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Abstract. We give some new q-supercongruences on truncated forms of squares of basic
hypergeometric series. Most of them are modulo the cube of a cyclotomic polynomial,
and two of them are modulo the fourth power of a cyclotomic polynomial. The main
ingredients of our proofs are the creative microscoping method, a lemma of El Bachraoui,
and the Chinese remainder theorem for coprime polynomials. We also propose several
related conjectures for further study.
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1. Introduction

q-Supercongruences have attracted a lot of interest of authors in recent years. For example,
the first author and Zudilin [18] devised a new method, called ‘creative microscoping’,
to prove q-supercongruences by adding an extra parameter and deliberating asymptotic
behavior of q-series at roots of unity. A representative q-supercongruence established by
them is as follows: for any positive integer n with gcd(n, 6) = 1,

(n−1)/2∑

k=0

[8k + 1]
(q; q2)2

k(q; q
2)2k

(q2; q2)2k(q6; q6)2
k

q2k2 ≡ q(1−n)/2[n]

(−3

n

)
(mod [n]Φn(q)2). (1.1)

Here and in what follows, the q-shifted factorail is defined by (a; q)0 = 1 and (a; q)n =
(1−a)(1−aq) · · · (1−aqn−1) for n > 1, the q-integer is defined as [n] = 1+q+· · ·+qn−1. For
simplicity, we shall also use the compact notation: (a1, . . . , am; q)n = (a1; q)n . . . (am; q)n.
Moreover, the n-th cyclotomic polynomials, denoted by Φn(q), is defined by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity, and (−3
n

) denotes the Jacobi symbol. For more
progress on q-supercongruences, we refer the reader to [2, 3, 6–17,21–28,32,33,35,37–43].

*Corresponding author.
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El Bachraoui [2] employed the creative microscoping method to prove a few new q-
supercongruences, such as

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q[n]2 (mod [n]Φn(q)2), (1.2)

where cq(k) stands for the k-th term on the left-hand side of (1.1) and gcd(n, 6) = 1.
Note that the left-hand side of (1.2) may be deemed a truncated form of the square of
the basic hypergeometric series

∑∞
k=0 cq(k). Very recently, motivated by El Bachraoui’s

work, the second author [21] established three more such q-supercongruences, including

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q(n+1)/2[n]2 (mod [n]Φn(q)2), (1.3)

where cq(k) = (−1)kqk2
[4k + 1](q; q2)3

k/(q
2; q2)3

k.
The main purpose of this paper is to give four q-supercongruences of this kind. Our

first result can be stated as follows.

Theorem 1.1. Let n be a positive odd integer, and for k > 0,

cq(k) = [3k + 1]
(q; q2)3

kq
−(k+1

2 )

(q; q)2
k(q

2; q2)k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q[n]2 (mod [n]Φn(q)2). (1.4)

Note that the first author [9] obtained the following q-supercongruence:

n−1∑

k=0

[3k + 1]
(q; q2)3

kq
−(k+1

2 )

(q; q)2
k(q

2; q2)k

≡ q(1−n)/2[n] (mod [n]Φn(q)2),

which is a q-analogue of a ‘divergent’ Ramanujan-type supercongruence of Guillera and
Zudilin [5].

Our second result is a q-supercongruence similar to Theorem 1.1.

Theorem 1.2. Let n be a positive odd integer, and for k > 0,

cq(k) = (−1)k[3k + 1]
(q; q2)3

k

(q; q)3
k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q(n+1)/2[n]2 (mod [n]Φn(q)2). (1.5)
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Note that the first author [9] also obtained the following q-supercongruence:

n−1∑

k=0

(−1)k[3k + 1]
(q; q2)3

k

(q; q)3
k

≡ (−q)(n−1)2/4[n] (mod [n]Φn(q)2),

which is a q-analogue of another ‘divergent’ Ramanujan-type supercongruence proved by
Guillera and Zudilin [5].

Our third result generalizes (1.3) to the modulus [n]Φn(q)3 case.

Theorem 1.3. Let n be a positive odd integer, and for k > 0,

cq(k) = (−1)kqk2

[4k + 1]
(q; q2)3

k

(q2; q2)3
k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q(n−1)2/2[n]2 (mod [n]Φn(q)3). (1.6)

We point out that the first author [6] has proved that

(n−1)/2∑

k=0

(−1)kqk2

[4k + 1]
(q; q2)3

k

(q2; q2)3
k

≡ (−q)(n−1)2/4[n] (mod [n]Φn(q)2),

which is a q-analogue of the (B.2) supercongruence of Van Hamme [36]. Moreover, the
first author and Wang [16] established the following q-supercongruence:

(n−1)/2∑

k=0

[4k + 1]
(q; q2)4

k

(q2; q2)4
k

≡ q(1−n)/2[n] +
(n2 − 1)(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)3),

(1.7)

which is a q-analogue of [29, Theorem 1.1 with r = 1] and is also a generalization of the
(C.2) supercongruence of Van Hamme [36].

