A NEW FAMILY OF ¢-SUPERCONGRUENCES FROM JACKSON'’S g¢5
SUMMATION

VICTOR J. W. GUO

ABSTRACT. We obtain a new family of g-congruences modulo the fourth power of a
cyclotomic polynomial. The key ingredients of our proof are the creative microscoping
method, Jackson’s ¢¢s summation, and the Chinese remainder theorem for polynomials.

1. INTRODUCTION

More than one century ago, Ramanujan mystically wrote down a number of infinite
series for 1/m (see [2, p. 352]), which were later published in [13], such as

RZ:O(% +1 )/E';»)sz = %, (1.1)

where (a)g = 1, (a), = ala+1)---(a+n—1) (n > 1) denotes the rising factorial. It
was Van Hamme [17] who first observed that Ramanujan-type formulas have remarkable
p-adic analogues. For example, Van Hamme [17, (C.2)] proved that, for any odd prime p,

(p—1)/2 (l)
> (4h + 1) 22k — 4y (mod p?). (1.2)

:w;

0
Long [12] further proved that (1.2) holds modulo p* for p > 3, and that

Z (6k +1) k'34k = (-1)®Y2p  (mod p*)

for odd primes p > 5, which, corresponds to (1.1), was originally conjectured by Van
Hamme [17, (J.2)].

The author and Wang [8, Theorem 1.2] established the following g-analogue of (1.2):
for any positive odd integer n,

(n—1)/2 . o\4 n? — N2
Sk ) =]+ TR mod (o))
k=0 ’

(1.3)
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As a conclusion, they obtained the following supercongruence: for any prime p > 3 and
positive integer 7,

(p"-1)/2 (;)4
Z (4k + 1) li =p" (mod p"*?),
k=0

confirming a result previously observed by Long [12]. Moreover, the author and Zudilin [9]
introduced a method called ‘creative microscoping’ to prove g-supercongruences more or
less systematically. For instance, they [9, Theorem 4.2] gave a parametric generalization
of (1.3) modulo [n]®,,(q)? as follows: for odd n, modulo [n](1 — ag¢")(a — ¢"),

N

(aq,q/a,q/b. 6%k i _ (0/0)" V(@ /b 6*) 12
Z[4k+1]( 2 2 b2 2. 42 b" = b []7
— aq®, ¢*/a,bq*, ¢*; ¢*)x (04% ¢*) (n—1)/2

(1.4)

where N = (n — 1)/2 or (n — 1). Here it is proper to familiarize with the standard
g-hypergeometric notation: [n] = [n], = (1 — ¢")/(1 — q) is the g-integer; (a;q), =
(1—a)(1 —aq)--- (1 —aq™ ') denotes the g-shifted factorial, with the compact notation
(@1, m; @) = (a159)n -+ (am; q)pn for products of some g-shifted factorials. Moreover,
let ®,,(q) be the n-th cyclotomic polynomial in q, i.e.,

()= J[ (a—¢)
1<k<n
ged(k,n)=1
where ( stands for an n-th primitive root of unity.

On the basis of the g-congruence (1.4), by employing the Chinese remainder theorem
for polynomials, the author [5, Theorem 1.1] gave a new proof of (1.3). On the other
hand, the author and Schlosser [6] obtained a related g-supercongruence: for any odd
integer n > 1,

(nt1)/2
3 [4&—1](@ q?)’k = (130 A (mod [1*B.()).  (L5)
k=0 ; k

Shortly afterwards, they [7] gave a generalization of (1.3) and the modulus [n]®,,(¢)° case
of (1.5) as follows: Let d,n,r be integers satisfying d > 2, r < d — 2, and n > d — r, such
that d and r are coprime, and n = —r (mod d). Then
M
(@"39Y) (a2
Z[?dk ) g
0 (mod [n]®,(q)?) if d =2,

= 2r. d (16)
r(n+r—dn)/d (q 34 )(dn n—r)/d dn — d P 3 ifd>3

q n—n mod [n|P,(q if d > 3,

(qd; qd)(dnfn r)/d [ ] ( [ ] ( ) )
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where M = (dn—n—r)/d or n— 1. We refer the reader to [4,10,16,18,19] for some other
interesting work on g-congruences.

The aim of this paper is to build the following family of g-supercongruences modulo
[n]®,(q)%, which can also be considered as a new generalization of (1.3) and (1.5) in the
modulus [n]®,(q)? case.

