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1. Introduction

In 1859, Bauer [2] established the following representation for 1/π:

∞∑

k=0

4k + 1

(−64)k

(
2k

k

)3

=
2

π
,

which is now usually called a Ramanujan-type series of 1/π, since Ramanujan later rather
mysteriously recorded 17 rapidly convergent series of 1/π (see [4, p. 352]), including

∞∑

k=0

6k + 1

256k

(
2k

k

)3

=
4

π
.

Ramanujan’s formulas gained unprecedented popularity in 1980’s when they were found
to provide fast algorithms for computing decimal digits of π. See, for example, the mono-
graph [3].
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In 1997, Van Hamme [30] observed that 13 Ramanujan’s and Ramanujan-type formulas
possess interesting p-adic analogues, such as

(p−1)/2∑

k=0

4k + 1

(−64)k

(
2k

k

)3

≡ p(−1)(p−1)/2 (mod p3), (1.1)

(p−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ p (mod p3), (1.2)

(p−1)/2∑

k=0

6k + 1

256k

(
2k

k

)3

≡ p(−1)(p−1)/2 (mod p4), p > 3,

where p is an odd prime. Van Hamme [30, (C.2)] himself proved (1.2) and another
two supercongruences of his list. Long [24] proved that the supercongruence (1.2) is
also true modulo p4. The supercongruence (1.1) was first proved by Mortenson [25] and
later reproved by Zudilin [36] and Long [24]. A generalization of (1.2) modulo p4 was
obtained by Sun [28]. For more Ramanujan-type supercongruences, the reader is referred
to Zudilin’s celebrated paper [36].

In 2017, inspired by Zudilin’s WZ (Wilf–Zeilberger [35]) proof of (1.1), the author [8]
investigated more WZ-pairs related to generalizations of (1.1) and proved some related
supercongruences. He also proposed the following (corrected version of) conjecture on a
generalization of (1.2) (see [8, Conjecture 4.3]).

Conjecture 1.1. For any positive odd integer s, there exists an integer bs such that, for
any odd prime p > (s + 1)/2 and positive integer r, there hold

(pr−1)/2∑

k=0

(4k + 1)s

256k

(
2k

k

)4

≡ (−1)(s−1)/2bsp
r (mod pr+3), (1.3)

pr−1∑

k=0

(4k + 1)s

256k

(
2k

k

)4

≡ (−1)(s−1)/2bsp
r (mod pr+3), (1.4)

In particular, we have b1 = 1, b3 = 1, b5 = 3, b7 = 23, b9 = 371 and b11 = 10515.

For r = s = 1, since
(
2k
k

) ≡ 0 (mod p) for (p− 1)/2 < k 6 p− 1, the supercongruence
(1.3) is equivalent to (1.4), and the (C.2) supercongruence of Van Hamme [30] is the
special case of them modulo p3. Long [24] first proved the r = s = 1 case, and she also
observed the supercongruence (1.3) is true for s = 1 and all positive integers r. Many more
special cases of (1.3) were confirmed by Wang [31], Liu [22], the author and Wang [17],
Hou, Mu, and Zeilberger [20], and the author [9, 11, 12]. In particular, the author [12]
has proved that (1.3) and (1.4) are true modulo pr+2 for any odd prime p and arbitrary
r using the method of ‘creative microscoping’ introduced by the author and Zudilin [18].

A purpose of this paper is prove the following q-analogue of (1.3) and (1.4), which was
originally conjectured by the author [12, Conjecture 5.2].
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Theorem 1.2. Let n and s be positive odd integers with n > (s + 1)/2. Then, modulo
[n]q2Φn(q2)3,

M∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2; q4)4
k

(q4; q4)4
k

q(2−2s)k

≡ q1−n[n]q2Bs(q) +
(n2 − 1)(1− q2)2

24
q1−n[n]3q2Bs(q), (1.5)

where M = (n− 1)/2 or n− 1, and Bs(q) is a rational function of q given by

Bs(q) =
1∑

j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(q2; q4)3

j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4; q4)j1+···+jm−1

with m =
s + 1

2
.

