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1. Introduction

In 1859, Bauer [2] established the following representation for 1/7:
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which is now usually called a Ramanujan-type series of 1/, since Ramanujan later rather
mysteriously recorded 17 rapidly convergent series of 1/7 (see [4, p. 352]), including
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Ramanujan’s formulas gained unprecedented popularity in 1980’s when they were found
to provide fast algorithms for computing decimal digits of 7. See, for example, the mono-
graph [3].



In 1997, Van Hamme [30] observed that 13 Ramanujan’s and Ramanujan-type formulas
possess interesting p-adic analogues, such as
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where p is an odd prime. Van Hamme [30, (C.2)] himself proved (1.2) and another
two supercongruences of his list. Long [24] proved that the supercongruence (1.2) is
also true modulo p*. The supercongruence (1.1) was first proved by Mortenson [25] and
later reproved by Zudilin [36] and Long [24]. A generalization of (1.2) modulo p* was
obtained by Sun [28]. For more Ramanujan-type supercongruences, the reader is referred
to Zudilin’s celebrated paper [36].

In 2017, inspired by Zudilin’s WZ (Wilf-Zeilberger [35]) proof of (1.1), the author [8]
investigated more WZ-pairs related to generalizations of (1.1) and proved some related
supercongruences. He also proposed the following (corrected version of) conjecture on a
generalization of (1.2) (see [8, Conjecture 4.3]).

Conjecture 1.1. For any positive odd integer s, there exists an integer by such that, for
any odd prime p = (s + 1)/2 and positive integer r, there hold
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In particular, we have by =1, b3 =1, b5 = 3, by = 23, bg = 371 and b;; = 10515.

For r = s = 1, since (%) =0 (mod p) for (p—1)/2 < k < p— 1, the supercongruence
(1.3) is equivalent to (1.4), and the (C.2) supercongruence of Van Hamme [30] is the
special case of them modulo p®. Long [24] first proved the r = s = 1 case, and she also
observed the supercongruence (1.3) is true for s = 1 and all positive integers 7. Many more
special cases of (1.3) were confirmed by Wang [31], Liu [22], the author and Wang [17],
Hou, Mu, and Zeilberger [20], and the author [9,11,12]. In particular, the author [12]
has proved that (1.3) and (1.4) are true modulo p"2 for any odd prime p and arbitrary
r using the method of ‘creative microscoping’ introduced by the author and Zudilin [18].

A purpose of this paper is prove the following g-analogue of (1.3) and (1.4), which was
originally conjectured by the author [12, Conjecture 5.2].
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Theorem 1.2. Let n and s be positive odd integers with n > (s + 1)/2. Then, modulo
[n]qu)n(qQ)Sf
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where M = (n—1)/2 orn — 1, and Bs(q) is a rational function of q given by
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Here and in what follows, (a;q), = (1 — a)(1 — aq)--- (1 — ag"®!) denotes the g-
shifted factorial. For simplicity, we frequently use the compact notation (ay, ..., am;q)x =
(a1;Q)k - (am; Q)k- Moreover, [n] = [n], =1+ ¢+ -+ +¢" ' is the g-integer, and P, (q)
stands for the n-th cyclotomic polynomial in g, which may be given by

1<k<n
ged(n,k)=1

where ( is an n-th primitive root of unity.
Note that by may be defined as (—1)~1/2B,(1). For the reader’s convenience, we list
the first values of B,(q): Bi(q) = 1, B3(q) = —2¢/(¢* + 1), and

5¢* + 4> + 6¢* + 4q + 5)
(¢* +1)(¢> + 1) ’

2¢3(7¢® + 14q" + 23¢° + 30¢° + 364" + 30> + 23¢> + 14q + 7)
(¢° + 1)(g* + 1)(¢* + 1)

By(q) = L4

B(q) = —

It is easy to see that Bg(1) is an integer (see [12]). Therefore, when n = p" and ¢ — 1, the
congruence (1.5) reduces to (1.3) and (1.4). We should point out that (1.3) with r = 1
also implies that [20, Conjecture 4.6] is true.

In a recent paper [14, Conjecture 5.2], the author and Liu made the following conjec-
ture.

