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Abstract. By making use of Watson’s 8φ7 transformation formula, we prove two families of
q-congruences modulo the square of a cyclotomic polynomial. As conclusions, we confirm a
supercongruence conjecture of the author and Wei, and also partially confirm another supercon-
gruence conjecture of theirs. We put forward several conjectures on q-congruences for further
study.
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1. Introduction

In 1997, Van Hamme [26] proposed 13 interesting supercongruences and proved three of
them himself, such as

(p−1)/2∑

k=0

(1
2
)3
k

k!3
≡




−Γp(1/4)4 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),
(1.1)

where p is a prime, (a)n = a(a + 1) · · · (a + n− 1) is the Pochhammer symbol, and Γp(x)
is the p-adic Gamma function [23]. In 2019, the author and Zudilin [15, Theorem 2]
obtained a q-analogue of (1.1) as follows: modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

(1.2)

which generalizes a result of the author and Zeng [12, Corollary 1.2]. Here and in what
follows, the q-shifted factorial is defined as (a; q)0 = 1 and (a; q)n = (1−a)(1−aq) · · · (1−
aqn−1) for n > 1, the q-integer is defined as [n] = 1 + q + · · · + qn−1, and Φn(q) denotes
the n-th cyclotomic polynomial in q, which can be written as

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity. Moreover, two rational functions A(q) and
B(q) in q are said to be congruent modulo a polynomial P (q), denoted A(q) ≡ B(q)
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(mod P (q)), if the numerator of the reduced form of A(q) − B(q) is divisible by P (q) in
the polynomial ring Z[q].

Further generalizations of (1.2) modulo Φn(q)3 can be found in [5, 6, 28, 30]. Many
other generalizations of (1.1) can be found in the literature now. For example, Liu [18]
proved that, for any prime p ≡ 3 (mod 4) and positive integer m,

mp−1∑

k=0

(1
2
)3
k

k!3
≡ 0 (mod p2). (1.3)

In 2015, Swisher [25] proved the following supercongruence:

(p−1)/4∑

k=0

(8k + 1)
(1

4
)4
k

k!4
≡ p

Γp(
1
2
)Γp(

1
4
)

Γp(
3
4
)

(mod p3), if p ≡ 1 (mod 4), (1.4)

which was originally observed by Van Hamme [26, (G.2)]. Liu and Wang [19] noticed that
(1.4) can also be derived from the following q-supercongruence: for n ≡ 1 (mod 4),

(n−1)/4∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n]
(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

q(1−n)/4 (mod [n]Φn(q)2) (1.5)

(see [8, Theorem 4.3] for a more general result). On the other hand, the author and
Schlosser [10, Theorem 2 with d = 4] showed that, for n ≡ 3 (mod 4),

n−1∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ 0 (mod Φn(q)2). (1.6)

The objective of this paper is to give some generalizations of (1.6). Our first result
can be stated as follows.

Theorem 1.1. Let m and n be positive integers with n ≡ 3 (mod 4). Then

mn−1∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ 0 (mod Φn(q)2), (1.7)

mn+(3n−1)/4∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ 0 (mod Φn(q)2). (1.8)

Letting n = p be a prime and taking the limits as q → 1 in (1.7), we obtain a
supercongruence similar to (1.3): for any prime p ≡ 3 (mod 4) and positive integer m,

mp−1∑

k=0

(8k + 1)
(1

4
)4
k

k!4
≡ 0 (mod p2).

We shall also give the following refinement of Theorem 1.1 for certain m.
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Theorem 1.2. Let n ≡ 3 (mod 4) be a positive integer. Then, modulo Φn(q)2Φn2(q)3,

(n2−1)/4∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n2]
(q2; q4)(n2−1)/4

(q4; q4)(n2−1)/4

q(1−n2)/4, (1.9)

n2−1∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n2]
(q2; q4)(n2−1)/4

(q4; q4)(n2−1)/4

q(1−n2)/4. (1.10)

Let n = p be a prime and let q → 1 in (1.9). Since Φp(1) = Φp2(1) = p, and

lim
q→1

(q2; q4)(p2−1)/4

(q4; q4)(p2−1)/4

=
(1

2
)(p2−1)/4

(1)(p2−1)/4

and so on, we immediately get the following conclusion.