Here and in what follows, (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) denotes the q-
shifted factorial. For simplicity, we frequently use the compact notation (a1, . . . , am; q)k =
(a1; q)k · · · (am; q)k. Moreover, [n] = [n]q = 1 + q + · · · + qn−1 is the q-integer, and Φn(q)
stands for the n-th cyclotomic polynomial in q, which may be given by

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
Note that bs may be defined as (−1)(s−1)/2Bs(1). For the reader’s convenience, we list

the first values of Bs(q): B1(q) = 1, B3(q) = −2q/(q2 + 1), and

B5(q) =
q2(5q4 + 4q3 + 6q2 + 4q + 5)

(q4 + 1)(q2 + 1)2
,

B7(q) = −2q3(7q8 + 14q7 + 23q6 + 30q5 + 36q4 + 30q3 + 23q2 + 14q + 7)

(q6 + 1)(q4 + 1)(q2 + 1)2
.

It is easy to see that Bs(1) is an integer (see [12]). Therefore, when n = pr and q → 1, the
congruence (1.5) reduces to (1.3) and (1.4). We should point out that (1.3) with r = 1
also implies that [20, Conjecture 4.6] is true.

In a recent paper [14, Conjecture 5.2], the author and Liu made the following conjec-
ture.

Conjecture 1.3. For any odd positive integer s, there exists an integer ds such that, for
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any odd prime p and positive integer r, there hold

(pr+1)/2∑

k=0

(4k − 1)s (−1
2
)4
k

k!4
≡ dsp

r (mod pr+3), (1.6)

pr−1∑

k=0

(4k − 1)s (−1
2
)4
k

k!4
≡ dsp

r (mod pr+3). (1.7)

In particular, we have d1 = d3 = 0, d5 = 16, d7 = 80, d9 = 192, d11 = 640, d13 = −3472,
and d15 = 138480.

The second purpose of this paper is to prove (1.6) and (1.7) by establishing the fol-
lowing q-analogue, which was previously conjectured in [12, Conjecture 5.3].

Theorem 1.4. Let n and s be positive odd integers with n > (s− 1)/2 and n > 1. Then,
modulo [n]q2Φn(q2)3,

M∑

k=0

[4k − 1]q2 [4k − 1]s−1 (q−2; q4)4
k

(q4; q4)4
k

q(10−2s)k

≡ q1−n[n]q2Ds(q) +
(n2 − 1)(1− q2)2

24
q1−n[n]3q2Ds(q), (1.8)

where M = (n + 1)/2 or n− 1, and Ds(q) is a rational function of q given by

Ds(q) = − q3−s

(1− q2)2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(q−2; q4)3

j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q4; q4)j1+···+jm−1−2

with m = (s + 1)/2 and 1/(q4; q4)k = 0 for any negative integer k.

Note that we may take ds = Ds(1). Here are the first values of Ds(q): D1(q) =
D3(q) = 0, D5(q) = (q + 1)4/q8, and

D7(q) =
2(2q2 + q + 2)(q + 1)4

(q2 + 1)q10
,

D9(q) =
(10q8 + 8q7 + 19q6 + 4q5 + 14q4 + 4q3 + 19q2 + 8q + 10)(q + 1)4

(q4 + 1)(q2 + 1)2q12
.

It was shown in [12] that Ds(1) is always an integer.
For more q-congruences in the literature, we refer the reader to [6, 7, 10, 15, 16, 19, 21,

23,26,27,29,32–34,37].
We shall prove Theorems 1.2 and 1.4 in Sections 2 and 3, respectively. To this end we

shall make use of the creative microscoping method [18], Andrews’ multiseries generaliza-
tion of Watson’s transformation [1, Theorem 4], and the Chinese remainder theorem for
coprime polynomials. In addition, a simple property of q-shifted factorials (Lemma 2.1)
will play an important part in our proof.
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2. Proof of Theorem 1.2

We require the following easily proved results (see [15, Lemma 3.1] and [13, Lemma 2.1]).