Conjecture 1.3. For any odd positive integer s, there exists an integer ds such that, for



any odd prime p and positive integer r, there hold
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In particular, we have dy = d3 =0, ds = 16, d; = 80, dy = 192, dy; = 640, di3 = —3472,
and d15 = 138480.

The second purpose of this paper is to prove (1.6) and (1.7) by establishing the fol-
lowing g-analogue, which was previously conjectured in [12, Conjecture 5.3].

Theorem 1.4. Let n and s be positive odd integers with n > (s —1)/2 and n > 1. Then,
modulo [n]2®,(q?)?,
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where M = (n+1)/2 or n — 1, and Ds(q) is a rational function of q given by
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withm = (s +1)/2 and 1/(¢* ¢*)r. = 0 for any negative integer k.

Note that we may take d; = D,(1). Here are the first values of D,(q): Di(q) =
Ds(q) =0, D5(q) = (¢ +1)*/¢", and

C22¢°+q+2)(g+ 1)
D?(q> - (q2 + 1)q10 )

(10¢® + 8¢" + 19¢° + 4¢° + 14¢* + 4¢* + 19¢> + 8¢ + 10)(q + 1)*
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It was shown in [12] that D,(1) is always an integer.

For more g-congruences in the literature, we refer the reader to [6,7,10,15,16,19,21,
23,26,27,29,32-34,37].

We shall prove Theorems 1.2 and 1.4 in Sections 2 and 3, respectively. To this end we
shall make use of the creative microscoping method [18], Andrews’ multiseries generaliza-
tion of Watson’s transformation [1, Theorem 4], and the Chinese remainder theorem for
coprime polynomials. In addition, a simple property of g-shifted factorials (Lemma 2.1)
will play an important part in our proof.

Dy(q) =



2. Proof of Theorem 1.2

We require the following easily proved results (see [15, Lemma 3.1] and [13, Lemma 2.1]).
Lemma 2.1. Let n be a positive odd integer and let a be an indeterminate. Then, for
0< k< (n—1)/2, we have
(ag; ¢*) (n—1)/2-x me1y2—2k (OG Tk 1)k
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- (1 o an)q—(n—1)2/4
(aq2,q2/a;q2)(n,1)/g = (_1)( /2 (1 _ a)a(n,l)/g (HlOd q)n(CI)),

1— an)q(17n2)/4
(1 —a)an—1/2
We first establish the following g-congruence, which is a generalization of [12, Theo-

rem 2.2] (the b = 1 case) and may also be regarded as a generalization of [18, Theorem 4.2]
(the s =1 case).

Theorem 2.3. Letn > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo ®,(¢*)(1 — ag**)(a — ¢*"),
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, (2.1)

Proof. We need to use a transformation formula of Andrews [1, Theorem 4]:
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which is a multi-series generalization of the Watson transformation formula [5, Appendix

(IIL.18)]:

a, qaév _qaév ba ¢, d7 €, q_N a2qN+2
az, —az, aq/b, aq/c, aq/d, aq/e, agq ! ' Thede

_ (agagfdesq)y | agfbe, doe g
(ag/d,aq/e;q)n aq/b, ag/c, deqg~™ [fa T | "

For a = ¢~2" or a = ¢*", the left-hand side of (2.1) is equal to
(n—1)/2 2-2n _2+2n

(@ )0, 0k e (a-asyk
S [k + 1[4k + bk g2
—~ 1 (g2, q*T2m, bg*, q*; ¢*)x,

(s—l)’sq
(n— 1)/2 n
- (@, 4% —4°, q,---,q /b, * " > 7q4)kbkq(2—25)k

(¢* 4, —4q,q,-..,q,bq*, ¢*=2", ¢*T2"; ¢*)p

(2.3)

k=0

By Andrews’ transformation (2.2) with the parameter substitutions m = (s+1)/2, ¢ — ¢,
a=q¢ by=c1=-=bn1=Cn1=0¢, bm=0¢*/b, ¢y = ¢ and N = (n — 1)/2, the
right-hand side of (2.3) may be written as
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the expression (2.4) can be simplified as
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This proves that the congruence (2.1) is true modulo 1 — a¢** and a — ¢*".

