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Abstract. We establish a new family of q-supercongruences modulo the fourth power
of a cyclotomic polynomial, and give several related results. Our main ingredients are
q-microscoping and the Chinese remainder theorem for polynomials.

1. Introduction

More than one hundred years ago, Ramanujan mysteriously recorded a list of rapidly
convergent series of 1/π (see [1, p. 352]), including

∞∑
n=0

(
4n
2n

)(
2n
n

)2

28n32n
(8n + 1) =

2
√

3

π
, (1.1)

which he later published in [19, Equation (40)]. In 1997, Van Hamme [23] observed that
13 Ramanujan’s and Ramanujan-type formulas possess interesting p-adic analogues, such
as

(p−1)/2∑

k=0

(4k + 1)
(1

2
)4
k

k!4
≡ p (mod p3), (1.2)

where p > 3 is a prime and (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol.
Van Hamme [23, (C.2)] himself proved (1.2) and two of the other supercongruences of his
list. The supercongruence (1.2) was later proved to be true modulo p4 by Long [17]. For
more Ramanujan-type supercongruences, we refer the reader to Zudilin’s paper [26].

During the past few years, q-analogues of congruences and supercongruences have been
investigated by many authors (see [3–16,18,21,22,24,25,27]). For instance, using a method
similar to that used in [26], the first author and Wang [12, Theorem 1.2] gave a q-analogue
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of (1.2): for odd n,

(n−1)/2∑

k=0

[4k + 1]
(q; q2)4

k

(q2; q2)4
k

≡ q(1−n)/2[n] +
(n2 − 1)(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)3).

(1.3)

Moreover, the first author and Zudilin [13] devised a method of ‘creative microscoping’
to prove that, for any positive integer n with gcd(n, 6) = 1,

(n−1)/2∑

k=0

[8k + 1]
(q; q2)2

k(q; q
2)2k

(q2; q2)2k(q6; q6)2
k

q2k2 ≡ q−(n−1)/2[n]

(−3

n

)
(mod [n]Φn(q)2), (1.4)

where (−3
· ) is the Jacobi symbol, see [13, Theorem 1.1, Equation (6)]. Here it is appropri-

ate to recall the standard q-hypergeometric notation: (a; q)n = (1−a)(1−aq) · · · (1−aqn−1)
is the q-shifted factorial, with the condensed notation (a1, . . . , am; q)n = (a1; q)n · · · (am; q)n

for products of q-shifted factorials; [n] = [n]q = (1−qn)/(1−q) is the q-integer; and Φn(q)
stands for the n-th cyclotomic polynomial in q:

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk
n),

where ζn denotes an n-th primitive root of unity.
Clearly, the q-supercongruence (1.4) is a q-analogue of the following result (see [20,

Conjecture 5.6]):

(p−1)/2∑

k=0

(8k + 1)

(
4k
2k

)(
2k
k

)2

28k32k
≡ p

(−3

p

)
(mod p3) for p > 3 prime, (1.5)

which is a p-adic analogue of (1.1). This means that by letting q → 1 in (1.4) one obtains
(1.5). We point out that no other proofs of (1.5) are known up to now.

The first author and Zudilin [13, Theorem 4.2] also gave a two-parameter generalization
of (1.3) as follows: for odd n, modulo [n](1− aqn)(a− qn),

m∑

k=0

[4k + 1]
(aq, q/a, q/b, q; q2)k

(aq2, q2/a, bq2, q2; q2)k

bk ≡ (b/q)(n−1)/2(q2/b; q2)(n−1)/2

(bq2; q2)(n−1)/2

[n],

where m = (n− 1)/2 or (n− 1). Recently, based on the above q-congruence, by applying
the Chinese remainder theorem for coprime polynomials, the first author [6, Theorem 1.1]
succeeded in giving a full parametric generalization of (1.3): modulo [n]Φn(q)(1−aqn)(a−
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qn),

m∑

k=0

[4k + 1]
(aq, q/a; q2)k(q; q

2)2
k

(aq2, q2/a; q2)k(q2; q2)2
k

≡ q(1−n)/2[n] + q(1−n)/2[n]
(1− aqn)(a− qn)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)
, (1.6)

where m = (n−1)/2 or (n−1). Moreover, the present authors [8, Theorem 1.1, Equation
(2a)] showed that, for odd n > 1,

(n+1)/2∑

k=0

[4k − 1]
(q−1; q2)4

k

(q2; q2)4
k

q4k ≡ −(1 + 3q + q2)[n]4 (mod [n]4Φn(q)). (1.7)

The main purpose of this paper is to establish a new family of q-supercongruences
modulo the fourth power of a cyclotomic polynomial, which may somewhat be deemed a
generalization of (1.3) and (1.7) modulo [n]Φn(q)3.

