in Lemma 2.1, for $0 \leqslant k \leqslant m$, we have

$$
\frac{\left(a q^{2} ; q^{8}\right)_{m-k}}{\left(q^{8} / a ; q^{8}\right)_{m-k}} \equiv(-a)^{m-2 k} \frac{\left(a q^{2} ; q^{8}\right)_{k}}{\left(q^{8} / a ; q^{8}\right)_{k}} q^{2 m(2 m-1)+6 k} \quad\left(\bmod \Phi_{n}\left(q^{2}\right)\right)
$$

Using this q-congruence, we can easily verify that the k-th and $((3 n-1) / 4-k)$-th summands on the left-hand side of (10) modulo $\Phi_{n}\left(q^{2}\right)$ cancel each other for $0 \leqslant k \leqslant$ $(3 n-1) / 4$. This proves that the left-hand side of (10) is congruent to 0 modulo $\Phi_{n}\left(q^{2}\right)$, and so (10) is true modulo $\Phi_{n}\left(q^{2}\right)$.

The proof then follows from the fact that $1-a q^{6 n}, a-q^{6 n}$, and $\Phi_{n}\left(q^{2}\right)$ are pairwise coprime polynomials in q.

We also need a simpler q-congruence as follows.
Theorem 2.3. Let $n \equiv 3(\bmod 4)$ be a positive integer, and let a, b be indeterminates. Then, modulo $b-q^{6 n}$,

$$
\begin{align*}
& \sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a, q^{2} / b, q^{2} ; q^{8}\right)_{k}}{\left(a q^{8}, q^{8} / a, b q^{8}, q^{8} ; q^{8}\right)_{k}}\left(\frac{b}{q^{4}}\right)^{k} \\
& \quad \equiv \frac{[3 n]_{q^{2}}\left(q^{2}, q^{6} ; q^{8}\right)_{(3 n-1) / 4}}{\left(a q^{8}, q^{8} / a ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) . \tag{13}
\end{align*}
$$

Proof. For $b=q^{6 n}$, the left-hand side of (13) is equal to

$$
\left.\begin{array}{l}
\sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a, q^{2-6 n}, q^{2} ; q^{8}\right)_{k}}{\left(a q^{8}, q^{8} / a, q^{8+6 n}, q^{8} ; q^{8}\right)_{k}} q^{(6 n-4) k} \\
\quad={ }_{8} \phi_{7}\left[\begin{array}{rrrrrr}
q^{2}, & q^{9}, & -q^{9}, & q^{9}, & q^{9}, & a q^{2}, \\
q, & q^{2} / a, & q^{2-6 n} \\
q, & -q, & q, & q, & q^{8} / a, & a q^{8},
\end{array} q^{8+6 n} ; q^{8}, q^{6 n-4}\right. \tag{14}
\end{array}\right] . .
$$

In view of Watson's transformation (9), we can write the right-hand side of (14) as

$$
\begin{align*}
& \frac{\left(q^{10}, q^{6} ; q^{8}\right)_{(3 n-1) / 4}}{\left(a q^{8}, q^{8} / a ; q^{8}\right)_{(3 n-1) / 4}}{ }^{4} \phi_{3}\left[\begin{array}{c}
q^{-8}, a q^{2}, q^{2} / a, q^{2-6 n} \\
q, q, q^{4-6 n}
\end{array} q^{8}, q^{8}\right] \\
& \quad=\frac{[3 n]_{q^{2}}\left(q^{2}, q^{6} ; q^{8}\right)_{(3 n-1) / 4}}{\left(a q^{8}, q^{8} / a ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2-6 n}\right)}{(1-q)^{2}\left(1-q^{4-6 n}\right)}\right) . \tag{15}
\end{align*}
$$

This proves that the congruence (13) is true modulo $b-q^{6 n}$.
We are now able to establish the following parametric generalization of Theorem 1.1.
Theorem 2.4. Let $n \equiv 3(\bmod 4)$ be a positive integer, and let a, b be indeterminates. Then, modulo $\Phi_{n}\left(q^{2}\right)^{2}\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)$,

$$
\begin{align*}
& \sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a, q^{2}, q^{2} ; q^{8}\right)_{k}}{\left(a q^{8}, q^{8} / a, q^{8}, q^{8} ; q^{8}\right)_{k}} q^{-4 k} \\
& \quad \equiv q^{(1-3 n) / 2}[3 n]_{q^{2}} \frac{\left(q^{4} / b ; q^{8}\right)_{(3 n-1) / 4}^{\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) .}{} . \frac{(1)}{(1)} . \tag{16}
\end{align*}
$$

