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Abstract. Long proved that Van Hamme’s (C.2) supercongruence is also true modulo
p4 for any prime p > 3. By making use of the q-WZ method, the author and Wang gave a
q-analogue of Long’s supercongruence. In this paper, employing the method of ‘creative
microscoping’, introduced by the author and Zudilin in 2019, we obtain a generalization
of this q-supercongruence. A limiting case of our result implies that, for 0 6 t 6 s 6 10
and any odd prime p > 4s + 1 and integer r > 1,

(pr−1)/2+s∑

k=s

4k + 1
256k

(
2k − 2s

k − s

)(
2k + 2s

k + s

)(
2k − 2t

k − t

)(
2k + 2t

k + t

)
≡ pr (mod pr+3).

1. Introduction

In 1997, Van Hamme [12, (C.2)] proved that, for any prime p > 3,

(p−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ p (mod p3). (1.1)

In 2011, Long [13, Theorem 1.1] further showed that (1.1) holds modulo p4 for primes
p > 5. Applying the q-WZ method, the author and Wang [7] gave a q-analogue of Long’s
result as follows: for any positive odd integer n,

(n−1)/2∑

k=0

[4k + 1]
(q; q2)4

k

(q2; q2)4
k

≡ [n]q(1−n)/2

(
1 +

(n2 − 1)(1− q)2

24
[n]2

)
(mod [n]Φn(q)3).

(1.2)

Here and in what follows, we adopt the standard q-notation: (a; q)n = (1 − a)(1 −
aq) · · · (1 − aqn−1) denotes the q-shifted factorial, [n] = (1 − qn)/(1 − q) denotes the
q-integer, and Φn(q) stands for the n-th cyclotomic polynomial, which can be written as

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),
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where ζ is an n-th primitive root of unity. Moreover, the q-congruence A1(q)/A2(q) ≡
0 (mod P (q)) for integer coefficient polynomials A1(q), A2(q), P (q) is meant that P (q)
divides the numerator of the reduced form of A1(q)/A2(q). For two rational functions
A(q) and B(q), the q-congruence A(q) ≡ B(q) (mod P (q)) means A(q) − B(q) ≡ 0
(mod P (q)).

It follows easily from (1.2) that, for any prime p > 5 and integer r > 1,

(pr−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ pr (mod pr+3), (1.3)

which was originally observed by Long [13]. Recently, Wang and Hu [15] proved the
following generalization of (1.3):

(pr−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ pr +
7

6
pr+3Bp−3 (mod pr+4),

where Bp−3 is the (p − 3)-th Bernoulli number, confirming a previous conjecture of the
author [4, Conjecture 6.2].

In 2019, the author and Zudilin [8] introduced a new method (called ‘creative micro-
scoping’) to prove q-supercongruences systematically. Shortly afterwards, the author [4]
provided a new proof of (1.2) by employing the method of ‘creative microscoping’ together
with the Chinese remainder theorem for coprime polynomials. Using the same method
but with more complicated calculation, Tang [11] gave a variation of (1.2) as follows: for
any odd integer n > 5,

(n+1)/2∑

k=1

[4k + 1]
(q; q2)k−1(q; q

2)k+1(q; q
2)2

k

(q2; q2)k−1(q2; q2)k+1(q2; q2)2
k

≡ [n]q(1−n)/2

(
1 +

(n2 − 1)(1− q)2

24
[n]2

)
(mod [n]Φn(q)3). (1.4)

It should be pointed out that many other authors have investigated q-supercongruences
in recent years. See, for example, [1, 5, 6, 9, 10, 14,16–18].

In this paper, we shall establish the following common generalization of (1.2) and (1.4).