Theorem 1.1. Let d,n,r be integers satisfying d > 2 and 0 < n—r < dn —d (in
particular, r may be negative), such that d and r are coprime, and n =r (mod d). Then
M

(q"5q )k (d—2r)k
2dk +r ¢
g[ ](q,qd)i
(n—7r)/d dj
— r(r— n)/d(q 14 )(n r)/d d ) 3
= |n|q —_— mod [n|P,(q)°), 1.7
R Y. ) (et b))

where M = (n —r)/d orn — 1.

The proof of Theorem 1.1 will be given in Section 3.
For d = 3 and r = £1, we obtain the following two corollaries.

Corollary 1.2. Let n =1 (mod 3) be a positive integer. Then, modulo [n]®,(q)?,

M (n=1)/3 ..
> [6k +1] (@ @)k e 1407 (@5 @) nss [ [n)? ¢
— (¢% ¢®)} (0% ¢%)n-1)/3 =

where M = (n—1)/3 orn — 1.
Corollary 1.3. Let n =2 (mod 3) be a positive integer. Then, modulo [n]®,,(q)*

)

M - _ (n+1)/3 .
Z[Gk —1] (¢ ¢ )kq5k [n]q(m+1)/3 (€% wmr1ys 1— [n]? Z q”
— (¢% ¢*)i (0% @*) (173 351 |

where M = (n+1)/3 orn — 1.

J=1

When (d,r) = (2,1), using the same technique given by Shi and Pan [15], we immedi-
ately get

(n L7z 2 n=l j (] — o)
Z [;]J']Z = %Z [j‘? = 2)4(11 9 (mod @,(q)), (1.8)

and so the g-supercongruence (1.7) reduces to (1.3). Similarly, when (d,r) = (2,3), the
g-supercongruence (1.7) reduces to the following result.

Corollary 1.4. Let n > 3 be an odd integer. Then, modulo [n]®,,(q)?,
M

Z[4k+3] (q q )kq74k

2\4
o (4% )i
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sony2(L—¢" (1 —¢"") 2 o (n* = 1)(1—g)°
B e T £

where M = (n—3)/2 orn — 1.

= [n]q

Letting n = p” be a prime power and taking ¢ — 1 in the above g-supercongruence, we
get the following conclusion.

Corollary 1.5. Let p > 3 be a prime and let r be a positive integer. Then
m 3\4 r
> 4k + 3)% = _% (mod p"+3),

where m = (p" —3)/2 or p" — 1.

Letting d = 4 and » = 1 in Theorem 1.1, we get the following result, which is equivalent
to first g-supercongruence in [11, Theorem 1] in view of (1.8), and can be regarded as a
further g-analogue of Van Hamme’s (G.2) supercongruence [17].

3

)

Corollary 1.6. Let n =1 (mod 4) be a positive integer. Then, modulo [n]®,(q)

M 2. 4 (n=1)/4 4
q;q -n (QaQ)n—l 4 J

Sk o4 2 O o g (i [y

= (a*; ") (4% q*) (n-1)/4 =

where M = (n—1)/4 orn — 1.

When d = 2 and r < 0, we see that (¢*"; ¢*)(n—r)2 = 0 and the right-hand side of (1.7)
vanishes, which coincides with the first part of (1.6).
Moreover, when d > 1, letting n = p” be a prime power and taking the limits as ¢ — 1

n (1.7), we obtain the following result: for any prime p and positive integers d,r with
d>1and p"=1 (mod d),

- )4 (D wr-1/d pr T
(2dk + 1 =prdr - 1— = — | (mod p), (1.9)
kz_o (Dr-1)/a & ; J*

where m = (p" — 1)/d or p" — 1. Note that Barman and Saikia [1, Theorem 1.2] proved
that, for any prime p > 5 with p =1 (mod d),

2k + 1)'D% = (LMD APT () (modp?), (110

[y

S
=

e
Il

where I'y(z) is the p-adic Gamma function (see [14]). Comparing (1.9) with (1.10), we
have the following corollary.
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Corollary 1.7. Let d > 1 be an integer and let p > 5 and p = 1 (mod d) be a prime.
Then

— d
(?_i)(p—l)/d p2 Gl 1 . 1+(p—1)/d 112 d—2 3
Do 1= X 5 | =SNG () (mod )
) 2.