Corollary 1.3. Let p ≡ 3 (mod 4) be a prime. Then

(p2−1)/4∑

k=0

(8k + 1)
(1

4
)4
k

k!4
≡ p2 (1

2
)(p2−1)/4

(1)(p2−1)/4

(mod p5). (1.11)

In 2020, Mao and Pan [21] (see also Sun [24, Theorem 1.3]) proved that, for any prime
p ≡ 1 (mod 4),

(p+1)/2∑

k=0

(−1
2
)3
k

k!3
≡ 0 (mod p2). (1.12)

Shortly afterwards, the author and Zudilin [14] gave a new q-analogue of (1.1): for any
positive odd integer n,

(n−1)/2∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk

≡ [n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2

{
(mod Φn(q)2) if n ≡ 1 (mod 4),

(mod Φn(q)3) if n ≡ 3 (mod 4),
(1.13)

and a q-analogue of (1.12): for any odd integer n > 1,

(n+1)/2∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k

≡ [n]q2(q; q4)(n−1)/2

(q7; q4)(n−1)/2

q(n−3)/2

{
(mod Φn(q)3) if n ≡ 1 (mod 4),

(mod Φn(q)2) if n ≡ 3 (mod 4).
(1.14)

In this note, we shall prove the following generalization of (1.14) modulo Φn(q)2 for
n ≡ 1 (mod 4).
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Theorem 1.4. Let m and n be positive integers with n ≡ 1 (mod 4) and n > 1. Then

mn−1∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ 0 (mod Φn(q)2), (1.15)

mn+(n+1)/2∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ 0 (mod Φn(q)2). (1.16)

It is easy to see that, from (1.15) we can deduce the following result: for any prime
p ≡ 1 (mod 4) and positive integer m,

mp−1∑

k=0

(−1
2
)3
k

k!3
≡ 0 (mod p2),

which is very similar to (1.3).
We point out that similar generalizations of (1.2) and (1.14) for n ≡ 3 were conjectured

by the author and Zudilin [15] and confirmed by the author [4, 5]. Since (nr + 1)/2 =
(nr − nj)/2 + (nj + 1)/2, from (1.15) and (1.16) it follows that, modulo

∏r
j=1 Φnj(q)2,

nr−1∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ 0, (1.17)

(nr+1)/2∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ 0, (1.18)

where r is a positive integer. For n prime, letting q → 1 in (1.17) and (1.18), we im-
mediately obtain the following conclusion, confirming a conjecture of the author and
Wei [11, Conjecture 1].

Corollary 1.5. Let p be a prime with p ≡ 1 (mod 4) and let r > 1. Then

pr−1∑

k=0

(−1
2
)3
k

k!3
≡ 0 (mod p2r) and

(pr+1)/2∑

k=0

(−1
2
)3
k

k!3
≡ 0 (mod p2r).

Moreover, from Theorem 1.1 we can deduce the following result, which partially con-
firms another conjecture of the author and Wei [11, Conjecture 2] (the original conjecture
asserts that r can be any positive integer).

Theorem 1.6. Let p be a prime with p ≡ 3 (mod 4) and let r > 2 be an even integer.
Then

(pr+1)/2∑

k=0

(−1
2
)3
k

k!3
≡ pr (1

4
)(pr−1)/2

(7
4
)(pr−1)/2

(mod pr+1), (1.19)

pr−1∑

k=0

(−1
2
)3
k

k!3
≡ pr (1

4
)(pr−1)/2

(7
4
)(pr−1)/2

(mod pr+1). (1.20)
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2. Proof of Theorem 1.1

For brevity, we adopt the standard condensed notation

(a1, . . . , am; q)k = (a1; q)k . . . (am; q)k for k = 0, 1, 2, . . . .

Following [2], the basic hypergeometric r+1φr series with r+1 upper parameters a1, . . . , ar+1,
r lower parameters b1, . . . , br, base q and argument z is given by

r+1φr

[
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑

k=0

(a1, . . . , ar+1; q)k

(q, b1, . . . , br; q)k

zk.