Theorem 1.1. Let s and t be non-negative integers with s > t, and let n > 4s + 1 be an
odd integer. Then

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)k−t(q; q

2)k+t

(q2; q2)k−s(q2; q2)k+s(q2; q2)k−t(q2; q2)k+t

≡ [n]q(1−n)/2

(
1 +

(n2 − 1)(1− q)2

24
[n]2

)
(mod Φn(q)4). (1.5)

Furthermore, if s 6 10, then (1.5) also holds modulo [n]Φn(q)3.
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Letting t = 0 or t = s in (1.5), we obtain the following results: for any non-negative
integer s and odd integer n > 4s + 1,

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)2

k

(q2; q2)k−s(q2; q2)k+s(q2; q2)2
k

≡ [n]q(1−n)/2

(
1 +

(n2 − 1)(1− q)2

24
[n]2

)
(mod Φn(q)4), (1.6)

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)2

k−s(q; q
2)2

k+s

(q2; q2)2
k−s(q

2; q2)2
k+s

≡ [n]q(1−n)/2

(
1 +

(n2 − 1)(1− q)2

24
[n]2

)
(mod Φn(q)4).

On the other hand, letting n = pr be a prime power, taking q → 1 in (1.5), and noticing

lim
q→1

(q; q2)k

(q2; q2)k

=
1

4k

(
2k

k

)
,

we arrive at the following supercongruence: for s > t > 0 and any odd prime p > 4s + 1
and integer r > 1,

(pr−1)/2+s∑

k=s

4k + 1

256k

(
2k − 2s

k − s

)(
2k + 2s

k + s

)(
2k − 2t

k − t

)(
2k + 2t

k + t

)
≡ pr (mod p4). (1.7)

Moreover, if s 6 10, then (1.7) is also true modulo pr+3.
The paper is organized as follows. In the next section, we give five lemmas on q-

congruences. Three of them are deduced from Jackson’s 6φ5 summation. In Section 3, we
use these lemmas and the Chinese remainder theorem for coprime polynomials to deduce
a parametric generalization of Theorem 1.1. Then we prove the q-supercongruence (1.5)
from this parametric version by L’Hôpital’s rule, and prove the modulus [n] case for s 6 10
by the asymptotics at roots of unity. Finally, in Section 4 we propose two related open
problems for further study.

2. Some lemmas

In order to prove Theorem 1.1, we require five lemmas on q-congruences. The first one
can be stated as follows.

Lemma 2.1. Let s and t be non-negative integers with s > t, and let n > 4s + 1 be an
odd integer. Then

(n−1)/2+s∑

k=s

[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk ≡ 0 (mod Φn(q)) (2.1)
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Proof. The author and Schlosser [6, Lemma 3.1] observed the simple q-congruence: for
0 6 k 6 (n− 1)/2,

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)). (2.2)

It follows that, for s 6 k 6 (n− 1)/2− s,

(aq; q2)(n−1)/2−k−s

(q2/a; q2)(n−1)/2−k+s

=
(aq; q2)(n−1)/2−k−s/(q

2/a; q2)(n−1)/2−k−s

(1− qn+1−2k−2s/a)(1− qn+3−2k−2s/a) · · · (1− qn+2s−1−2k/a)

≡ (−a)(n−1)/2−2k−2s(aq; q2)k+sq
(n−1)2/4+k+s

(q2/a; q2)k+s(1− q1−2k−2s/a)(1− q3−2k−2s/a) · · · (1− q2s−1−2k/a)

= (−a)(n−1)/2−2k (aq; q2)k−s

(q2/a; q2)k+s

q(n−1)2/4+4ks+k+s (mod Φn(q)), (2.3)

and similarly, modulo Φn(q),

(aq; q2)(n−1)/2−k+s

(q2/a; q2)(n−1)/2−k−s

≡ (−a)(n−1)/2−2k (aq; q2)k+s

(q2/a; q2)k−s

q(n−1)2/4−4ks+k−s. (2.4)

Applying the q-congruences (2.2)–(2.4), we can easily check that, for N = (n − 1)/2
and s 6 k 6 N − s,

[4(N − k) + 1]
(q/b; q2)N−k−s(q; q

2)N−k+s(aq; q2)N−k−t(q/a; q2)N−k+t

(q2; q2)N−k−s(bq2; q2)N−k+s(aq2; q2)N−k−t(q2/a; q2)N−k+t

bN−k

≡ −[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk (mod Φn(q)).