Lemma 2.1. Let n be a positive odd integer and let a be an indeterminate. Then, for
0 6 k 6 (n− 1)/2, we have

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)).

Lemma 2.2. Let n be a positive odd integer. Then

(aq2, q2/a; q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q−(n−1)2/4

(1− a)a(n−1)/2
(mod Φn(q)),

(aq, q/a; q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q(1−n2)/4

(1− a)a(n−1)/2
(mod Φn(q)).

We first establish the following q-congruence, which is a generalization of [12, Theo-
rem 2.2] (the b = 1 case) and may also be regarded as a generalization of [18, Theorem 4.2]
(the s = 1 case).

Theorem 2.3. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo Φn(q2)(1− aq2n)(a− q2n),

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (aq2, q2/a, q2/b, q2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(2−2s)k

≡ b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(aq2, q2/a, q2/b; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4/b; q4)j1+···+jm−1

, (2.1)

where m = (s + 1)/2

Proof. We need to use a transformation formula of Andrews [1, Theorem 4]:

∑

k>0

(a, q
√

a,−q
√

a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√

a,−√a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N

(aq/bm, aq/cm; q)N

∑
j1,...,jm−1>0

(aq/b1c1; q)j1 · · · (aq/bm−1cm−1; q)jm−1

(q; q)j1 · · · (q; q)jm−1

× (b2, c2; q)j1 . . . (bm, cm; q)j1+···+jm−1

(aq/b1, aq/c1; q)j1 . . . (aq/bm−1, aq/cm−1; q)j1+···+jm−1

× (q−N ; q)j1+···+jm−1

(bmcmq−N/a; q)j1+···+jm−1

(aq)jm−2+···+(m−2)j1qj1+···+jm−1

(b2c2)j1 · · · (bm−1cm−1)j1+···+jm−2
, (2.2)
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which is a multi-series generalization of the Watson transformation formula [5, Appendix
(III.18)]:

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−N

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqN+1

; q,
a2qN+2

bcde

]

=
(aq, aq/de; q)N

(aq/d, aq/e; q)N
4φ3

[
aq/bc, d, e, q−N

aq/b, aq/c, deq−N/a
; q, q

]
.

For a = q−2n or a = q2n, the left-hand side of (2.1) is equal to

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2−2n, q2+2n, q2/b, q2; q4)k

(q4−2n, q4+2n, bq4, q4; q4)k

bkq(2−2s)k

=

(n−1)/2∑

k=0

(q2, q5,−q5,

(s− 1)’s q5

︷ ︸︸ ︷
q5, . . . , q5, q2/b, q2+2n, q2−2n; q4)k

(q4, q,−q, q, . . . , q, bq4, q4−2n, q4+2n; q4)k

bkq(2−2s)k. (2.3)

By Andrews’ transformation (2.2) with the parameter substitutions m = (s+1)/2, q 7→ q4,
a = q2, b1 = c1 = · · · = bm−1 = cm−1 = q5, bm = q2/b, cm = q2+2n and N = (n− 1)/2, the
right-hand side of (2.3) may be written as

(q6, bq2−2n; q4)(n−1)/2

(bq4, q4−2n; q4)(n−1)/2

∑
j1,...,jm−1>0

(q−4; q4)j1 · · · (q−4; q4)jm−1

(q4; q4)j1 · · · (q4; q4)jm−1

q4(j1+···+jm−1)−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(q2/b, q2+2n, q2−2n; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4/b; q4)j1+···+jm−1

(2.4)