Then Watson’s 8φ7 transformation formula (see [2, Appendix (III.18)]) can be stated as
follows:

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

=
(aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
. (2.1)

It is easy to see that the left-hand side of (1.8) with m > 0 can be written as the
following terminating 8φ7 series:

8φ7

[
q, q

9
2 , −q

9
2 , q, q, q, q4+(4m+3)n, q1−(4m+3)n

q
1
2 , −q

1
2 , q4, q4, q4, q1−(4m+3)n, q4+(4m+3)n

; q4, q2

]
. (2.2)

By Watson’s transformation formula (2.1) with q 7→ q4, a = b = c = d = q, e = q4+(4m+3)n,
and n 7→ mn + (3n− 1)/4, we see that (2.2) is equal to

(q5, q−(4m+3)n; q4)mn+(3n−1)/4

(q4, q1−(4m+3)n; q4)mn+(3n−1)/4

×
mn+(3n−1)/4∑

k=0

(q3; q4)k(q; q
4)k(q

4+(4m+3)n; q4)k(q
1−(4m+3)n; q4)k

(q4; q4)3
k(q

5; q4)k

q4k. (2.3)

Note that n ≡ 3 (mod 4). There are exactly m + 1 factors of the form 1 − qan

(a is an integer) among the mn + (3n − 1)/4 factors of (q5; q4)mn+(3n−1)/4. So does
(q−(4m+3)n; q4)mn+(3n−1)/4. But there are only m factors of the form 1 − qan (a is an
integer) in each of (q4; q4)mn+(3n−1)/4 and (q1−(4m+3)n; q4)mn+(3n−1)/4. Since Φn(q) is a fac-
tor of 1 − qN if and only if N is divisible by n, we conclude that the fraction before the
summation in (2.3) is congruent to 0 modulo Φn(q)2. Moreover, the denominator of the
reduced form of the fraction

(q3; q4)k(q; q
4)k(q

4+(4m+3)n; q4)k(q
1−(4m+3)n; q4)k

(q4; q4)3
k(q

5; q4)k

q4k
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is always coprime with Φn(q) for any non-negative integer k. This proves that the right-
hand side of (2.3) (i.e. (2.2)) is congruent to 0 modulo Φn(q)2, thus establishing (1.8) for
m > 0.

Observe that (q; q4)4
k/(q

4; q4)4
k is congruent to 0 modulo Φn(q)4 for mn + (3n− 1)/4 <

k 6 (m + 1)n − 1. Thus, the q-congruence (1.7) with m 7→ m + 1 follows from (1.8)
directly.

3. Proof of Theorem 1.2

Note that (1.5) has a accompanied q-supercongruence: for n ≡ 1 (mod 4),

n−1∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n]
(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

q(1−n)/4 (mod [n]Φn(q)2) (3.1)

(see [19]). Replacing n by n2 in (1.5) and (3.1), we see that the q-congruences (1.9) and
(1.10) hold modulo Φn2(q)3.

It is not difficult to see that [n2] = (1− qn2
)/(1− q) is divisible by Φn(q). Moreover,

for n ≡ 3 (mod 4), (q2; q4)(n2−1)/4 contains (n + 1)/4 factors of the form 1− qan (a is an
integer), while (q4; q4)(n2−1)/4 only has (n− 3)/4 such factors. Hence, for n ≡ 3 (mod 4),

[n2]
(q2; q4)(n2−1)/4

(q4; q4)(n2−1)/4

≡ 0 (mod Φn(q)2).

On the other hand, in view of Theorem 1.1, the left-hand sides of (1.9) and (1.10) are
both congruent to 0 modulo Φn(q)2 since (n2 − 1)/4 = n(n − 3)/4 + (3n − 1)/4. This
indicates that the q-congruences (1.9) and (1.10) also hold modulo Φn(q)2. Since the
polynomials Φn(q) and Φn2(q) are relatively prime to each other, we complete the proof
of the theorem.

4. A generalization of Theorem 1.2

Swisher [25, (H.3)] conjectured that, for any positive integer r and prime p with p ≡ 3
(mod 4) and p > 3,

(p2r−1)/2∑

k=0

(1
2
)3
k

k!3
≡ p2r (mod p2r+3). (4.1)

In 2020, the author [4] proved that (4.1) holds modulo p2r+2 by establishing a q-supercongruence.
We shall give a similar generalization of Theorem 1.2 as follows.