This means that the partial sum of the left-hand side of (2.1) truncated at k = (n−1)/2−s
is congruent to 0 modulo Φn(q). Moreover, for k in the range (n − 1)/2 − s < k 6
(n − 1)/2 + s, we know that (q; q2)k+s contains the factor 1 − qn and therefore each
summand indexed by k on the left-hand side of (2.1) is congruent to 0 modulo Φn(q).
This completes the proof of (2.1). ¤

Following Gasper and Rahman [2], the basic hypergeometric series r+1φr is defined by
(see [2])

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1; q)k(a2; q)k · · · (ar+1; q)k

(q; q)k(b1; q)k · · · (br; q)k

zk.

Then a classical terminating 6φ5 summation of Jackson (see [2, Appendix (II.21)]) can be
stated as follows:

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aqn+1

; q,
aqn+1

bc

]
=

(aq; q)n(aq/bc; q)n

(aq/b; q)n(aq/c; q)n

. (2.5)
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We also need three q-congruences on the left-hand side of (2.1) modulo 1− aqn, a− qn,
and b − qn, respectively. Note that all of the parametric q-congruences in [4, 8, 17] are
symmetric in a and a−1, and a q-congruence therein holds modulo 1− aqn if and only if
it also holds modulo a− qn. However, this is not the case here, and we need to consider
the q-congruences modulo 1− aqn and a− qn individually.

Lemma 2.2. Let s and t be non-negative integers with s > t, and let n > 2s− 2t + 1 be
an odd integer. Then, modulo 1− aqn,

(n−1)/2+s∑

k=s

[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk

≡ [n + 2s + 2t](aq; q2)s−t(q/a; q2)s+t(q
n+2t−2s; q2)2s(q

2/b; q2)(n+2t−2s−1)/2b
s

(q/b)(n+2t−2s−1)/2(aq2; q2)s−t(q2/a; q2)s+t(bq2; q2)(n+2s+2t−1)/2

. (2.6)

Proof. For a = q−n, the left-hand side of (2.6) is equal to

(n−1)/2+s∑

k=s

[4k + 1]
(q1−n; q2)k−t(q

1+n; q2)k+t(q/b; q
2)k−s(q; q

2)k+s

(q2−n; q2)k−t(q2+n; q2)k+t(q2; q2)k−s(bq2; q2)k+s

bk

=

(n−1)/2∑

k=0

[4k + 4s + 1]
(q1−n; q2)k+s−t(q

1+n; q2)k+s+t(q/b; q
2)k(q; q

2)k+2s

(q2−n; q2)k+s−t(q2+n; q2)k+s+t(q2; q2)k(bq2; q2)k+2s

bk+s

= [4s + 1]
(q1−n; q2)s−t(q

1+n; q2)s+t(q; q
2)2s

(q2−n; q2)s−t(q2+n; q2)s+t(bq2; q2)2s

bs

× 6φ5

[
q4s+1, q2s+ 5

2 , −q2s+ 5
2 , q/b, q1+2s+2t+n, q1+2s−2t−n

q2s+ 1
2 , −q2s+ 1

2 , bq4s+2, q2+2s−2t−n, q2+2s+2t+n
; q2, b

]
. (2.7)

Performing the parameter substitutions q 7→ q2, a = q4s+1, b 7→ q/b, c = q1+2s+2t+n, and
n 7→ (n + 2t− 2s− 1)/2 in (2.5), one sees that the right-hand side of (2.7) can be written
as

[4s + 1]
(q1−n; q2)s−t(q

1+n; q2)s+t(q; q
2)2sb

s

(q2−n; q2)s−t(q2+n; q2)s+t(bq2; q2)2s

× (q4s+3; q2)(n+2t−2s−1)/2(bq
2s+1−2t−n; q2)(n+2t−2s−1)/2

(bq4s+2; q2)(n+2t−2s−1)/2(q2s+2−2t−n; q2)(n+2t−2s−1)/2

= [n + 2s + 2t]
(q1−n; q2)s−t(q

1+n; q2)s+t

(q2−n; q2)s−t(q2+n; q2)s+t

bs

× (q; q2)(n+2s+2t−1)/2(bq
2s+1−2t−n; q2)(n+2t−2s−1)/2

(bq2; q2)(n+2s+2t−1)/2(q2s+2−2t−n; q2)(n+2t−2s−1)/2

=
[n + 2s + 2t](q1−n; q2)s−t(q

1+n; q2)s+t(q; q
2)(n+2s+2t−1)/2(q

2/b; q2)(n+2t−2s−1)/2b
s

(q/b)(n+2t−2s−1)/2(q2−n; q2)s−t(q2+n; q2)s+t(bq2; q2)(n+2s+2t−1)/2(q; q2)(n+2t−2s−1)/2