Theorem 1.1. Let d, n, r be integers satisfying d > 2, r 6 d− 2 (in particular, r may be
negative), and n > d− r, such that d and r are coprime, and n ≡ −r (mod d). Then

M∑

k=0

[2dk + r]
(qr; qd)4

k

(qd; qd)4
k

q(d−2r)k

≡





0 (mod [n]Φn(q)3) if d = 2,

qr(n+r−dn)/d
(q2r; qd)(dn−n−r)/d

(qd; qd)(dn−n−r)/d

[dn− n] (mod [n]Φn(q)3) if d > 3,
(1.8)

where M = (dn− n− r)/d or n− 1.

The proof is given in Section 3.
It is easy to see that the q-factorial (q2r; qd)(dn−n−r)/d in (1.8) contains the factor 1 −

q(d−2)n for d > 3. Since 1 − q(d−2)n ≡ [dn − n] ≡ 0 (mod Φn(q)) and (qd; qd)(dn−n−r)/d is
coprime with Φn(q), we conclude from Theorem 1.1 that

n−1∑

k=0

[2dk + r]
(qr; qd)4

k

(qd; qd)4
k

q(d−2r)k ≡ 0 (mod Φn(q)2)

for d > 3. Our proof of Theorem 1.1 implies that the above q-congruence is further true
modulo [n]Φn(q). Or the reader may check that the denominator of the reduced form of
the fraction (q2r; qd)(dn−n−r)/d/(q

d; qd)(dn−n−r)/d is coprime with [n].
We should point out that the present authors [10] have given a different generalization of

(1.3) and (1.7) modulo Φn(q)4 as follows: for d > 3 and n, r satisfying the same condition
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as in Theorem 1.1, we have

n−1∑

k=0

[2dk + r]
(qr; qd)2d

k

(qd; qd)2d
k

qd(d−1−r)k ≡ 0 (mod Φn(q)4). (1.9)

For d > 3 and r = ±1, Theorem 1.1 can be stated as follows:

Corollary 1.2. Let d and n be positive integers with d > 3 and n ≡ −1 (mod d). Then

M∑

k=0

[2dk + 1]
(q; qd)4

k

(qd; qd)4
k

q(d−2)k ≡ q(n−dn+1)/d (q2; qd)(dn−n−1)/d

(qd; qd)(dn−n−1)/d

[dn− n] (mod [n]Φn(q)3),

where M = (dn− n− 1)/d or n− 1.

Corollary 1.3. Let d and n be positive integers with d > 3 and n ≡ 1 (mod d). Then

M∑

k=0

[2dk − 1]
(q−1; qd)4

k

(qd; qd)4
k

q(d+2)k ≡ q(dn−n+1)/d (q−2; qd)(dn−n+1)/d

(qd; qd)(dn−n+1)/d

[dn− n] (mod [n]Φn(q)3),

where M = (dn− n + 1)/d or n− 1.

We shall also prove the following q-congruence, which was originally conjectured by the
first author and Zudilin [13, Conjecture 5.2].

Theorem 1.4. Let d and n be positive integers with d > 3 and n ≡ −1 (mod d). Then

n−1∑

k=0

[2dk + 1]
(aq, q/a; qd)k(q; q

d)2
k

(aqd, qd/a; qd)k(qd; qd)2
k

q(d−2)k ≡ 0 (mod [n]Φn(q)). (1.10)

Note that the a = 1 case of (1.10) modulo Φn(q)2 has already been proved by the
present authors [11, Theorem 2.4].

2. Some lemmas

We first give the following result which is a generalization of [11, Lemma 3.1], [10,
Lemma 3] and [24, (2.1)].