Our fourth result in this paper is related to (1.7) and can be stated as follows.

Theorem 1.4. Let n be a positive odd integer, and for k > 0,

cq(k) = [4k + 1]
(q; q2)4

k

(q2; q2)4
k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n[n]2 (mod [n]Φn(q)3). (1.8)

The rest of the paper is arranged as follows. We shall prove Theorems 1.1 and 1.2 in
the next section. The proofs of Theorems 1.3 and 1.4 will be given in Sections 3 and 4,
respectively. In Section 5, we give four more such q-supercongruences. Finally, in Section
6, we put forward eight open problems. Besides the creative microscoping method and
a lemma of El Bachraoui [2], we shall also employ the Chinese remainder theorem for
relatively prime polynomials to prove Theorems 1.3 and 1.4.
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2. Proof of Theorems 1.1 and 1.2

We require the following two lemmas. Lemma 2.1 is easily proved and can be found
in [2, Lemma 1].

Lemma 2.1. Let d be a positive integer and let {c(k)}∞k=0 be a sequence of complex
numbers. If c(k) = 0 for (d + 1)/2 6 k 6 d− 1, then

d−1∑

k=0

k∑
j=0

c(j)c(k − j) =

(
d−1∑

k=0

c(k)

)2

.

Furthermore, if c(ld + k)/c(ld) = c(k) for all nonnegative integers k and l such that
0 6 k 6 d− 1, then

ld+k∑
j=0

c(j)c(ld + k − j) =
l∑

i=0

c(id)c((l − i)d)
k∑

j=0

c(j)c(k − j).

Lemma 2.2. Let n be a positive odd integer. Then

(n−1)/2∑

k=0

[3k + 1]
(q1+n, q1−n, q; q2)kq

−(k+1
2 )

(q1+n, q1−n; q)k(q2; q2)k

= q(1−n)/2[n], (2.1)

(n−1)/2∑

k=0

(−1)k[3k + 1]
(q1+n, q1−n, q; q2)k

(q1+n, q1−n, q; q)k

= (−q)(n−1)2/4[n]. (2.2)

Proof. Letting b → 0 in [18, Theorem 4.8], we obtain the following q-congruence: modulo
[n](1− aqn)(a− qn),

(n−1)/2∑

k=0

[3k + 1]
(aq, q/a, q; q2)kq

−(k+1
2 )

(aq, q/a; q)k(q2; q2)k

≡ q(1−n)/2[n]. (2.3)

Further taking a = qn, we get (2.1).
Letting b → 0 and c → 0 in [14, Theorem 6.1] (see also [18, Conjecture 4.6]), we get

another q-congruence: modulo [n](1− aqn)(a− qn),

(n−1)/2∑

k=0

(−1)k[3k + 1]
(aq, q/a, q; q2)k

(aq, q/a, q; q)k

≡ (−q)(n−1)2/4[n]. (2.4)

Putting a = qn in the above q-congruence, we arrive at (2.2). 2

We now give a parametric generalization of Theorem 1.1, which is necessary in our
proof of Theorem 1.1 and is also an example for the method of creative microscoping.
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Theorem 2.3. Let n be a positive odd integer, and for k > 0,

cq(k) = [3k + 1]
(aq, q/a, q; q2)kq

−(k+1
2 )

(aq, q/a; q)k(q2; q2)k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n[n]2 (mod [n](1− aqn)(a− qn)). (2.5)

Proof. For n = 1, the result is clearly true. We now assume that n is an odd integer
greater than 1. Let ζ 6= 1 be an n-th root of unity, not necessarily primitive. Namely, ζ
is a primitive d-th root of unity with d | n and d > 1. It is easy to see that (ζ; ζ2)k = 0
for (d + 1)/2 6 k 6 d − 1 and so cζ(k) = 0 for k in the same range. By Lemma 2.1, we
obtain

d−1∑

k=0

k∑
j=0

cζ(j)cζ(k − j) =

(
d−1∑

k=0

cζ(k)

)2

= 0,

where the second equality follows from the n = d case of (2.3). It is not difficult to check
that cζ(ld+ k)/cζ(ld) = cζ(k) for all integers k and l satisfying 0 6 k 6 d− 1. By Lemma
2.1 again, we get

n−1∑
m=0

m∑
j=0

cζ(j)cζ(m− j) =

n/d−1∑

l=0

d−1∑

k=0

ld+k∑
j=0

cζ(j)cζ(ld + k − j)

=

n/d−1∑

l=0

d−1∑

k=0

l∑
i=0

(cζ(id)cζ((l − i)d))
k∑

j=0

cζ(j)cζ(k − j)

=

(
n/d−1∑

l=0

l∑
i=0

cζ(id)cζ((l − i)d)

)
d−1∑

k=0

k∑
j=0

cζ(j)cζ(k − j)

= 0.