Theorem 4.1. Let n and r be positive integers with n ≡ 3 (mod 4). Then, modulo
Φn2r(q)3

∏r
j=1 Φn2j−1(q)2, we have

(n2r−1)/4∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n2r]
(q2; q4)(n2r−1)/4

(q4; q4)(n2r−1)/4

q(1−n2r)/4, (4.2)
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n2r−1∑

k=0

[8k + 1]
(q; q4)4

k

(q4; q4)4
k

q2k ≡ [n2r]
(q2; q4)(n2r−1)/4

(q4; q4)(n2r−1)/4

q(1−n2r)/4. (4.3)

Proof. Replacing n by n2r in (1.5) and (3.1), one sees that (4.2) and (4.3) are true modulo
Φn2r(q)3. Similarly as before, there holds

[n2r]
(q2; q4)(n2r−1)/4

(q4; q4)(n2r−1)/4

q(1−n2r)/4 ≡ 0 (mod
r∏

j=1

Φn2j−1(q)2).

Furthermore, from Theorem 1.1 one can easily deduce that the left-hand sides of (4.2)
and (4.3) are also congruent to 0 modulo

∏r
j=1 Φn2j−1(q)2. 2

Letting n = p be a prime and taking q → 1 in (4.2) and (4.3), we arrive at the following
supercongruences.

Corollary 4.2. Let p ≡ 3 (mod 4) be a prime and let r > 1. Then

(p2r−1)/4∑

k=0

(8k + 1)
(1

4
)4
k

k!4
≡ p2r (1

2
)(p2r−1)/4

(1)(p2r−1)/4

(mod p2r+3), (4.4)

p2r−1∑

k=0

(8k + 1)
(1

4
)4
k

k!4
≡ p2r (1

2
)(p2r−1)/4

(1)(p2r−1)/4

(mod p2r+3). (4.5)

5. Proof of Theorem 1.4

The left-hand side of (1.16) with m > 0 can be written as

q−1
8φ7

[
q−2, q3, −q3, q−2, q−1, q−2, q4+(4m+2)n, q−2−(4m+2)n

q−1, −q−1, q4, q3, q4, q−2−(4m+2)n, q4+(4m+2)n ; q4, q7

]
. (5.1)

In view of Watson’s transformation (2.1) with q 7→ q4, a = b = d = q−2, c = q−1,
e = q4+(4m+2)n, and n 7→ mn + (n + 1)/2, one sees that (5.1) is equal to

q−1 (q2, q−(4m+2)n; q4)mn+(n+1)/2

(q4, q−2−(4m+2)n; q4)mn+(n+1)/2
4φ3

[
q5, q−2, q4+(4m+2)n, q−2−(4m+2)n

q4, q3, q2 ; q4, q4

]
. (5.2)

It is easy to see that there are exactly 2m + 2 factors of the form 1− qan (a is an integer)
among the 2mn + n + 1 factors of (q2, q−(4m+2)n; q4)mn+(n+1)/2. But there are only 2m
factors of the form 1 − qan in the polynomial (q4, q−2−(4m+2)n; q4)mn+(n+1)/2. Note that
Φn(q) is a factor of 1− qN if and only if n divides N . Hence, the fraction before the 4φ3

series in (5.2) is congruent to 0 modulo Φn(q)2. For any integer x, let fn(x) denote the
least non-negative integer k such that (qx; q4)k ≡ 0 modulo Φn(q). Since n ≡ 1 (mod 4),
we obtain fn(−2) = (n + 3)/2, fn(2) = (n + 1)/2, fn(3) = (3n + 1)/4, fn(4) = n, and

7



fn(5) = (n − 1)/4. It follows that the denominator of the reduced form of the k-th
summand

(q5, q−2, q4+(4m+2)n, q−2−(4m+2)n; q4)k

(q4, q4, q3, q2; q4)k

q4k

in the 4φ3 series is always relatively prime to Φn(q) for any k > 0. This implies that (5.2)
(i.e., (5.1)) is congruent to 0 modulo Φn(q)2, thus building (1.16) for m > 0.

It is clear that (q−2; q4)3
k/(q

4; q4)3
k is congruent to 0 modulo Φn(q)3 for mn+(n+1)/2 <

k 6 (m + 1)n − 1. So, the q-congruence (1.15) with m replaced by m + 1 immediately
follows from (1.16).

6. Proof of Theorem 1.6

Let r = 2s. We first prove the following q-congruences.