In addition, by Lemma 2.1, it is easy to check that the sum of the k-th and ((n —
1)/2 — k)-th terms on the left-hand side of (2.1) is congruent to 0 modulo ®,,(¢*) for any
k in the range 0 < k < (n — 1)/2. It follows that the left-hand side of (2.1) is congruent
to 0 modulo @,,(¢*), and so (2.1) holds modulo ®,,(¢?). Since 1 —ag®", a —¢** and ®,(q?)
are pairwise relatively polynomials, we complete the proof the theorem. O

We also need to establish the following simpler congruence.

Theorem 2.4. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo b — ¢*"
(n—1)/2 5 o 9 b 50 4
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where m = (s +1)/2
Proof. For b = ¢**, the left-hand side of (2.6) is equal to
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which by Andrews’ transformation (2.2) can be written as
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In view of (2.5), the above expression is just the b = ¢*" case of the right-hand side

of (2.6). This proves that the two sides of (2.6) are equal for b = ¢*". Namely, the
congruence (2.6) holds modulo b — ¢". O

Note that the s = 1 case of Theorem 1.2 was already proved by the author and
Wang [17] (for M = (n — 1)/2) and the author and Schlosser [15] (for M = n — 1). On
the basis of Theorems 2.3 and 2.4, we are now able to prove Theorem 1.2 for s > 1. More
concretely, we shall make use of the Chinese remainder theorem for coprime polynomials
to give the following parametric generalization of Theorem 1.2 for s > 1.
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Theorem 2.5. Let n and s > 1 be odd integers with n > (s + 1)/2. Then, modulo
@, (¢*)*(1 = ag®™)(a — ¢*"),
M
>[4k + 1) p[4k + 1)
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where M = (n—1)/2 orn —1, and m = (s +1)/2.
Proof. Tt is clear that the polynomials ®,,(¢?)(1 — ag®")(a — ¢*") and b— ¢*" are relatively
prime. With the help of the Chinese reminder theorem for coprime polynomials, we may

obtain the remainder of the left-hand side of (2.7) modulo ®,,(¢?)(1—aq¢*")(a—q¢*")(b—¢*")
from the previous congruences. More precisely, since

(b—q¢*)(ab— 1 — a* + ag*™)

X
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(ag*; q4)(n—1)/2(q4/(13 q4)(n—1)/2 (a—0)(1 — ab)
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In view of Lemma 2.2, we have

<q27 q4)2 —~1)/2 n(l —a a(ﬂ—l)/?
i 1 .(n4 L = )n —") (mod ®,(¢%)). (2.12)
(aq*, q*/a; q*) (n-1))2 (1 —a™)q

It is easy to see that 1 — ¢*" contains the factor ®,(¢?). Meanwhile, when b = 1, the
factor (bg*; ¢*)(n—1)/2 in the denominator of the left-hand side of (2.10) is coprime with
®,,(¢?), so is the factor (¢*/b; ¢*),,_1 in the denominator of the right-hand side of (2.10)
since n > m. Hence, putting b = 1 in (2.10), and using the congruence (2.12) and the
following relation

(1= +ad* —a—ag™) = (1 —a)’ + (1 —ag®)(a — ¢*"), (2.13)

we conclude that (2.7) is true for M = (n — 1)/2. Finally, since the k-th summand
on the left-hand side of (2.7) is congruent to 0 modulo ®,(¢*)*(1 — ag®**)(a — ¢*") for
(n—1)/2 <k <n—1, we see that (2.7) is also true for M =n — 1. O

Proof of Theorem 1.2. Let a — 1 in (2.7). By ’Hopital’s rule, there holds

i (I—a?) (e =) (1= a" —n(l —a)a""V2)  (n® —1)(1—¢*)’ i
a1 (1—a)? (1—a) 24

2
g

and so the congruence (1.5) holds modulo ®,,(¢*)*. Moreover, the author [12] has proved
(1.5) also holds modulo [n],. Since the least common multiple of ®,(¢*)* and [n], is
[n],2®,(¢%)%, we complete the proof of the theorem. O

3. Proof of Theorem 1.4

We need to establish the following g-congruence, of which the b = 1 case reduces to [12,
(4.5)].