Since the above equality is true for any n-th root of unit ζ 6= 1, we conclude that

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ 0 ≡ q1−n[n]2 (mod [n]). (2.6)

Namely, the q-congruence (2.5) holds modulo [n].
Moreover, for a = qn or a = q−n, in view of (2.1), we have

∑n−1
k=0 cq(k) = q(1−n)/2[n],

and cq(k) = 0 for k in the range (n + 1)/2 6 k 6 n− 1. Thus, by Lemma 2.1, for a = qn

or a = q−n we get

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) =

(
n−1∑

k=0

cq(k)

)2

= q1−n[n]2.
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This means that the q-congruence (2.5) holds modulo 1− aqn and a− qn. The proof then
follows from the fact that the polynomials [n], 1− aqn and a− qn are pairwise relatively
prime. 2

Proof of Theorem 1.1. Setting a = 1 in (2.5), and observing that 1−qn contains the factor
Φn(q), we are led to the q-congruence (1.4) modulo Φn(q)3. Furthermore, our proof of
(2.6) is also true for a = 1. That is, the q-congruence (1.4) holds modulo [n]. Noticing
that the least common multiple of Φn(q)3 and [n] is just [n]Φn(q)2, we complete the proof
of the theorem. 2

Similarly, we have a parametric generalization of Theorem 1.2.

Theorem 2.4. Let n be a positive odd integer, and for k > 0,

cq(k) = (−1)k[3k + 1]
(aq, q/a, q; q2)k

(aq, q/a, q; q)k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q(n−1)2/2[n]2 (mod [n](1− aqn)(a− qn)). (2.7)

Proof. The proof is very similar to that of Theorem 2.3. We only consider the n > 1
case. Let ζ be a primitive d-th root of unity with d | n and d > 1. Then cζ(k) = 0 for
(d + 1)/2 6 k 6 d− 1. By Lemma 2.1, we get

d−1∑

k=0

k∑
j=0

cζ(j)cζ(k − j) =

(
d−1∑

k=0

cζ(k)

)2

= 0,

where we have used the n = d case of (2.4). Likewise, cζ(ld + k)/cζ(ld) = cζ(k) is also
true for 0 6 k 6 d− 1. By Lemma 2.1 again, we get

n−1∑
m=0

m∑
j=0

cζ(j)cζ(m− j) = 0,

from which we conclude that
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ 0 ≡ q(1−n)2/2[n]2 (mod [n]). (2.8)

For a = qn or a = q−n, in view of (2.2), we have
∑n−1

k=0 cq(k) = (−q)(n−1)2/4[n], and
cq(k) = 0 for (n + 1)/2 6 k 6 n− 1. Hence, by Lemma 2.1, for a = qn or q−n we get

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) = q(n−1)2/2[n]2.

This proves that the q-congruence (2.7) holds modulo 1− aqn and a− qn. 2

Proof of Theorem 1.3. Letting a = 1 in (2.7) and observing that q(n−1)2/2 ≡ q(n+1)/2

(mod Φn(q)), we obtain the desired q-congruence (1.5). 2
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3. Proof of Theorem 1.3

We first give two assistant results. Both of them can be deduced form Watson’s 8φ7

transformation formula [4, Appendix (III. 18)]. For the concrete proofs, see [10, Section 5].

Lemma 3.1. Let n be a positive odd integer. Then, modulo [n](1− aqn)(a− qn),

(n−1)/2∑

k=0

(−1)k[4k + 1]
(aq, q/a, q/b; q2)k

(aq2, q2/a, bq2; q2)k

bkqk2

≡ (−q)(n−1)2/4[n]

(n−1)/2∑

k=0

(1− b)(aq, q/a; q2)k

(1− bq2k)(q, q2; q2)k

qk. (3.1)

Lemma 3.2. Let n be a positive odd integer. Then, modulo b− qn,

(n−1)/2∑

k=0

(−1)k[4k + 1]
(aq, q/a, q/b; q2)k

(aq2, q2/a, bq2; q2)k

bkqk2 ≡ [n]

(n−1)/2∑

k=0

(q, q/b; q2)kb
k

(aq2, q2/a; q2)k

. (3.2)

We also need the following lemma.