Theorem 6.1. Let n and s be positive integers with n ≡ 3 (mod 4). Then, modulo
Φn2s(q)

∏s
j=1 Φn2j(q)2,

(n2s+1)/2∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ [n2s]q2(q; q4)(n2s−1)/2

(q7; q4)(n2s−1)/2

q(n2s−3)/2, (6.1)

n2s−1∑

k=0

(1 + q4k−1)(q−2; q4)3
k

(1 + q)(q4; q4)3
k

q7k ≡ [n2s]q2(q; q4)(n2s−1)/2

(q7; q4)(n2s−1)/2

q(n2s−3)/2. (6.2)

Proof. It is clear that n2s ≡ 1 (mod 4). Replacing n by n2s in (1.14), we see that the
q-congruence (6.1) holds modulo Φn2s(q)3. For k in the range (n2s + 1)/2 < k 6 n2s − 1,
the k-th summand on the left-hand side of (6.2) is congruent to 0 modulo Φn2s(q)3. So,
the q-congruence (6.2) also holds modulo Φn2s(q)3.

Moreover, we observe that, for n ≡ 3 (mod 4), and 1 6 j 6 s− 1,

[n2s]q2(q; q4)(n2s−1)/2

(q7; q4)(n2s−1)/2

q(n2s−3)/2 ≡ 0 (mod Φn2j(q)2).

This is because [n2s]q2 = (1 − q2n2s
)/(1 − q2) is divisible by Φn2j(q), and the polynomial

(q; q4)(n2s−1)/2 contains (n2s−2j+1)/2 factors of the form 1−qan2j
(a is an integer), while the

polynomial (q7; q4)(n2s−1)/2 only has (n2s−2j − 1)/2 such factors. Meanwhile, by Theorem
1.1, the left-hand sides of (6.1) and (6.2) are both congruent to 0 modulo Φn2j(q)2 for
1 6 j 6 s−1, since (n2s−1)/2 = (n2s−2j−1)n2j/2+(n2j−1)/2 and n2j ≡ 1 (mod 4). This
means that the q-congruences (6.1) and (6.2) also hold modulo Φn2j(q)2 for 1 6 j 6 s−1.
Since the moduli Φn2(q), Φn4(q), . . . Φn2s(q) are pairwise relatively prime polynomials in
q, we complete the proof of the theorem. 2

Proof of Theorem 1.6. Letting n = p and q → 1 in (6.1) and (6.2) and noticing that
r = 2s, we obtain the desired supercongruences (1.19) and (1.20). 2
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7. Concluding remarks

In 2017, He [16] proved the following supercongruences: modulo p2,

p−1∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)k

k!44k
≡





(−1)(p+3)/4pΓp(
1
2
)Γp(

1
4
)2, if p ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4),
(7.1)

and

p−1∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)2
k

k!5
≡

{
−pΓp(

1
4
)4, if p ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4).
(7.2)

Liu [17] further proved that (7.1) and (7.2) are true modulo p3. In 2022, Liu and Wang [20]
noticed that (7.1) can be deduced from the following q-supercongruence: for any positive
odd integer n, modulo [n]Φn(q)2,

n−1∑

k=0

[6k + 1]
(q; q4)k(q; q

2)3
k

(q2; q2)k(q4; q4)3
k

qk2+k

≡




(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

[n]q(1−n)/4, if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(7.3)

See [3] and [13, Theorem 4.5] for generalizations of (7.3).
We conjecture that for n ≡ 3 (mod 4) the modulus Φn(q)2 case of (7.3) has the

following generalization like Theorem 1.1.

Conjecture 7.1. Let m and n be positive integers with n ≡ 3 (mod 4). Then

mn−1∑

k=0

[6k + 1]
(q; q4)k(q; q

2)3
k

(q2; q2)k(q4; q4)3
k

qk2+k ≡ 0 (mod Φn(q)2), (7.4)

mn+(n−1)/2∑

k=0

[6k + 1]
(q; q4)k(q; q

2)3
k

(q2; q2)k(q4; q4)3
k

qk2+k ≡ 0 (mod Φn(q)2). (7.5)

Wei [31] gave a q-analogue of (7.2): for any positive odd integer n, modulo [n]Φn(q)2,

n−1∑

k=0

[6k + 1]
(q; q2)2

k(q, q, q
2; q4)k

(q2; q2)2
k(q

4; q4)3
k

q2k

≡





[n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

, if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(7.6)

Similarly, we have the following two conjectural generalizations of (7.6) for n ≡ 3
(mod 4). One is modulo Φn(q)3 and the other is modulo Φn(q)2.
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Conjecture 7.2. Let m and n be positive integers with n ≡ 3 (mod 4). Then

mn−1∑

k=0

[6k + 1]
(q; q2)2

k(q, q, q
2; q4)k

(q2; q2)2
k(q

4; q4)3
k

q2k ≡ 0 (mod Φn(q)3), (7.7)

mn+(n−1)/2∑

k=0

[6k + 1]
(q; q2)2

k(q, q, q
2; q4)k

(q2; q2)2
k(q

4; q4)3
k

q2k ≡ 0 (mod Φn(q)2).