Theorem 3.1. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo ®,(¢*)(1 — ag**)(a — ¢*"),

(n+1)/2 B 3 B B
Z [4k — 1] [4k — 1]5—1 (ag 2.q Q/Cla q 2/b7 q 2 q4>kbkq(10_25)k
k=0 ! (aq47 q4/a7 bq47 q47 q4)k

— _b(n—l)/2qn—s—2[n] ) (1/b; q4)(n—1)/2 21: (_1)j1+~--+jm,1q—4(jm,2+~~-+(m—2)j1)
/ (bq8§q4)(n71)/2 i

y (@5 a")5 (@05 (a2 072 a, 72 /05¢%) jy g
(@Y7 (50 g (050 ot

, (3.1)

where m = (s +1)/2



Proof. For a = q~*" or a = ¢*", the left-hand side of (3.1) may be written as

(n+1)/2 Coom L '
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3.2
— (gt bt T g ) (32)

By Andrews’ transformation (2.2) with the parameter substitutions m = (s+1)/2, ¢ — ¢*,
a = q_27 bi=ci=-=cCp1=dp_1= q37 by, = q_2/b, Cm = q_2+2n and N = (n+ 1)/2
the right-hand side of (3.2) is equal to

—s—1 (q2, bg* %" q4)(n+1)/2

(bg*, 4472 %) (12

—4., 4 —4. 4
% Z (4% (a"q )jm—lq4(j1+~~-+jm,1)—4(jm,2+-~~+(m—2)j1)
(% a%), - (@4 4" )jms
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It is easy to see that

<q27 bq6—2n; q4>(n+1)/2 — b(n—l)/an—l[n]q2 (1/b7 q4)(n—l)/2 ]
(bg*, ¢* =27 ¢*) (n+1) /2 (b4%; %) (n-1,2

Applying (2.5), we see that the expression (3.3) is just the a = ¢72" or a = ¢*" case of
the right-hand side of (3.1). This proves that (3.1) holds modulo 1 — ag®™ and a — ¢*".
Furthermore, in light of Lemma 2.1, we have

(aq” 5 ) orinypn _ (1= aq 1)(ag;6) )2
(@%/a; ) mrny2—x (L —=q""172%/a)(q?/a; ¢*) (n-1) 2k

)(n—l)/2—2k (1 —ag ") (ag; ¢*)x q(n_1)2/4+k
(1 —q'=2/a)(¢?/a; ¢*)x
—-1. .2
— (n+1)/2—2k (aq™ "5 ¢ (n—1)2 /4+3k—1 40
—\Ta q mo n(q
= (¢ /a: ) (mod @a(q))

for 0 < k < (n+ 1)/2. Using the above congruence with ¢ — ¢, we can easily check
that the sum of the k-th and ((n + 1)/2 — k)-th terms on the left-hand side of (3.1) is
congruent to 0 modulo ®,(¢?). Hence the congruence (3.1) holds modulo ®,,(¢?). O

= (—a

As before, we also need the following congruence modulo b — ¢*".
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Theorem 3.2. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo b — ¢*",

(n+1)/2 ~ 3 B B
Z [4k _ 1] 2[41{3 _ 1]5—1 (aq ZaC] 2/a>q 2/b,q 2;q4)kbkq(10_25)k
= ! (aq®, q*/a,bq*, q* q*)x

2. 42 _ bh 1
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¢ (aq*, ¢*/a; q4)(n+1)/2
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(@) (@) g (@00 gy

(3.4)

where m = (s +1)/2
Proof. For b= ¢*", by (2.2) and (2.5), the left-hand side of (3.4) is equal to

(s—1)s¢®
(n+1)/2 , _ - ., _ _o_
_qfsfl Z (q 27q37_q37q37"'7q37aq 2,(] 2/a7q § 2n;q4>1€bkq(10723)k
— (¢" g —q g g gt aagt, g )y

—s—1 (q27q6;q4)(n+1)/2 - Jit+Agm—1 ,—4(m—2+-+(m—2)51)
> s

(aq*, ¢*/a; ¢ )iz

(@5a")3 (@05 (072072 a7 ")yt
(5093 (@50 g (@250 ot ’

which is just the right-hand side of (3.4). Namely, the congruence (3.4) holds. O

With the help of Theorems 3.1 and 3.2, we can prove the following parametric gener-
alization of Theorem 1.4.