Lemma 3.3. Let n be a positive odd integer. Let a0, a1, . . . , an−1 be a sequence of numbers
satisfying ak = −a(n−1)/2−k for 0 6 k 6 (n− 1)/2 and ak = −a(3n−1)/2−k for (n + 1)/2 6
k 6 n− 1. Then

n−1∑

k=0

k∑
i=0

aiak−i = 0. (3.3)

Proof. We consider two cases. If n ≡ 1 (mod 4), then a(n−1)/4 = 0, and for nonnegative
indices i, j 6= (n− 1)/4 and i + j 6 n− 1, we have

aiaj =





−a(n−1)/2−iaj if i 6 (n− 1)/2 and j − i 6 (n− 1)/2,

−aia(3n−1)/2−j if i 6 (n− 1)/2 and j − i > (n + 1)/2,

−aia(n−1)/2−j if i > (n + 1)/2 and i− j 6 (n− 1)/2,

−a(3n−1)/2−iaj if i > (n + 1)/2 and i− j > (n + 1)/2.

(3.4)

This means that all the nonzero terms on the left-hand side of (3.3) can be paired so that
the two terms in each pair only differs by a sign. Therefore, the identity (3.3) holds.

If n ≡ 3 (mod 4), then a(3n−1)/4 = 0, and for nonnegative indices i, j 6= (3n − 1)/4
and i + j 6 n− 1, the equality (3.4) still holds, thus establishing (3.3). 2

We are now able to establish the following q-congruence with an additional parameter
a. Note that this q-congruence modulo [n](1 − aqn)(a − qn) was already given by the
second author [21].
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Theorem 3.4. Let n be a positive odd integer, and for k > 0,

cq(k) = (−1)kqk2

[4k + 1]
(aq, q/a, q; q2)k

(aq2, q2/a, q2; q2)k

.

Then

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q(n−1)2/2[n]2 (mod [n]Φn(q)(1− aqn)(a− qn)). (3.5)

Proof. Suppose that n > 1 is odd. Let

zq(k) = (−1)k[4k + 1]
(aq, q/a, q/b; q2)k

(aq2, q2/a, bq2; q2)k

bkqk2

.

By [15, Lemma 3.1], for 0 6 k 6 (n− 1)/2, we have

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)). (3.6)

From the above q-congruence, we can easily check that, for 0 6 k 6 (n− 1)/2,

zq(k) ≡ −zq((n− 1)/2− k) (mod Φn(q)). (3.7)

Similarly, for (n + 1)/2 6 k 6 n− 1,

zq(k) ≡ −zq((3n− 1)/2− k) (mod Φn(q)). (3.8)

By Lemma 3.3, we get

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡ 0 (mod Φn(q)). (3.9)

Let ζ be a primitive d-th root of unity with d | n and d > 1. Then the n = d case of
(3.9) implies that

d−1∑

k=0

k∑
j=0

zζ(j)zζ(k − j) = 0,

Moreover, the equality zζ(ld + k)/zζ(ld) = zζ(k) holds for 0 6 k 6 d− 1. By Lemma 2.1,
similarly to the proof of (2.6), we can show that the q-congruence (3.9) is true modulo
[n].

For a = qn or a = q−n, by (3.1), we have

n−1∑

k=0

zq(k) = (−q)(n−1)2/4[n]

(n−1)/2∑

k=0

(1− b)(q1+n, q1−n; q2)k

(1− bq2k)(q, q2; q2)k

qk,
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and zq(k) = 0 for (n + 1)/2 6 k 6 n− 1. By Lemma 2.1, we get

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) = q(n−1)2/2[n]2




(n−1)/2∑

k=0

(1− b)(aq1+n, q1−n; q2)k

(1− bq2k)(q, q2; q2)k

qk




2

.

Namely, for indeterminates a and b, we obtain the following q-congruence: modulo (1 −
aqn)(a− qn),

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡ q(n−1)2/2[n]2




(n−1)/2∑

k=0

(1− b)(aq, q/a; q2)k

(1− bq2k)(q, q2; q2)k

qk




2

. (3.10)

Similarly, from (3.2) we deduce the following q-congruence: modulo b− qn,

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡ [n]2




(n−1)/2∑

k=0

(q, q/b; q2)kb
k

(aq2, q2/a; q2)k




2

. (3.11)

It is clear that (1− aqn)(a− qn) and b− qn are relatively prime polynomials. In light
of the Chinese reminder theorem for polynomials, we can determine the remainder of the
left-hand side of (3.9) modulo [n](1− aqn)(a− qn)(b− qn) from (3.10) and (3.11). In fact,
using following two q-congruences:

(b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)
≡ 1 (mod (1− aqn)(a− qn)), (3.12)

(1− aqn)(a− qn)

(a− b)(1− ab)
≡ 1 (mod b− qn), (3.13)

we conclude that

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j)