Proof. It is obvious that $\Phi_{n}\left(q^{2}\right)\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)$ and $b-q^{6 n}$ are relatively prime polynomials. Employing the Chinese reminder theorem for coprime polynomials, we can determine
the remainder of the left-hand side of (10) modulo $\Phi_{n}\left(q^{2}\right)\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)\left(b-q^{6 n}\right)$ from (10) and (13):

$$
\begin{align*}
& \sum_{k=0}^{(3 n-1) / 4}[8 k+1]_{q^{2}}[8 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a, q^{2} / b, q^{2} ; q^{8}\right)_{k}}{\left(a q^{8}, q^{8} / a, b q^{8}, q^{8} ; q^{8}\right)_{k}}\left(\frac{b}{q^{4}}\right)^{k} \\
& \equiv \\
& \quad b^{(3 n-1) / 4} q^{(1-3 n) / 2}[3 n]_{q^{2}} \frac{\left(q^{4} / b ; q^{8}\right)_{(3 n-1) / 4}}{\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) \\
& \quad \times \frac{\left(b-q^{6 n}\right)\left(a b-1-a^{2}+a q^{6 n}\right)}{(a-b)(1-a b)} \\
& \quad+\frac{[3 n]_{q^{2}}\left(q^{2}, q^{6} ; q^{8}\right)_{(3 n-1) / 4}}{\left(a q^{8}, q^{8} / a ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) \tag{17}\\
& \quad \times \frac{\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)}{(a-b)(1-a b)}\left(\bmod \Phi_{n}\left(q^{2}\right)\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)\left(b-q^{6 n}\right)\right) .
\end{align*}
$$

Here we have used the following q-congruences:

$$
\begin{gathered}
\frac{\left(b-q^{6 n}\right)\left(a b-1-a^{2}+a q^{6 n}\right)}{(a-b)(1-a b)} \equiv 1 \quad\left(\bmod \left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)\right) \\
\frac{\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)}{(a-b)(1-a b)} \equiv 1 \quad\left(\bmod b-q^{6 n}\right)
\end{gathered}
$$

Note that $1-q^{6 n}$ contains the factor $\Phi_{n}\left(q^{2}\right)$ and so do $\left(q^{4} ; q^{8}\right)_{(3 n-1) / 4}$ and $\left(q^{6} ; q^{8}\right)_{(3 n-1) / 4}$ since they have the factors $1-q^{4 n}$ and $1-q^{2 n}$, respectively. Moreover, the factor $\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}$ in the denominators of both sides of (17) is relatively prime to $\Phi_{n}\left(q^{2}\right)$ when $b=1$. Thus, letting $b=1$ in (17) and observing that

$$
\left(1-q^{6 n}\right)\left(1+a^{2}-a-a q^{6 n}\right)=(1-a)^{2}+\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right),
$$

we see that the right-hand of (17) reduces to

$$
\begin{aligned}
& q^{(1-3 n) / 2}[3 n]_{q^{2}} \frac{\left(q^{4} / b ; q^{8}\right)_{(3 n-1) / 4}}{\left(b q^{8} ; q^{8}\right)_{(3 n-1) / 4}}\left(1-\frac{\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(1-q^{2} / b\right)}{(1-q)^{2}\left(1-q^{4} / b\right)}\right) \\
& \quad\left(\bmod \Phi_{n}\left(q^{2}\right)^{2}\left(1-a q^{6 n}\right)\left(a-q^{6 n}\right)\right),
\end{aligned}
$$

as desired.
Proof of Theorem 1.1. Taking $a=1$ in (16), we see that the q-congruence (7) holds modulo $\Phi_{n}\left(q^{2}\right)^{4}$ for $M=(3 n-1) / 4$. It is easy to see that $\left(q^{2} ; q^{8}\right)_{k}^{4} /\left(q^{8} ; q^{8}\right)_{k}^{4}$ is congruent to 0 modulo $\Phi_{n}\left(q^{2}\right)^{4}$ for any k in the range $(3 n-1) / 4<k \leqslant n-1$. Therefore, the q-congruence (7) also holds modulo $\Phi_{n}\left(q^{2}\right)^{4}$ for $M=n-1$.

Moreover, similarly to the proof of [5, Lemma 2.2], we can prove that (7) holds modulo $[n]_{q^{2}}$. Since the least common multiple of $[n]_{q^{2}}$ and $\Phi_{n}\left(q^{2}\right)^{4}$ is $[n]_{q^{2}} \Phi_{n}\left(q^{2}\right)^{3}$, we complete the proof of the theorem.