,
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which is the a = q−n case of the right-hand side of (2.6). Namely, the q-congruence (2.6)
holds. ¤

Lemma 2.3. Let s and t be non-negative integers with s > t, and let n > 2s + 2t + 1 be
an odd integer. Then, modulo a− qn,

(n−1)/2+s∑

k=s

[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk

≡ [n + 2s− 2t](aq; q2)s−t(q/a; q2)s+t(q
n−2s−2t; q2)2s(q

2/b; q2)(n−2s−2t−1)/2b
s

(q/b)(n−2s−2t−1)/2(aq2; q2)s−t(q2/a; q2)s+t(bq2; q2)(n+2s−2t−1)/2

. (2.8)

Proof. For a = qn, the left-hand side of (2.6) is equal to

(n−1)/2+s∑

k=s

[4k + 1]
(q1+n; q2)k−t(q

1−n; q2)k+t(q/b; q
2)k−s(q; q

2)k+s

(q2+n; q2)k−t(q2−n; q2)k+t(q2; q2)k−s(bq2; q2)k+s

bk

=

(n−1)/2∑

k=0

[4k + 4s + 1]
(q1+n; q2)k+s−t(q

1−n; q2)k+s+t(q/b; q
2)k(q; q

2)k+2s

(q2+n; q2)k+s−t(q2−n; q2)k+s+t(q2; q2)k(bq2; q2)k+2s

bk+s

= [4s + 1]
(q1+n; q2)s−t(q

1−n; q2)s+t(q; q
2)2s

(q2+n; q2)s−t(q2−n; q2)s+t(bq2; q2)2s

bs

× 6φ5

[
q4s+1, q2s+ 5

2 , −q2s+ 5
2 , q/b, q1+2s−2t+n, q1+2s+2t−n

q2s+ 1
2 , −q2s+ 1

2 , bq4s+2, q2+2s+2t−n, q2+2s−2t+n
; q2, b

]
. (2.9)

Making the parameter substitutions q 7→ q2, a = q4s+1, b 7→ q/b, c = q1+2s−2t+n, and
n 7→ (n− 2s− 2t− 1)/2 in (2.5), one sees that the right-hand side of (2.9) can be written
as

[4s + 1]
(q1+n; q2)s−t(q

1−n; q2)s+t(q; q
2)2sb

s

(q2+n; q2)s−t(q2−n; q2)s+t(bq2; q2)2s

× (q4s+3; q2)(n−2s−2t−1)/2(bq
2s+2t+1−n; q2)(n−2s−2t−1)/2

(bq4s+2; q2)(n−2s−2t−1)/2(q2s+2t+2−n; q2)(n−2s−2t−1)/2

=
[n + 2s− 2t](q1+n; q2)s−t(q

1−n; q2)s+t(q; q
2)(n+2s−2t−1)/2(q

2/b; q2)(n−2s−2t−1)/2b
s

(q/b)(n−2s−2t−1)/2(q2+n; q2)s−t(q2−n; q2)s+t(bq2; q2)(n+2s−2t−1)/2(q; q2)(n−2s−2t−1)/2

,

which is the value of the right-hand side of (2.6) with a = qn. That is, the q-congruence
(2.8) holds. ¤

Lemma 2.4. Let s and t be non-negative integers with s > t, and let n be a positive odd
integer. Then, modulo b− qn,

(n−1)/2+s∑

k=s

[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk
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≡
[n](aq; q2)s−t(q/a; q2)s+t(q; q

2)2
(n−1)/2b

s

(aq2; q2)(n+2s−2t−1)/2(q2/a; q2)(n+2s+2t−1)/2

. (2.10)