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)
q(n−1)2/2[n]2




(n−1)/2∑

k=0

(1− b)(aq, q/a; q2)k

(1− bq2k)(q, q2; q2)k

qk




2

+
(1− aqn)(a− qn)

(a− b)(1− ab)
[n]2




(n−1)/2∑

k=0

(q, q/b; q2)kb
k

(aq2, q2/a; q2)k




2

(3.14)

modulo [n](1− aqn)(a− qn)(b− qn).
We now take b = 1 in (3.14). In this case, the polynomial b− qn = 1− qn contains the

factor Φn(q). Meanwhile, the second part on the right-hand of (3.14) modulo [n]Φn(q)(1−
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aqn)(a − qn) vanishes. Therefore, the q-congruence (3.14) reduces to the following one:
modulo [n]Φn(q)(1− aqn)(a− qn),

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ (1− qn)(1 + a2 − a− aqn)

(1− a)2
q(n−1)2/2[n]2,

which is clearly equivalent to (3.5), since

(1− qn)(1 + a2 − a− aqn) = (1− a)2 + (1− aqn)(a− qn). (3.15)

This completes the proof. 2

Proof of Theorem 1.3. Letting a = 1 in (3.5), we are led to (1.6). 2

4. Proof of Theorem 1.4

The proof is analogous to that of Theorem 1.3. This time we need the following two aux-
iliary results, which can be derived form Jackson’s 6φ5 summation formula [4, Appendix
(II.21)]. For the detailed proofs of them, see [18, Theorem 4.2] and [10, Lemma 2.3].

Lemma 4.1. Let n be a positive odd integer. Then, modulo [n](1− aqn)(a− qn),

(n−1)/2∑

k=0

[4k + 1]
(aq, q/a, q/b, q; q2)k

(aq2, q2/a, bq2, q2; q2)k

bk ≡ (b/q)(n−1)/2(q2/b; q2)(n−1)/2

(bq2; q2)(n−1)/2

[n]. (4.1)

Lemma 4.2. Let n be a positive odd integer. Then, modulo b− qn,

(n−1)/2∑

k=0

[4k + 1]
(aq, q/a, q/b, q; q2)k

(aq2, q2/a, bq2, q2; q2)k

bk ≡
(q; q2)2

(n−1)/2[n]

(aq2, q2/a; q2)(n−1)/2

. (4.2)

Likewise, we first give the following parametric generalization of Theorem 1.4.

Theorem 4.3. Let n be a positive odd integer, and for k > 0,

cq(k) = [4k + 1]
(aq, q/a; q2)k(q; q

2)2
k

(aq2, q2/a; q2)k(q2; q2)2
k

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n[n]2 (mod [n]Φn(q)(1− aqn)(a− qn)). (4.3)
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Proof. Suppose that n > 1 is odd. Let

zq(k) = [4k + 1]
(aq, q/a, q/b, q; q2)k

(aq2, q2/a, bq2, q2; q2)k

bk.

By (3.6), we have zq(k) ≡ −zq((n−1)/2−k) (mod Φn(q)) for 0 6 k 6 (n−1)/2. Similarly,
we also have zq(k) ≡ −zq((3n − 1)/2 − k) (mod Φn(q)) for (n + 1)/2 6 k 6 n − 1. In
view of Lemma 3.3, we get

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡ 0 (mod Φn(q)). (4.4)

Like before, we can further show that above q-congruence is true modulo [n].
For a = qn or a = q−n, by (4.1), we have

n−1∑

k=0

zq(k) =
(b/q)(n−1)/2(q2/b; q2)(n−1)/2

(bq2; q2)(n−1)/2

[n],

and zq(k) = 0 for (n + 1)/2 6 k 6 n− 1. By Lemma 2.1, we get

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) =
(b/q)n−1(q2/b; q2)2

(n−1)/2

(bq2; q2)2
(n−1)/2

[n]2.

Namely, for indeterminates a and b, we obtain

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡
(b/q)n−1(q2/b; q2)2

(n−1)/2

(bq2; q2)2
(n−1)/2

[n]2 (mod (1− aqn)(a− qn)). (4.5)

Similarly, applying (4.2) we get the q-congruence: modulo b− qn,

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡
(q; q2)4

(n−1)/2[n]2

(aq2, q2/a; q2)2
(n−1)/2

. (4.6)

It follows from (3.12), (3.13), (4.5) and (4.6) that, modulo [n](1−aqn)(a− qn)(b− qn),

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j)

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)

(b/q)n−1(q2/b; q2)2
(n−1)/2

(bq2; q2)2
(n−1)/2

[n]2

+
(1− aqn)(a− qn)

(a− b)(1− ab)

(q; q2)4
(n−1)/2[n]2

(aq2, q2/a; q2)2
(n−1)/2

. (4.7)

Putting b = 1 in (4.7) and applying (3.15), we arrive at (4.3). 2

Proof of Theorem 1.4. Letting a = 1 in (4.3), we immediately get (1.8). 2
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5. More such q-supercongruences

The first author and Zeng [17] gave the following q-supercongruences: for any odd prime
p,

p−1∑

k=0

2(q; q2)2
kq

2k

(q2; q2)2
k(1 + q2k)

≡ (−1)(p−1)/2 (mod [p]2),

which is a q-analogue of a classical supercongruence conjectured by Rodriguez-Villegas
[34, (36)] and first confirmed by Mortenson [31]. Here we give the corresponding q-
supercongruence on double sums.