3. Proof of Proposition 1.2

We first list some basic properties of Morita's p-adic Gamma function. Let p be an odd prime. Set $\Gamma_{p}(0)=1$, and for all integers $n \geqslant 1$, the p-adic Gamma function is defined as

$$
\Gamma_{p}(n)=(-1)^{n} \prod_{\substack{0<k \nless n \\ p \not k}} k .
$$

Let \mathbb{Z}_{p} denote the ring of all p-adic integers. Extend Γ_{p} to all $x \in \mathbb{Z}_{p}$ by defining

$$
\Gamma_{p}(x)=\lim _{x_{n} \rightarrow x} \Gamma_{p}\left(x_{n}\right),
$$

where x_{n} is any sequence of positive integers p-adically approaching x. The following facts can be found in [18]: for any $x \in \mathbb{Z}_{p}$,

$$
\begin{align*}
\frac{\Gamma_{p}(x+1)}{\Gamma_{p}(x)} & = \begin{cases}-x, & p \nmid x, \\
-1, & p \mid x .\end{cases} \tag{18}\\
\Gamma_{p}(x) \Gamma_{p}(1-x) & =(-1)^{a_{0}(x)}, \tag{19}
\end{align*}
$$

where $a_{0}(x) \in\{1,2, \ldots, p\}$ satisfies $a_{0}(x) \equiv x(\bmod p)$.
In order to prove Proposition 1.2, we also need the following result (see [18, Theorem 14]).

Lemma 3.1. For any odd prime p and $a, m \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\Gamma_{p}(a+m p) \equiv \Gamma_{p}(a)+\Gamma_{p}^{\prime}(a) m p \quad\left(\bmod p^{2}\right) . \tag{20}
\end{equation*}
$$

Proof of Proposition 1.2. By the properties (18)-(20), for $p \equiv 3(\bmod 4)$ and $p>3$,

$$
\begin{aligned}
\frac{\left(\frac{1}{2}\right)_{(3 p-1) / 4}}{(1)_{(3 p-1) / 4}}=\frac{p}{2} \frac{\Gamma_{p}(1) \Gamma_{p}\left(\frac{3 p+1}{4}\right)}{\Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{3 p+3}{4}\right)} & =(-1)^{(3 p+3) / 4} \frac{p \Gamma_{p}(1) \Gamma_{p}\left(\frac{3 p+1}{4}\right) \Gamma_{p}\left(\frac{1-3 p}{4}\right)}{2 \Gamma_{p}\left(\frac{1}{2}\right)} \\
& \equiv(-1)^{(3 p+3) / 4} \frac{p \Gamma_{p}(1) \Gamma_{p}\left(\frac{1}{4}\right)^{2}}{2 \Gamma_{p}\left(\frac{1}{2}\right)} \\
& \equiv \frac{p \Gamma_{p}(1) \Gamma_{p}\left(\frac{1}{4}\right)}{2 \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{3}{4}\right)} \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Noticing that $\Gamma_{p}(1)=-1$ and $\Gamma_{p}\left(\frac{1}{2}\right)^{2}=(-1)^{\frac{p+1}{2}}=1$, we complete the proof.

References

[1] M. El Bachraoui, On supercongruences for truncated sums of squares of basic hypergeometric series, Ramanujan J. 54 (2021), 415-426.
[2] B.C. Berndt and R.A. Rankin, Ramanujan, Letters and Commentary, History of Mathematics 9, Amer. Math. Soc., Providence, RI; London Math. Soc., London, 1995.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[4] V.J.W. Guo and M.J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Israel J. Math. 240 (2020), 821-835.
[5] V.J.W. Guo and M.J. Schlosser, A new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math. 75 (2020), Art. 155.
[6] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[7] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[8] V.J.W. Guo and W. Zudilin, Dwork-type supercongruences through a creative qmicroscope, J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
[9] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[10] G.H. Hardy, A chapter from Ramanujan's note-book, Proc. Cambridge Philos. Soc. 21 (2) (1923), 492-503.
[11] B. He, Supercongruences on truncated hypergeometric series, Results Math. 72 (2017), 303-317.
[12] J.-C. Liu, On a congruence involving q-Catalan numbers, C. R. Math. Acad. Sci. Paris 358 (2020), 211-215.
[13] J.-C. Liu and Z.-Y. Huang, A truncated identity of Euler and related q-congruences, Bull. Aust. Math. Soc. 102 (2020), 353-359.
[14] J.-C. Liu and X.-T. Jiang, On the divisibility of sums of even powers of q-binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 116 (2022), Art. 76.
[15] Y. Liu and X. Wang, q-Analogues of the (G.2) supercongruence of Van Hamme, Rocky Mountain J. Math. 51 (2021), 1329-1340.
[16] Y. Liu and X. Wang, Some q-supercongruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
[17] Y. Liu and X. Wang, Further q-analogues of the (G.2) supercongruence of Van Hamme, Ramanujan J., in press; https://doi.org/10.1007/s11139-022-00597-x
[18] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math. 290 (2016), 773-808.
[19] Y. Morita, A p-adic supercongruence of the Γ function, J. Fac. Sci. Univ. Tokyo 22 (1975), 255-266.
[20] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015), Art. 18.
[21] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A 182 (2021), Art. 105469.
[22] C. Xu and X. Wang, Proofs of Guo and Schlosser's two conjectures, Period. Math. Hungar., in press; https://doi.org/10.1007/s10998-022-00452-y