Proof. For b = qn, the left-hand side of (2.10) is equal to

(n−1)/2+s∑

k=s

[4k + 1]
(q1−n; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(q2+n; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

qnk

=

(n−1)/2∑

k=0

[4k + 4s + 1]
(q1−n; q2)k(q; q

2)k+2s(aq; q2)k+s−t(q/a; q2)k+s+t

(q2; q2)k(q2+n; q2)k+2s(aq2; q2)k+s−t(q2/a; q2)k+s+t

qnk+ns

= [4s + 1]
(q; q2)2s(aq; q2)s−t(q/a; q2)s+t

(q2+n; q2)2s(aq2; q2)s−t(q2/a; q2)s+t

qns

× 6φ5

[
q4s+1, q2s+ 5

2 , −q2s+ 5
2 , aq2s−2t+1, q2s+2t+1/a, q1−n

q2s+ 1
2 , −q2s+ 1

2 , q2s+2t+2/a, aq2s−2t+2, q4s+2+n
; q2, qn

]
. (2.11)

Letting q 7→ q2, a = q4s+1, b = aq2s−2t+1, c = q2s+2t+1/a, and n 7→ (n − 1)/2 in (2.5), we
see that the right-hand side of (2.7) can be simplified as

[4s + 1](q; q2)2s(aq; q2)s−t(q/a; q2)s+t(q
4s+3; q2)(n−1)/2(q; q

2)(n−1)/2q
ns

(q2+n; q2)2s(aq2; q2)s−t(q2/a; q2)s+t(aq2s−2t+2; q2)(n−1)/2(q2s+2t+2/a; q2)(n−1)/2

=
[n](aq; q2)s−t(q/a; q2)s+t(q; q

2)2
(n−1)/2q

ns

(aq2; q2)(n+2s−2t−1)/2(q2/a; q2)(n+2s+2t−1)/2

.

This proves the q-congruence (2.10). ¤

Finally, the following lemma was given in [4, Lemma 2.1] and will play an important
part in our proof of Theorem 1.1.

Lemma 2.5. Let n be a positive odd integer. Then

(aq2, q2)(n−1)/2(q
2/a, q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q−(n−1)2/4

(1− a)a(n−1)/2
(mod Φn(q)), (2.12)

(aq, q2)(n−1)/2(q/a, q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q(1−n2)/4

(1− a)a(n−1)/2
(mod Φn(q)). (2.13)

3. Proof of Theorem 1.1

On the basis of the previous lemmas in Section 2, we are now able to establish the
following parametric version of Theorem 1.1. Note that the right-hand side of (3.1) has
also appeared in [4, 11]. However, our derivation of (3.1) here is more complicated.
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Theorem 3.1. Let s and t be non-negative integers with s > t, and let n > 4s + 1 be an
odd integer. Then, modulo Φn(q)2(1− aqn)(a− qn),

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(q2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

≡ q(1−n)/2[n] + q(1−n)/2[n]
(1− aqn)(a− qn)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)
. (3.1)

Proof. It is easy to see that Φn(q), 1 − aqn, a − qn, and b − qn are pairwise coprime
polynomials. By the Chinese reminder theorem for coprime polynomials, we can determine
the remainder of the left-hand side of (2.6) modulo Φn(q)(1− aqn)(a − qn)(b − qn) from
Lemmas 2.1–2.4. Note that the right-hand sides of (2.6)–(2.10) are all congruent to 0
modulo Φn(q). Thus, using the following q-congruences:

(a− qn)(b− qn)

(1− a2)(1− ab)
a2 ≡ 1 (mod 1− aqn),

(1− aqn)(b− qn)

(1− a2)(b− a)
≡ 1 (mod a− qn),

(1− aqn)(a− qn)

(a− b)(1− ab)
≡ 1 (mod b− qn).

we conclude that, modulo Φn(q)(1− aqn)(a− qn)(b− qn),

(n−1)/2+s∑

k=s

[4k + 1]
(q/b; q2)k−s(q; q

2)k+s(aq; q2)k−t(q/a; q2)k+t

(q2; q2)k−s(bq2; q2)k+s(aq2; q2)k−t(q2/a; q2)k+t

bk

≡ [n + 2s + 2t](aq; q2)s−t(q/a; q2)s+t(q
n+2t−2s; q2)2s(q

2/b; q2)(n+2t−2s−1)/2b
s

(q/b)(n+2t−2s−1)/2(aq2; q2)s−t(q2/a; q2)s+t(bq2; q2)(n+2s+2t−1)/2

× (a− qn)(b− qn)