Lemma 2.1. Let d, m and n be positive integers with m 6 n − 1. Let r be an integer
satisfying dm ≡ −r (mod n). Then, for 0 6 k 6 m, we have

(aqr; qd)m−k

(qd/a; qd)m−k

≡ (−a)m−2k (aqr; qd)k

(qd/a; qd)k

qm(dm−d+2r)/2+(d−r)k (mod Φn(q)).
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Proof. In view of qdm+r ≡ qn ≡ 1 (mod Φn(q)), we have

(aqr; qd)m

(qd/a; qd)m

=
(1− aqr)(1− aqd+r) · · · (1− aqdm−d+r)

(1− qd/a)(1− q2d/a) · · · (1− qdm/a)

≡ (1− aqr)(1− aqd+r) · · · (1− aqdm−d+r)

(1− qd−dm−r/a)(1− q2d−dm−r/a) · · · (1− q−r/a)

= (−a)mqm(dm−d+2r)/2 (mod Φn(q)). (2.1)

Furthermore, modulo Φn(q), we get

(aqr; qd)m−k

(qd/a; qd)m−k

=
(aqr; qd)m

(qd/a; qd)m

(1− qdm−dk+d/a)(1− qdm−dk+2d/a) · · · (1− qdm/a)

(1− aqdm−dk+r)(1− aqdm−dk+d+r) · · · (1− aqdm−d+r)

≡ (aqr; qd)m

(qd/a; qd)m

(1− qd−dk−r/a)(1− q2d−dk−r/a) · · · (1− q−r/a)

(1− aq−dk)(1− aqd−dk) · · · (1− aq−d)

=
(aqr; qd)m

(qd/a; qd)m

(aqr; qd)k

(qd/a; qd)k

a−2kq(d−r)k,

which together with (2.1) establishes the assertion. ¤
Lemma 2.2. Let d, n be positive integers with gcd(d, n) = 1. Let r be an integer and let
a, b be indeterminates. Then

m∑

k=0

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k ≡ 0 (mod [n]), (2.2)

n−1∑

k=0

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k ≡ 0 (mod [n]), (2.3)

where 0 6 m 6 n− 1 and dm ≡ −r (mod n).

Proof. It is clear that Lemma 2.2 is true for n = 1 or r = 0. We now assume that n > 1
and r 6= 0. By Lemma 2.1 (which is clearly also true for m = 0) one sees that, for
0 6 k 6 m, the k-th and (m−k)-th terms on the left-hand side of (2.2) cancel each other
modulo Φn(q), i.e.,

[2d(m− k) + r]
(aqr, qr/a, qr/b, qr; qd)m−k

(aqd, qd/a, bqd, qd; qd)m−k

bm−kq(d−2r)(m−k)

≡ −[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k (mod Φn(q)).

This proves that the q-congruence (2.2) holds modulo Φn(q).
Moreover, since dm ≡ −r (mod n), the expression (qr; qd)k contains a factor of the

form 1 − qαn for m < k 6 n − 1, and is therefore congruent to 0 modulo Φn(q). At
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the same time the expression (qd; qd)k is relatively prime to Φn(q) for m < k 6 n − 1.
Therefore, each summand in (2.3) with k in the range m < k 6 n − 1 is congruent to 0
modulo Φn(q). This together with (2.2) modulo Φn(q) establishes the q-congruence (2.3)
modulo Φn(q).

We are now able to prove (2.2) and (2.3) modulo [n]. Let ζ 6= 1 be an n-th root of
unity, not necessarily primitive. Namely, ζ is a primitive root of unity of degree s with
s | n and s > 1. Let cq(k) denote the k-th term on the left-hand side of (2.3), i.e.,

cq(k) = [2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k.

The q-congruences (2.2) and (2.3) modulo Φn(q) with n 7→ s imply that

m1∑

k=0

cζ(k) =
s−1∑

k=0

cζ(k) = 0,

where dm1 ≡ −r (mod s) and 0 6 m1 6 s− 1. We have

lim
q→ζ

cq(`s + k)

cq(`s)
=

cζ(`s + k)

cζ(`s)
=

cζ(k)

[r]
. (2.4)

It follows that

n−1∑

k=0

cζ(k) =

n/s−1∑

`=0

s−1∑

k=0

cζ(`s + k) =
1

[r]

n/s−1∑

`=0

cζ(`s)
s−1∑

k=0

cζ(k) = 0, (2.5)

and

m∑

k=0

cζ(k) =
1

[r]

(m−m1)/s−1∑

`=0

cζ(`s)
s−1∑

k=0

cζ(k) +
cζ(m−m1)

[r]

m1∑

k=0

cζ(k) = 0.