Since

(q6, bq2−2n; q4)(n−1)/2

(bq4, q4−2n; q4)(n−1)/2

= b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

,

and

(q−4; q4)k

(q4; q4)k

=

{
(−1)kq−4k, if k = 0, 1,

0, otherwise,
(2.5)

the expression (2.4) can be simplified as

b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(q2/b, q2−2n, q2+2n; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4/b; q4)j1+···+jm−1

.
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This proves that the congruence (2.1) is true modulo 1− aq2n and a− q2n.
In addition, by Lemma 2.1, it is easy to check that the sum of the k-th and ((n −

1)/2− k)-th terms on the left-hand side of (2.1) is congruent to 0 modulo Φn(q2) for any
k in the range 0 6 k 6 (n− 1)/2. It follows that the left-hand side of (2.1) is congruent
to 0 modulo Φn(q2), and so (2.1) holds modulo Φn(q2). Since 1−aq2n, a− q2n and Φn(q2)
are pairwise relatively polynomials, we complete the proof the theorem. 2

We also need to establish the following simpler congruence.

Theorem 2.4. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo b− q2n,

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (aq2, q2/a, q2/b, q2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(2−2s)k

≡
[n]q2(q2; q4)2

(n−1)/2

(aq4, q4/a; q4)(n−1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(aq2, q2/a, q2/b; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4/b; q4)j1+···+jm−1

, (2.6)

where m = (s + 1)/2

Proof. For b = q2n, the left-hand side of (2.6) is equal to

(n−1)/2∑

k=0

(q2, q5,−q5,

(s− 1)’s q5

︷ ︸︸ ︷
q5, . . . , q5, aq2, q2/a, q2−2n; q4)k

(q4, q,−q, q, . . . , q, q4/a, aq4, q4+2n; q4)k

q(2n+2−2s)k,

which by Andrews’ transformation (2.2) can be written as

(q6, q2; q4)(n−1)/2

(aq4, q4/a; q4)(n−1)/2

∑
j1,...,jm−1>0

(q−4; q4)j1 · · · (q−4; q4)jm−1

(q4; q4)j1 · · · (q4; q4)jm−1

q4(j1+···+jm−1)−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(aq2, q2/a, q2−2n; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4−2n; q4)j1+···+jm−1

.

In view of (2.5), the above expression is just the b = q2n case of the right-hand side
of (2.6). This proves that the two sides of (2.6) are equal for b = q2n. Namely, the
congruence (2.6) holds modulo b− q2n. 2

Note that the s = 1 case of Theorem 1.2 was already proved by the author and
Wang [17] (for M = (n − 1)/2) and the author and Schlosser [15] (for M = n − 1). On
the basis of Theorems 2.3 and 2.4, we are now able to prove Theorem 1.2 for s > 1. More
concretely, we shall make use of the Chinese remainder theorem for coprime polynomials
to give the following parametric generalization of Theorem 1.2 for s > 1.
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Theorem 2.5. Let n and s > 1 be odd integers with n > (s + 1)/2. Then, modulo
Φn(q2)2(1− aq2n)(a− q2n),

M∑

k=0

[4k + 1]q2 [4k + 1]s−1 (aq2, q2/a, q2, q2; q4)k

(aq4, q4/a, q4, q4; q4)k

q(2−2s)k

≡ q1−n[n]q2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(aq2, q2/a, q2; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4; q4)j1+···+jm−1

×
{

1 +
(1− aq2n)(a− q2n)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)}
, (2.7)

where M = (n− 1)/2 or n− 1, and m = (s + 1)/2.