Theorem 3.3. Let n > 1 and s > 1 be odd integers with n > (s — 1)/2. Then, modulo
Cn(q*)*(1 = ag*)(a — ¢*"),

M

Z[4k _ 1] 2[4k - 1]8—1 (aq727 in/a, q72a q72; q4)k’q(10_25)k
k=0 ! (ag*, q*/a, q*, % q*)x

1
(1= )T - )

(1—ag®)(a—¢*) ((_ n(—a)al" D201 —q¢*)
BRI e <1 - (L —ag?)(1 q?/a>) } ’

= ") ,2 X, (a, @) {
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where M = (n+1)/2 orn—1, and

X,(a,q)= 3 (—1)itetineigdlneatetono2)

<q37 q4)?1 e (q3; q4)?l+...+jm_2 (a'q_27 q_2/a’7 q_Q; q4)j1+'“+]’m71

(@55 (@) (@5 @)yt 2

(3.6)

with m = (s +1)/2.

Proof. Applying (2.8) and (2.9), from (3.1) and (3.4) we immediately deduce that

(n+1)/2 B 7 B B
Z [4k _ 1] 2[4]{7 . 1]5—1 (aq 2; q 2/&; q 2/ba q 2; q4)k bkq(10_2s)k
k=0 ! (CL(]4, q4/a7 bq47 q4, q4)k

= pD2gn 1) (1/b;¢") (n-1)/2 b—q¢*)(ab—1—a®+ ag*™)

D.(a,b,q)"

T (06% 4% (n-1)/2 (a — b)(1 — ab)
[n]g2(a*; q4)%n,1)/2(1 —0)(1 - bg") " (1—a¢®)(a— ¢*")
(aq4; q4)(n+1)/2(q4/a3 q4)(n+1)/2 DS( by q) (a - b)(l - ab)

(mod @,(¢*)(1 — ag™)(a — ¢*")(b—¢*")),  (3.7)

Dg(a,b,q) = —q 51 Z (_1)j1+"'+jm71q—4(jm72+~~+(m—2)j1)

(@5 a3 - (0" o (aa™ 2072 a, g2 /0341 jy g
(503 - (@5 g () it

It is easy to see that

(]‘/b’ q4)(n—1)/2 q5—2n—5
Difa.b9) =~ X, (a,q).
b—1 (qu; q4)(n_1)/2 ( C]) (1 _ q2—2n)(1 — q2+2n) ( Q)

0=t &W@”:‘u_wwg:—wwm>

’
bot (1 — ag®+2)(1 — @22 /a)

X(a,q),

where X(a,q) is given by (3.6). Note that the condition n > (s — 1)/2 in the theorem
guarantees the denominator of X,(a,q) is always relatively prime to ®,(¢?). Let b = 1
in (3.7) and use the above limits. Then we apply the congruence (2.12) and the relation

12



(2.13) to obtain

(n+1)/2 _ _ _ _
aq?,q %/a,q%,q 2;q4)kq(10_23)k

(ag*, q*/a, ¢, ¢*; q*)k
4TI X(a, q) (1—ag™)(a —q*")
<1—q%%00=—f+%>(1+' (1 a) )

¢l Xo(a, ) (1-ag’)(a - ¢*)nal"" V2
(1 —ag?*2)(1 — ¢***2/a) (1=a)(1 —a)

(mod @,,(¢*)*(1 — ag®™)(a — ¢°")).

[4k — 1] ,2[4k — 1]8—1(

(]

B
I
o

In view of ¢** = 1 (mod ®,(¢?)), the above congruence is equivalent to (3.5) for M =
(n+ 1)/2. Finally, since the k-th summand on the left-hand side of (3.5) is congruent to
0 modulo ®,,(¢*)*(1 — ag**)(a — ¢*) for (n +1)/2 < k < n — 1, we conclude that (3.5)
also holds for M =n — 1. a

Proof of Theorem 1.4. Let a — 1 in (3.5). By ’Hopital’s rule, there holds

' (1 _ aq2”)(a _ q2n) n(l _ a)a(n—l)/z(l _ q2)2
lim 1-—
a—1 (1—a)? (1=a")(1—ag®)(1 - ¢*/a)
(n* -1 - ¢*)? 2 2
= < 94 —q" | [n].
Employing the following easily checked congruence
1 ¢*[n]2 1

@@ (¢ (-

we conclude that (1.8) holds modulo @,(¢*)*. In addition, the author [12] has proved
(1.8) also holds modulo [n],2. This completes the proof. O

(mod @,,(¢%)°),
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