This means that the sums
∑n−1

k=0 cq(k) and
∑m

k=0 cq(k) are both divisible by the cyclotomic
polynomial Φs(q). Since this is true for any divisor s > 1 of n, we deduce that they are
divisible by

∏

s|n, s>1

Φs(q) = [n],

thus establishing the q-congruences (2.2) and (2.3). ¤

We now give the following result, which is a generalization of [13, Theorem 4.2].

Lemma 2.3. Let d, n, r be integers satisfying d > 2 and n > d − r, such that d and r
are coprime, and n ≡ −r (mod d). Let a, b be indeterminates. Then, modulo [n](1 −
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aqdn−n)(a− qdn−n),

M∑

k=0

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k

≡ (q2r/b; qd)(dn−n−r)/d

(bqd; qd)(dn−n−r)/d

[dn− n]

(
b

qr

)(dn−n−r)/d

, (2.6)

where M = (dn− n− r)/d or n− 1.

Proof. By the condition in the lemma, we have r 6= 0. Recall that Jackson’s 6φ5 summa-
tion formula can be written as

N∑

k=0

(1− aq2k)(a, b, c, q−N ; q)k

(1− a)(q, aq/b, aq/c, aqN+1; q)k

(
aqN+1

bc

)k

=
(aq, aq/bc; q)N

(aq/b, aq/c; q)N

(2.7)

(see [2, Appendix (II.21)]). Letting q 7→ qd, a = qr, b 7→ qr/b, c = qdn−n+r and N =
(dn− n− r)/d in (2.7), we obtain

M∑

k=0

[2dk + r](qr−dn+n, qr+dn−n, qr/b, qr; qd)k

[r](qd−dn+n, qd+dn−n, bqd, qd; qd)k

bkq(d−2r)k

=
(qd+r, bqd−dn+n−r; qd)(dn−n−r)/d

(bqd, qd−dn+n; qd)(dn−n−r)/d

=
(q2r/b; qd)(dn−n−r)/d[dn− n]

(bqd; qd)(dn−n−r)/d[r]

(
b

qr

)(dn−n−r)/d

. (2.8)

Namely, when a = qdn−n or a = qn−dn the two sides of (2.6) are equal. Thus, the
q-congruence (2.6) holds modulo (1− aqdn−n)(a− qdn−n).

On the other hand, by Lemma 2.2, we see that the left-hand side of (2.6) is congruent
to 0 modulo [n]. Since [dn − n] is also congruent to 0 modulo [n] and (bqd; qd)(dn−n−r)/d

is coprime with [n], we conclude that (2.6) also holds modulo [n]. The proof then follows
from the fact that (1− aqdn−n)(a− qdn−n) and [n] are coprime polynomials.

Note that the condition n > d − r means that (dn − n − r)/d 6 n − 1, which is used
in the identity (2.8) for M = n− 1. ¤
Lemma 2.4. Let d, n, r be integers satisfying d > 2 and n > d− r, such that d and r are
coprime, and n ≡ −r (mod d). Let a, b be indeterminates. Then

M∑

k=0

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k

≡ (qr, qd−r; qd)(dn−n−r)/d

(aqd, qd/a; qd)(dn−n−r)/d

[dn− n] (mod b− qdn−n), (2.9)



8 VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

where M = (dn− n− r)/d or n− 1.

Proof. Letting q 7→ qd and taking a = qr, b = aqr, c = qr/a and N = (dn − n − r)/d in
(2.7), we obtain

(dn−n−r)/d∑

k=0

[2dk + r](aqr, qr/a, qr−dn+n, qr; qd)k

[r](aqd, qd/a, qd+dn−n, qd; qd)k

q(dn−n+d−2r)k =
(qd+r, qd−r; qd)(dn−n−r)/d

(aqd, qd/a; qd)(dn−n−r)/d

.

Namely, when b = qdn−n both sides of (2.9) are equal. This proves the desired q-
congruence. ¤

3. Proof of Theorems 1.1 and 1.4

With the help of Lemmas 2.3 and 2.4, we can prove the main theorems in this paper
now. We need to establish the following parametric generalization of Theorem 1.1.