2. SOME LEMMAS
We require the following two result. For a proof of it, see [7, Lemma 2.2].

Lemma 2.1. Let d,n be positive integers with ged(d,n) = 1. Let r be an integer and let
a,b be indeterminates. Then

= (aq",q"/a,q" /b, qTQQd)k k (d—2r)k _
Z[2dk + T] (aqd qd/a qu qd_ qd)k b q( ) =0 (mOd [n])’ (21)
kZO ) ) ) )
n—1
(aq",q"/a,q" /b, 4754k (aeamk
> [2dk + 7 gt a4 40 brq@2k =0 (mod [n]), (2.2)
k:() ) ) M) )
where 0 <m <n—1and dn = —r (mod n).

We also need to establish the following g-congruence, which is a generalization of [9,
Theorem 4.2].

Lemma 2.2. Let d,n,r be integers satisfying d = 2 and 0 < n —r < dn — d, such that
d and r are coprime, and n = r (mod d). Let a,b be indeterminates. Then, modulo

[n](1 = ag")(a = q"),

M T T T T.
S [2dk 1 1] (aq"q"/a, 4" /6,43 4"k y (a2
— (aq?, q%/a,bq?, g% q%)

<q2r/b; qd)(n_r)/d [n] (ﬂ) (n—r)/d
(64%; ¢%) (n—r)/d q ’
where M = (n—r)/d orn — 1.

Proof. 1t is clear that r # 0 by the condition in the theorem. Recall that Jackson’s g¢s
summation can be stated as follows:
N

(1 —aqg®)(a,b,c,gN;q) agNt! F _ (aq,aq/bc;q)n
2 (%) =1 24

1 —a)(q,aq/b,aq/c,ag"* 1 q), \  be aq/b,aq/c;q)n

(2.3)

k=0
(see [3, Appendix (I1.21)]). Making the parameter substitutions q — ¢%, a = ¢", b — ¢" /b,
c=¢""" and N = (n—r)/d in (2.4), we obtain

M r—n . r+n ,r T.
Z [Qdk + T}(q 4 i 4 /b’ q 7qd)k bkq(d72r)k

[r] (g%, g%, bg?, q%; %)y,

k=0
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d—n—r.

) bq ) qd)(n—r)/d
(bg?, ¢4 %) (n—r)d

(@50 wryaln] (BT
= (qu;qd)(nfr)/d[r] ( ) . (25)

( qd+r

q’l"
Namely, when a = ¢" or a = ¢~" both sides of (2.3) are equal. Thus, the g-congruence
(2.3) is true modulo (1 — ag¢™)(a — ¢").

On the other hand, in view of Lemma 2.1, the left-hand side of (2.3) is congruent to 0
modulo [n]. Since (bg?; ¢%)(—ra is coprime with [n], we conclude that (2.3) is also true
modulo [n]. Noting that the polynomial (1 —aqg")(a—¢") is coprime with [n], we complete
the proof. O

The last result we need is a g-congruence modulo b — ¢".

Lemma 2.3. Let d,n,r be integers satisfying d > 2 and 0 < n —r < dn — d, such that d
and r are coprime, and n =r (mod d). Let a and b be indeterminates. Then
M
ror TIb " d
Z[Qdk X 7“] (Clq d7 q d/a; q /d 7qd ) qd )k bkq(dfgr)k
(CLq , 4 /aubq , 474 )k

k=0

(@ 4" M) ner)/d
= db—q" 2.6
(aqd7 qd/a; qd)(n—r)/d [n] (mo 1 )’ ( )

where M = (n—r)/d orn — 1.

Proof. Performing the parameter substitutions ¢ — ¢%, a = ¢", b = aq”, ¢ = ¢"/a and
N =(n—r)/din (2.4), we get

(n—r)/d T r—n T r —r.
Z [Qdk + 7ﬁ](aq » q /Cl, q ,q ;qd)k (n+d—2r)k __ (qd+ 7qd 7qd)(n—7“)/d.