Theorem 5.1. Let n be a positive odd integer, and for k > 0,

cq(k) =
2(q; q2)2

kq
2k

(q2; q2)2
k(1 + q2k)

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ 1 (mod Φn(q)2). (5.1)

Proof. By [7, Corollary 1.4], we have

n−1∑

k=0

2(aq, q/a; q2)kq
2k

(q2; q2)2
k(1 + q2k)

≡ (−1)(n−1)/2 (mod (1− aqn)(a− qn)). (5.2)

Let zq(k) denote the k-th term on the left-hand side of (5.2). By Lemma 2.1, we can
easily prove that

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡ 1 (mod (1− aqn)(a− qn)). (5.3)

Taking a = 1 in the above congruence, we obtain the desired q-congruence (5.1). 2

The first author and Zudilin [19, Theorem 2] gave the following q-supercongruence:
modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

which is a q-analogue of the (H.2) supercongruence of Van Hamme [36]. The first author
[12] further showed that, for n ≡ 3 (mod 4),

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡ [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

(mod Φn(q)3), (5.4)
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which is also true modulo Φn(q)2 for n ≡ 1 (mod 4). Recently, Wei [39] proved that, for
n ≡ 1 (mod 4), modulo Φn(q)3,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2


1 + 2[n]2

(n−1)/4∑

k=1

q4k−2

[4k − 2]2


 . (5.5)

It should be mentioned that (5.4) and (5.5) may be considered as a q-analogue of [30,
Theorem 3].

Here we give a q-supercongruence on double sums related to (5.4) and (5.5).

Theorem 5.2. Let n be a positive odd integer, and for k > 0,

cq(k) =
(q; q2)2

k(q
2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k.

Then, modulo Φn(q)3,

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j)

≡





(q2; q4)4
(n−1)/4

(q4; q4)4
(n−1)/4

qn−1


1 + 4[n]2

(n−1)/4∑

k=1

q4k−2

[4k − 2]2


 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

(5.6)

Proof. We first consider the n ≡ 1 (mod 4) case. For k > 0, let

zq(k) =
(aq, q/a, q/b,−q/b; q2)k

(q2, q2,−q2, q2/b2; q2)k

q2k.

Using the following two congruences (see [39])

(n−1)/2∑

k=0

zq(k) ≡ (q2, b2q2; q4)(n−1)/4

(q4, q4/b2; q4)(n−1)/4

(q

b

)(n−1)/2

(mod (1− aqn)(a− qn)),

(n−1)/2∑

k=0

zq(k) ≡ (aq3, q3/a; q4)(n−1)/2

(q2; q2)n−1

≡ (abq2, bq2/a, aq2/b, q2/ab; q4)(n−1)/4

(q2, q4, q2/b2, q4/b2; q4)(n−1)/4

(q

b

)(n−1)/2

(mod b− qn),

which may be deduced from Andrews’ q-analogue of the Whipple formula [1] and Jain’s
q-analogue of the Whipple formula [20], respectively, in view of Lemma 2.1, we can prove
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that

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡
(q2, b2q2; q4)2

(n−1)/4

(q4, q4/b2; q4)2
(n−1)/4

(q

b

)n−1

(mod (1− aqn)(a− qn)),

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡
(abq2, bq2/a, aq2/b, q2/ab; q4)2

(n−1)/4

(q2, q4, q2/b2, q4/b2; q4)2
(n−1)/4

(q

b

)n−1

(mod b− qn).

By (3.12) and (3.13), we conclude that, modulo (1− aqn)(a− qn)(b− qn),

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j)

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)

(q2, b2q2; q4)2
(n−1)/4

(q4, q4/b2; q4)2
(n−1)/4

(q

b

)n−1

+
(1− aqn)(a− qn)

(a− b)(1− ab)

(abq2, bq2/a, aq2/b, q2/ab; q4)2
(n−1)/4

(q2, q4, q2/b2, q4/b2; q4)2
(n−1)/4

(q

b

)n−1

. (5.7)

Putting b = 1 in (5.7), we are led to the congruence: modulo Φn(q)(1− aqn)(a− qn),

n−1∑

k=0

k∑
j=0

yq(j)yq(k − j) ≡
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

qn−1 +
(1− aqn)(a− qn)

(1− a)2
qn−1

×
(

(q2; q4)4
(n−1)/4

(q4; q4)4
(n−1)/4

−
(aq2, q2/a; q4)4

(n−1)/4

(q2, q4; q4)4
(n−1)/4

)
, (5.8)

where

yq(k) =
(aq, q/a, q,−q; q2)k

(q2, q2,−q2, q2; q2)k

q2k.