Theorem 3.1. Let d, n, r be integers satisfying d > 2, r 6 d−2, and n > d−r, such that
d and r are coprime, and n ≡ −r (mod d). Let a be an indeterminate. Then, modulo
[n]Φn(q)(1− aqdn−n)(a− qdn−n),

M∑

k=0

[2dk + r]
(aqr, qr/a, qr, qr; qd)k

(aqd, qd/a, qd, qd; qd)k

q(d−2r)k ≡ (q2r; qd)(dn−n−r)/d

(qd; qd)(dn−n−r)/d

[dn− n]qr(n−dn+r)/d, (3.1)

where M = (dn− n− r)/d or n− 1.

Proof. It is clear that the polynomials [n](1 − aqdn−n)(a − qdn−n) and b − qdn−n are co-
prime. By the Chinese remainder theorem for coprime polynomials, we can determine
the remainder of the left-hand side of (2.6) modulo [n](1− aqdn−n)(a− qdn−n)(b− qdn−n)
from (2.6) and (2.9). To this end, we require the following q-congruences:

(b− qdn−n)(ab− 1− a2 + aqdn−n)

(a− b)(1− ab)
≡ 1 (mod (1− aqdn−n)(a− qdn−n)),

(1− aqdn−n)(a− qdn−n)

(a− b)(1− ab)
≡ 1 (mod b− qdn−n).

Thus, from (2.6) and (2.9) we deduce that, modulo [n](1− aqdn−n)(a− qdn−n)(b− qdn−n),

M∑

k=0

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k

≡ (q2r/b; qd)(dn−n−r)/d

(bqd; qd)(dn−n−r)/d

(b− qdn−n)(ab− 1− a2 + aqdn−n)

(a− b)(1− ab)
[dn− n]

(
b

qr

)(dn−n−r)/d

+
(qr, qd−r; qd)(dn−n−r)/d

(aqd, qd/a; qd)(dn−n−r)/d

(1− aqdn−n)(a− qdn−n)

(a− b)(1− ab)
[dn− n]. (3.2)
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Note that 1−qdn−n has the factor Φn(q) and so do (q2r; qd)(dn−n−r)/d and (qd−r; qd)(dn−n−r)/d

since they contain the factors 1− q(d−2)n and 1− qn, respectively (we need to check that
2r + 2n 6 dn, which is guaranteed by the condition r 6 d − 2 and n > d − r in the
theorem). Moreover, the factor (bqd; qd)M in the denominator of the left-hand side of
(3.2) is coprime with Φn(q) when b = 1. Thus, letting b = 1 in (3.2) and observing that

(1− qdn−n)(1 + a2 − a− aqdn−n) = (1− a)2 + (1− aqdn−n)(a− qdn−n),

we see that the right-hand of (3.2) reduces to

(q2r; qd)(dn−n−r)/d

(qd; qd)(dn−n−r)/d

[dn− n]qr(n−dn+r)/d (mod Φn(q)2(1− aqdn−n)(a− qdn−n)),

thus establishing (3.1) modulo Φn(q)2(1 − aqdn−n)(a − qdn−n). On the other hand, the
q-congruences (2.2) (m = (dn − n − r)/d in this case) and (2.3) are also true for b =
1. That is, the q-congruence (3.1) holds modulo [n]. The proof then follows from the
fact that the least common multiple of Φn(q)2(1 − aqdn−n)(a − qdn−n) and [n] is just
[n]Φn(q)(1− aqdn−n)(a− qdn−n). ¤
Proof of Theorem 1.1. Since (1 − qdn−n)2 contains the factor Φn(q)2 and (qd; qd)M is co-
prime with Φn(q), letting a = 1 in (3.1), we are led to

M∑

k=0

[2dk + r]
(qr; qd)4

k

(qd; qd)4
k

q(d−2r)k ≡ qr(n+r−dn)/d (q2r; qd)(dn−n−r)/d

(qd; qd)(dn−n−r)/d

[dn− n] (mod Φn(q)4).

By Lemma 2.2, the above q-congruence is true modulo [n] and is therefore also true
modulo [n]Φn(q)3. Further, if d = 2 then by the condition in the theorem, one sees that
r < 0 and −r < (n− r)/2 and so (q2r; q2)(n−r)/2 vanishes. This completes the proof. ¤
Proof of Theorem 1.4. Let d > 3 and take r = 1 and M = n − 1 in (3.1). Noticing
that (q2; qd)(dn−n−1)/d is congruent to 0 modulo Φn(q) (we have mentioned this before)
and (qd; qd)(dn−n−1)/d is coprime with Φn(q), we see that (1.10) holds modulo Φn(q)2. By
Lemma 2.2, it also holds modulo [n]. This proves the theorem. ¤

4. Concluding remarks

Using Lemma 2.1, we may also prove the following result similar to Lemma 2.2.