Van Hamme [26, (A.2)] also conjectured that

p−1∑

k=0

(−1)k(4k + 1)
(1

2
)5
k

k!5
≡




− p

Γp(
3
4
)4

(mod p3), if p ≡ 1 (mod 4),

0 (mod p3), if p ≡ 3 (mod 4),
(7.8)

which was later proved by McCarthy and Osburn [22]. Wang and Yue [27], together
with the author [7], gave a q-analogue of (7.8) as follows: for any positive odd integer n,
modulo [n]Φn(q)2,

n−1∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk

≡





[n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

, if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(7.9)

Moreover, a stronger version of (7.9) modulo [n]Φn(q)3 was recently presented by Wei [29].
Likewise, we have two conjectural generalizations of for n ≡ 3 (mod 4).

Conjecture 7.3. Let m and n be positive integers with n ≡ 3 (mod 4). Then

mn−1∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk ≡ 0 (mod Φn(q)3), (7.10)

mn+(n−1)/2∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk ≡ 0 (mod Φn(q)2). (7.11)

We point out that neither (7.4) nor (7.5) holds modulo Φn(q)3 in general. This means
that the q-supercongruences (7.7) and (7.10) might be very difficult to prove. Numerical
calculation implies that the following conjecture related to (7.1) and (7.2) seems to be
true.

Conjecture 7.4. Let p ≡ 3 (mod 4) be a prime and let r > 1. Then

(p2r−1)/d∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)k

k!44k
≡ p2r (1

2
)(p2r−1)/4

(1)(p2r−1)/4

(mod p2r+3),
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(p2r−1)/d∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)2
k

k!5
≡ p2r

(1
2
)2
(p2r−1)/4

(1)2
(p2r−1)/4

(mod p3r+3),

where d = 1 or 2.

There is a similar generalization of (7.8) for p ≡ 3 (mod 4). But this is just a special
case of Conjecture (A.3) in [25], and is omitted here.

The author, Schlosser, and Zudilin [9] established a new q-analogue of (1.12) as follows:
for any integer n > 1 satisfying n ≡ 1 (mod 4),

(n+1)/2∑

k=0

(q−1; q2)2
k(q

−2; q4)k

(q2; q2)2
k(q

4; q4)k

q6k ≡ 0 (mod Φn(q)2). (7.12)

A further generalization of (7.12) modulo Φn(q)3 was later given by the author and Wei
[11].

We believe that the following generalization of (7.12) should be true.

Conjecture 7.5. Let m and n be positive integers with n ≡ 1 (mod 4) and n > 1. Then

mn−1∑

k=0

(q−1; q2)2
k(q

−2; q4)k

(q2; q2)2
k(q

4; q4)k

q6k ≡ 0 (mod Φn(q)2),

mn+(n+1)/2∑

k=0

(q−1; q2)2
k(q

−2; q4)k

(q2; q2)2
k(q

4; q4)k

q6k ≡ 0 (mod Φn(q)2).

It is clear that Corollary 1.5 can also be deduced from Conjecture 7.5. Although
the author [4] proved a similar generalization of (1.2) for n ≡ 3 by using Bailey’s 10φ9

transformation (see [2, Appendix (III.28)]), it seems difficult to confirm Conjecture 7.5
by using Bailey’s transformation again.

It should be mentioned that we did not use the method of ‘creative microscoping’
introduced in [13] in our proof of Theorem 1.1, though this method is very useful in prov-
ing q-supercongruences. In fact, we only utilized Watson’s 8φ7 transformation formula.
However, it seems rather difficult to find the corresponding transformation formulas to
confirm Conjectures 7.1 and 7.2. No doubt that we can apply Andrews’ multi-series gen-
eralization [1] of Watson’s 8φ7 transformation to the left-hand side of (7.11). But there
is still a big obstacle to confirming (7.11). We hope that an interested reader can make
progress on the conjectures in this paper and settle at least one of them.
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