By L’Hôspital’s rule, we have

lim
a→1

(1− aqn)(a− qn)

(1− a)2

(
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

−
(aq2, q2/a; q4)4

(n−1)/4

(q2, q4; q4)4
(n−1)/4

)

= 4[n]2
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

(n−1)/4∑

k=1

q4k−2

[4k − 2]2
.

Thus, letting a → 1 in (5.8), we arrive at the first case of (5.6).
We now consider the n ≡ 3 (mod 4) case. We need to introduce another parametric

generalization. For k > 0, let

xq(k) =
(aq, q/a; q2)k(q

2; q4)k

(aq2, q2/a; q2)k(q4; q4)k

q2k
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The first author [12] gave the following parametric generalization of (5.4): modulo Φn(q)(1−
aqn)(a− qn),

(n−1)/2∑

k=0

xq(k) ≡ [n]
(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

.

Like before, using this congruence and Lemma 2.1, we can prove that

n−1∑

k=0

k∑
j=0

xq(j)xq(k − j) ≡ [n]2
(q3; q4)2

(n−1)/2

(q5; q4)2
(n−1)/2

(mod (1− aqn)(a− qn)).

Moreover, from (3.6) we can easily verify that (3.7) and (3.8) also hold in this case. In
light of Lemma 3.3, we conclude that

n−1∑

k=0

k∑
j=0

xq(j)xq(k − j) ≡ 0 (mod Φn(q)).

Since the polynomials (1− aqn)(a− qn) and Φn(q) are relatively prime, we get

n−1∑

k=0

k∑
j=0

xq(j)xq(k − j) ≡ [n]2
(q3; q4)2

(n−1)/2

(q5; q4)2
(n−1)/2

(mod Φn(q)(1− aqn)(a− qn)).

Letting a → 1 in the above congruence, we arrive at the second case of (5.6). 2

Consider the case where n = p is a prime in Theorem 5.2. By [39, Proposition 1.3],
we immediately obtain the following conclusion: for any odd prime p,

p−1∑

k=0

1

64k

k∑
j=0

(
2j

j

)3(
2k − 2j

k − j

)3

≡
{

Γp(1/4)8 (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4),
(5.9)

where Γp(x) is the p-adic Gamma function.
It is proved in [8] and [38] that

(n−1)/2∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk

≡





[n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

(mod [n]Φn(q)2) if n ≡ 1 (mod 4),

0 (mod [n]Φn(q)2) if n ≡ 3 (mod 4),

(5.10)

which is a q-analogue of the (A.2) supercongruence of Van Hamme [36]. We have the
following related q-supercongruences on double sums.
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Theorem 5.3. Let n be a positive odd integer, and for k > 0,

cq(k) = (−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk.

Then, modulo [n]Φn(q)2,

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡





[n]2
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

(5.11)

Proof. For k > 0, let

zq(k) = (−1)k[4k + 1]
(aq, q/a, q, q; q2)k(q

2; q4)k

(aq2, q2/a, q2, q2; q2)k(q4; q4)k

qk.

Using the following congruence in [8] and [38]: modulo [n](1− aqn)(a− qn),

(n−1)/2∑

k=0

zq(k) ≡





[n]
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

Similarly to the proof of Theorem 1.1, we can prove that, modulo [n](1− aqn)(a− qn),

n−1∑

k=0

k∑
j=0

zq(j)zq(k − j) ≡





[n]2
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

Finally, letting a = 1 in the above congruence, we are led to the desired q-supercongruence
(5.11). 2

The first author and Schlosser [15, Theorem 2.1] gave the following q-supercongruence:

(n−1)/2∑

k=0

[4k + 1]
(q; q2)6

k

(q2; q2)6
k

qk ≡ q(1−n)/2[n]

(n−1)/2∑

k=0

(q; q2)4
k

(q2; q2)4
k

q2k (mod [n]Φn(q)2),

which is a partial q-analogue of a supercongruence of Long [29]. Using a parametric
generalization of the above q-supercongruence [15, Theorem 3.3 with b = 1], we can prove
the following theorem. Since the proof is exactly the same as that of Theorem 1.1, we
omit the details here.