Lemma 4.1. Let d, n be positive integers with gcd(d, n) = 1. Let r be an integer. Then
m∑

k=0

[2dk + r]
(qr; qd)2d

k

(qd; qd)2d
k

qd(d−1−r)k ≡ 0 (mod [n]),

n−1∑

k=0

[2dk + r]
(qr; qd)2d

k

(qd; qd)2d
k

qd(d−1−r)k ≡ 0 (mod [n]),

where 0 6 m 6 n− 1 and dm ≡ −r (mod n).
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Thus, the q-congruence (1.9) (i.e., [10, Theorem 1]) can be further strengthened as
follows.

Theorem 4.2. Let d, n, r be integers satisfying d > 3, r 6 d − 2, and n > d − r, such
that d and r are coprime, and n ≡ −r (mod d). Then

M∑

k=0

[2dk + r]
(qr; qd)2d

k

(qd; qd)2d
k

qd(d−1−r)k ≡ 0 (mod [n]Φn(q)3), (4.1)

where M = (dn− n− r)/d or n− 1.

Similarly to the proof of Lemma 2.3, we can also prove the following generalization
of [13, Theorem 4.2].

Theorem 4.3. Let d and n be positive integers with n ≡ 1 (mod d). Then, modulo
[n](1− aqn)(a− qn),

m∑

k=0

[2dk + 1]
(aq, q/a, q/b, q; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2)k ≡ (b/q)(n−1)/d(q2/b; qd)(n−1)/d

(bqd; qd)(n−1)/d

[n], (4.2)

where m = (n− 1)/d or n− 1.

Moreover, using the Chinese remainder theorem for coprime polynomials, we may prove
that, for such n and d, modulo [n](1− aqn)(a− qn)(b− qn),

m∑

k=0

[2dk + 1]
(aq, q/a, q/b, q; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2)k

≡ (b/q)(n−1)/d(q2/b; qd)(n−1)/d

(bqd; qd)(n−1)/d

(b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)
[n]

+
(q, qd−1; qd)(n−1)/d

(aqd, qd/a; qd)(n−1)/d

(1− aqn)(a− qn)

(a− b)(1− ab)
[n]. (4.3)

For d = 1, the q-congruence (4.2) is just an identity (with a telescoping truncated sum).
For d = 2, letting b = 1 in (4.3), we get (1.6), which further reduces to (1.3) when
m = (n − 1)/2 and a tends to 1. This is what the first author obtained in [6]. For
d > 3, we are unable to deduce, by first letting b = 1 and then taking a → 1, a concrete
interesting q-congruence modulo Φn(q)4 from (4.3) (because there appears to be no simple
formula for the limit).

We conclude our paper with the following two conjectural q-supercongruences related
to Theorem 3.1. (In the following conjectures, we actually consider the difference of the
sums in (3.1), determined by the two endpoints M = n − 1, and M = (dn − n − r)/d.
We observed that this difference has a factor, as specified in Conjectures 4.4 and 4.5.)
In the case d = 2 and r = 1 they coincide and were recently confirmed by the first
author [6, Theorem 6.1].
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Conjecture 4.4. Let d, n be positive integers and r a (possibly negative) integer with
dn− n > r > d− n, such that d and r are coprime, and n ≡ −r (mod d). Then, modulo
[n]Φn(q)(1− aqdn−n)(a− qdn−n)(b− qdn−n),

n−1∑

k=(dn−n−r+d)/d

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k ≡ 0.

Conjecture 4.5. Let d, n be positive integers and r a (possibly negative) integer with
n > r > n − dn + d, such that d and r are coprime, and n ≡ r (mod d). Then, modulo
[n]Φn(q)(1− aqn)(a− qn)(b− qn),

n−1∑

k=(n−r+d)/d

[2dk + r]
(aqr, qr/a, qr/b, qr; qd)k

(aqd, qd/a, bqd, qd; qd)k

bkq(d−2r)k ≡ 0.
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