(1− a2)(1− ab)
a2

+
[n + 2s− 2t](aq; q2)s−t(q/a; q2)s+t(q

n−2s−2t; q2)2s(q
2/b; q2)(n−2s−2t−1)/2b

s

(q/b)(n−2s−2t−1)/2(aq2; q2)s−t(q2/a; q2)s+t(bq2; q2)(n+2s−2t−1)/2

× (1− aqn)(b− qn)

(1− a2)(b− a)

+
[n](aq; q2)s−t(q/a; q2)s+t(q; q

2)2
(n−1)/2b

s

(aq2; q2)(n+2s−2t−1)/2(q2/a; q2)(n+2s+2t−1)/2

(1− aqn)(a− qn)

(a− b)(1− ab)
. (3.2)

In what follows, we consider the b = 1 case of (3.2). It is clear that b − qn = 1 − qn

contains the factor Φn(q), and the factor (bq2; q2)(n−1)/2+2s = (q2; q2)(n−1)/2+2s in the
denominator of the left-hand side of (3.2) is relatively prime to Φn(q) (since n > 4s + 1).
We can also easily check that



9

[n + 2s + 2t](aq; q2)s−t(q/a; q2)s+t(q
n+2t−2s; q2)2s(q

2; q2)(n+2t−2s−1)/2

q(n+2t−2s−1)/2(aq2; q2)s−t(q2/a; q2)s+t(q2; q2)(n+2s+2t−1)/2

≡ q(1−n)/2[n] (mod Φn(q)(1− aqn)) (3.3)

(the modulus Φn(q) case is obvious and the modulus 1− aqn case is equivalent to saying
that both sides are equal for a = q−n). Similarly, we have

[n + 2s− 2t](aq; q2)s−t(q/a; q2)s+t(q
n−2s−2t; q2)2s(q

2; q2)(n−2s−2t−1)/2b
s

q(n−2s−2t−1)/2(aq2; q2)s−t(q2/a; q2)s+t(q2; q2)(n+2s−2t−1)/2

≡ q(1−n)/2[n] (mod Φn(q)(a− qn)) (3.4)

Furthermore, since qn ≡ 1 (mod Φn(q)), from (2.12) and (2.13) we deduce that

(aq; q2)s−t(q/a; q2)s+t(q; q
2)2

(n−1)/2

(aq2; q2)(n+2s−2t−1)/2(q2/a; q2)(n+2s+2t−1)/2

=
(aq; q2)s−t(q/a; q2)s+t(q; q

2)2
(n−1)/2

(aqn+1; q2)s−t(qn+1/a; q2)s+t(aq2, q2)(n−1)/2(q2/a, q2)(n−1)/2

≡ n(1− a)a(n−1)/2

(1− an)q(n−1)/2
(mod Φn(q)). (3.5)

Thus, putting b = 1 in (3.2) and applying the q-congruences (3.3)–(3.5), we conclude
that the right-hand side of (3.2) modulo Φn(q)2(1− aqn)(a− qn) reduces to

q(1−n)/2[n]
(a− qn)(1− qn)

(1− a2)(1− a)
a2 + q(1−n)/2[n]

(1− aqn)(1− qn)

(1− a2)(1− a)

− [n]
(1− aqn)(a− qn)

(1− a)2

n(1− a)a(n−1)/2

(1− an)q(n−1)/2
,

which is equal to the right-hand side of (3.1). This completes the proof. ¤

Proof of Theorem 1.1. By L’Hôpital’s rule, there holds

lim
a→1

(1− aqn)(a− qn)

(1− a)2

(1− an − n(1− a)a(n−1)/2)

(1− an)
=

(n2 − 1)(1− q)2

24
[n]2.

Therefore, taking the limits of the two sides of (3.1) as a → 1, we see that (1.5) is true
modulo Φn(q)4.