Theorem 5.4. Let n be a positive odd integer, and for k > 0,

cq(k) = [4k + 1]
(q; q2)6

k

(q2; q2)6
k

qk.

Then

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n[n]2




(n−1)/2∑

k=0

(q; q2)4
k

(q2; q2)4
k

q2k




2

(mod [n]Φn(q)2).
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6. Open problems and concluding remarks

Letting n = pr be an odd prime power and q → 1 in (1.4) and (1.5), we obtain the
following supercongruences: for any odd prime p and positive integer r,

pr−1∑

k=0

1

16k

k∑
j=0

(
2j

j

)3(
2k − 2j

k − j

)3

(3j + 1)(3k − 3j + 1) ≡ p2r (mod pr+2),

pr−1∑

k=0

1

(−8)k

k∑
j=0

(
2j

j

)3(
2k − 2j

k − j

)3

(3j + 1)(3k − 3j + 1) ≡ p2r (mod pr+2).

We have a conjecture related to the above two supercongruences.

Conjecture 6.1. Let p be an odd prime and r a positive integer. Then

pr−1∑

k=0

(
1

16k
− 1

(−8)k

) k∑
j=0

(
2j

j

)3(
2k − 2j

k − j

)3

(3j + 1)(3k − 3j + 1) ≡ 0 (mod p2r+2).

Numerical evaluation indicates that Theorem 1.3 can be further strengthened as fol-
lows.

Conjecture 6.2. The q-congruence (3.5) holds modulo [n]2(1−aqn)(a−qn). In particular,
the q-congruence (1.6) holds modulo [n]2Φn(q)2.

We believe that the following generalization of Theorem 1.4 should be true.

Conjecture 6.3. Let cq(k) be given in Theorem 1.4. Then

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n[n]2 +
(n2 − 1)(1− q)2

12
q[n]4 (mod [n]2Φn(q)3).

Note that q-congruences modulo the fifth power of a cyclotomic polynomial is rare
and is in general rather difficult to prove. Another such an unsolved q-congruence can be
found in [10, Conjecture 6.4].

We have two conjectural generalizations of Theorem 5.1.

Conjecture 6.4. The q-congruence (5.3) holds modulo Φn(q)(1 − aqn)(a − qn). In par-
ticular, the q-congruence (5.1) holds modulo Φn(q)3.

Conjecture 6.5. Let d, n and r be positive integers with gcd(d, n) = 1 and n odd. For
k > 0, let

cq(k) =
2(qr; qd)k(q

d−r; qd)kq
2dk

(qd; qd)2
k(1 + qdk)

.

Then
n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ 1 (mod Φn(q)2). (6.1)
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Note that the first author [7, Corollary 1.4] proved the following congruence: modulo
(1− aqr+d〈−r/d〉n)(a− qd−r+d〈(r−d)/d〉n),

n−1∑

k=0

2(aqr; qd)k(q
d−r/a; qd)kq

dk

(qd; qd)k(qd; qd)k(1 + qdk)
≡ (−1)〈−r/d〉n , (6.2)

where 〈x〉m denotes the least non-negative residue of x modulo m. It seems that the
corresponding parametric generalization of (6.1) is true modulo Φn(q)(1− aqr+d〈−r/d〉n) if
〈−r/d〉n 6 (n−1)/2 or is true modulo Φn(q)(a−qd−r+d〈(r−d)/d〉n) if 〈(r−d)/d〉n 6 (n−1)/2.
Using (6.2), we can only prove the modulus (1−aqr+d〈−r/d〉n) or (a−qd−r+d〈(r−d)/d〉n) case.

We have the following generalization of (5.9) for the second case.

Conjecture 6.6. Let p ≡ 3 (mod 4) be a prime greater than 3 and r a positive integer.
Then

pr−1∑

k=0

1

64k

k∑
j=0

(
2j

j

)3(
2k − 2j

k − j

)3

≡ 0 (mod p4).

Finally, the following stronger versions of Theorems 5.3 and 5.4 appear to be true.

Conjecture 6.7. Let cq(k) be given in Theorem 5.3. Then

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡





[n]2
(q2; q4)4

(n−1)/4

(q4; q4)4
(n−1)/4

(mod [n]2Φn(q)2) if n ≡ 1 (mod 4),

0 (mod [n]2Φn(q)4) if n ≡ 3 (mod 4).

Conjecture 6.8. Let cq(k) be given in Theorem 5.4. Then, modulo [n]2Φn(q)3,

n−1∑

k=0

k∑
j=0

cq(j)cq(k − j) ≡ q1−n

(
[n]2 +

(n2 − 1)(1− q)2

12
[n]4

) 


(n−1)/2∑

k=0

(q; q2)4
k

(q2; q2)4
k

q2k




2
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