[r](ag?, q%/a, ¢+, q% q%)y, ~ (aq?, ¢/ a; g% n—ry/a

k=0
Namely, when b = ¢" the two sides of (2.6) are equal. This establishes the desired
g-congruence (2.6). O

3. PROOF OF THEOREM 1.1

It is obvious that the polynomials [n](1 — ag")(a — ¢") and b — ¢" are coprime. In light
of the Chinese remainder theorem for polynomials, we can calculate the remainder of the
left-hand side of (2.3) modulo [n|(1 — ag™)(a — ¢™)(b — ¢") from the g-congruences (2.3)
and (2.6). For this purpose, we need the following g-congruences:

(b—q")(ab—1—a?+ aq")
(a —b)(1 — ab)

(1 —ag")(a—q")
(a —b)(1 — ab)

1 (mod (1—aq")(a—q")),

1 (modb—q").
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Therefore, we deduce from (2.3) and (2.6) that, modulo [n|(1 — ag™)(a — ¢")(b — ¢"),
M T q" r r. ,d

Z[Qdk + 7] (ag d’ el d/a’ 4 /db’ qd ’ qd )k bk g (d—2r)k

k=0 (aq7Q/a7bQ7Q7Q)k

(/b5 4%) nryya (b — ¢")(ab — 1 — a® + ag") . ( b ) (n—r)/d
(0g%; ¢%) (n—r)/a (a —0b)(1— ab) 7
(4”4”3 4")m-ryja (1 —ag")(@ —q")
(aqda qd/a; qd)(n—r)/d (CL — b)(l — ab) [ ] (31>

Note that 1 — ¢" contains the factor ®,(¢). Thus, taking b =1 in (3.1) and observing
that

(1-¢")(1+a*—a—aq")=(1—-a)’+(1-aq")(a—q"),

we arrive at the following g-congruence: modulo @,(¢)*(1 — aq™)(a — ¢"),

M ror T r. d
Z[2dk—{—r] (aq , q /avq ,q 54 )k (d—2r)k
prd (aq?, q%/a, q% q% ")

= [n]q

r(r—n)/d (q2r; qd)(”—"”)/d {1 + (1 — aqn)(a — qn) }
(qd; qd)(nfr)/d (1 — CL)2
— (qr’ qd_r; qd)(”_r)/d (1 — aqn)<a — qn)[ ] (3 2)
(aq®, q*/a; q%) I—ap '
) ) (n—7r)/d
Since ¢" = 1 (mod ®,(q)), it is not difficult to see that
(@54 mrypa=1—=q)1—=¢") - (1=¢")
(1—¢ ™)1 —g* ™) (1—¢7%
(_1)(nfr)/d<qd’ qd)(n_r)/dqf(dJrnfT)(nfr)/(Zd) (mod (I)n<q>);

and similarly,

(@750 mryja = (DU N iy jag” T IOTED T (mod @4(q)).

It follows that
(@ 0" 4N e = (@ 0% D) erad” T (mod @,(q)),

and we may rewrite the g-congruence (3.2) as follows: modulo ®,,(¢)*(1 — aq™)(a — ¢"),
M ror roor. . d

Z[Qdk‘ + 7’] (aqd’ qd/ay qd, qda qd)k (d—2r)k

Pt (aq?, q?/a, q% q% ")

r(r—m)/d (QQT; qd) (n—r)/d

= [nlq
(4% 4%) (n—r)/d
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1 — ag™ _n 27“; d - 27“’ d; d e
+[n]qT(T*")/d( aq")(a q){(q q°)( )/d (@7 4% 4%) (n—r)/d } (3.3)

(1—a)? (@%5 9D m-rya  (ag? q%/a;q%) (n—r)/a
By L’Hopital’s rule, we get
iy L —ad") (@ = q") {(612’"; 0-rypa (@ 0%4)@m-r)a }
a—l (1 - CL>2 (qd7 qd)(n—r)/d (aqd7 qd/a’; qd)(n—’r)/d

(n=r)fd g

n)? (@ 4% (n=r)/d 3 q

(4% q%) (n—r)/a ‘= [dj]?

(3.4)

Taking the limits as @ — 1 in (3.3) and using the limit (3.4), we see that the g-congruence
(1.7) holds modulo ®,(¢)*. Note that the proof of [7, Lemma 2.2] also implies that the
g-congruences (2.1) and (2.2) are true for a = b = 1. Namely, the g-congruence (1.7) also
holds modulo [n] for M = (n —r)/d or n — 1. The proof then follows from the fact that
the least common multiple of @,,(q)* and [n] is just [n]®,(¢)>.
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