We shall prove that (1.5) is also true modulo [n] for s 6 10. Namely,

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)k−t(q; q

2)k+t

(q2; q2)k−s(q2; q2)k+s(q2; q2)k−t(q2; q2)k+t

≡ 0 (mod [n]),
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or, equivalently,

(n−1)/2∑

k=0

[4k + 4s + 1]
(q; q2)k(q; q

2)k+2s(q; q
2)k+s−t(q; q

2)k+s+t

(q2; q2)k(q2; q2)k+2s(q2; q2)k+s−t(q2; q2)k+s+t

≡ 0 (mod [n]). (3.6)

The proof is similar to that of [6, Theorem 12.9] (or [8, Theorem 4.2]). For the reader’s
convenience, we include a detailed proof here.

Let ζ 6= 1 stand for an n-th root of unity, possibly not primitive. That is to say, ζ is
a primitive root of unity of degree d subject to d | n. Let cq(k) be the k-th summand on
the left-hand side of (3.6), i.e.,

cq(k) = [4k + 4s + 1]
(q; q2)k(q; q

2)k+2s(q; q
2)k+s−t(q; q

2)k+s+t

(q2; q2)k(q2; q2)k+2s(q2; q2)k+s−t(q2; q2)k+s+t

.

Via the mathematical software Maple, we can check that (3.6) holds modulo Φn(q) for all
non-negative integers t 6 s 6 10 and positive odd integers n 6 4s − 1. This, together
with (1.5), implies that the q-congruence (3.6) holds modulo Φn(q) for all t 6 s 6 10 and
odd n > 1. This q-congruence is also true when the left-hand side is summing over k
from 0 to n−1, because each summand is congruent to 0 modulo Φn(q) for k in the range
(n− 1)/2 < k 6 n− 1. Taking n = d yields that

(d−1)/2∑

k=0

cζ(k) =
d−1∑

k=0

cζ(k) = 0.

Observing that
cζ(`d + k)

cζ(`d)
= lim

q→ζ

cq(`d + k)

cq(`d)
=

cζ(k)

cζ(0)
,

we obtain
(n−1)/2∑

k=0

cζ(k) =

(n/d−3)/2∑

`=0

d−1∑

k=0

cζ(`d + k) +

(d−1)/2∑

k=0

cζ((n− d)/2 + k)

=
1

cζ(0)

(n/d−3)/2∑

`=0

cζ(`d)
d−1∑

k=0

cζ(k) +

(d−1)/2∑

k=0

cζ((n− d)/2 + k)

= 0.

This means that the sum
∑(n−1)/2

k=0 cq(k) is congruent to 0 modulo Φd(q). Since each
cyclotomic polynomial Φd(q) is irreducible in Z[q], we conclude that the left-hand side of
(3.6) is congruent to 0 modulo ∏

d|n, d>1

Φd(q) = [n].

Namely, the q-congruence (1.5) holds modulo [n] for s 6 10. Since the least common
multiple of Φn(q)4 and [n] is [n]Φn(q)3, we finish the proof. ¤
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4. Two open problems

It is natural to conjecture that the condition s 6 10 in Theorem 1.1 is not necessary.
Namely, we believe that the following stronger version of Theorem 1.1 is true.

Conjecture 4.1. The q-supercongruence (1.5) holds modulo [n]Φn(q)3. In particular, the
supercongruence (1.7) holds modulo pr+3.

By the proof the second part of Theorem 1.1, in order to prove Conjecture 4.1, it suffices
to establish the following result: for all non-negative integers s > t and odd integers n > 1,

(n−1)/2+s∑

k=s

[4k + 1]
(q; q2)k−s(q; q

2)k+s(q; q
2)k−t(q; q

2)k+t

(q2; q2)k−s(q2; q2)k+s(q2; q2)k−t(q2; q2)k+t

≡ 0 (mod Φn(q)),

which is left to an interested reader.
We also find that the following refinement of (1.7) for s = (pr − 1)/6 and t = 0 seems

to be true.

Conjecture 4.2. Let p be an odd prime and r > 1 with pr ≡ 1 (mod 6), and let s =
(pr − 1)/6. Then

(pr−1)/2+s∑

k=s

4k + 1

256k

(
2k − 2s

k − s

)(
2k + 2s

k + s

)(
2k

k

)2

≡ pr (mod pr+4).

It should be mentioned that the previous q-supercongruence (1.6) does not hold modulo
[n]Φn(q)4 for s = (n− 1)/6. For this reason, we think that Conjecture 4.2 is challenging
even in the r = 1 case.
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