Proof. It is clear that the polynomials Φn(q2)(1− aq2n)(a− q2n) and b− q2n are relatively
prime. With the help of the Chinese reminder theorem for coprime polynomials, we may
obtain the remainder of the left-hand side of (2.7) modulo Φn(q2)(1−aq2n)(a−q2n)(b−q2n)
from the previous congruences. More precisely, since

(b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)
≡ 1 (mod (1− aq2n)(a− q2n)), (2.8)

(1− aq2n)(a− q2n)

(a− b)(1− ab)
≡ 1 (mod b− q2n), (2.9)

from (2.1) and (2.6) we deduce that

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (aq2, q2/a, q2/b, q2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(2−2s)k

≡ b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

Bs(a, b, q)
(b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)

+
[n]q2(q2; q4)2

(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2

Bs(a, b, q)
(1− aq2n)(a− q2n)

(a− b)(1− ab)

(mod Φn(q2)(1− aq2n)(a− q2n)(b− q2n)), (2.10)

where

Bs(a, b, q) = q−s−1

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q5; q4)2
j1
· · · (q5; q4)2

j1+···+jm−2
(aq2, q2/a, q2/b; q4)j1+···+jm−1

(q; q4)2
j1
· · · (q; q4)2

j1+···+jm−1
(q4/b; q4)j1+···+jm−1

. (2.11)
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In view of Lemma 2.2, we have

(q2; q4)2
(n−1)/2

(aq4, q4/a; q4)(n−1)/2

≡ n(1− a)a(n−1)/2

(1− an)qn−1
(mod Φn(q2)). (2.12)

It is easy to see that 1 − q2n contains the factor Φn(q2). Meanwhile, when b = 1, the
factor (bq4; q4)(n−1)/2 in the denominator of the left-hand side of (2.10) is coprime with
Φn(q2), so is the factor (q4/b; q4)m−1 in the denominator of the right-hand side of (2.10)
since n > m. Hence, putting b = 1 in (2.10), and using the congruence (2.12) and the
following relation

(1− q2n)(1 + a2 − a− aq2n) = (1− a)2 + (1− aq2n)(a− q2n), (2.13)

we conclude that (2.7) is true for M = (n − 1)/2. Finally, since the k-th summand
on the left-hand side of (2.7) is congruent to 0 modulo Φn(q2)2(1 − aq2n)(a − q2n) for
(n− 1)/2 < k 6 n− 1, we see that (2.7) is also true for M = n− 1. 2

Proof of Theorem 1.2. Let a → 1 in (2.7). By l’Hôpital’s rule, there holds

lim
a→1

(1− aq2n)(a− q2n)

(1− a)2

(1− an − n(1− a)a(n−1)/2)

(1− an)
=

(n2 − 1)(1− q2)2

24
[n]2q2 ,

and so the congruence (1.5) holds modulo Φn(q2)4. Moreover, the author [12] has proved
(1.5) also holds modulo [n]q2 . Since the least common multiple of Φn(q2)4 and [n]q2 is
[n]q2Φn(q2)3, we complete the proof of the theorem. 2

3. Proof of Theorem 1.4

We need to establish the following q-congruence, of which the b = 1 case reduces to [12,
(4.5)].

Theorem 3.1. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo Φn(q2)(1− aq2n)(a− q2n),

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (aq−2, q−2/a, q−2/b, q−2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(10−2s)k

≡ −b(n−1)/2qn−s−2[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(aq−2, q−2/a, q−2/b; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q−4/b; q4)j1+···+jm−1

, (3.1)

where m = (s + 1)/2
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Proof. For a = q−2n or a = q2n, the left-hand side of (3.1) may be written as

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (q−2−2n, q−2+2n, q−2/b, q2; q4)k

(q4−2n, q4+2n, bq4, q4; q4)k

bkq(10−2s)k

= −q−s−1

(n+1)/2∑

k=0

(q−2, q3,−q3,

(s− 1)’s q3

︷ ︸︸ ︷
q3, . . . , q3, q−2/b, q−2+2n, q−2−2n; q4)k

(q4, q−1,−q−1, q−1, . . . , q−1, bq4, q4−2n, q4+2n; q4)k

bkq(10−2s)k. (3.2)

By Andrews’ transformation (2.2) with the parameter substitutions m = (s+1)/2, q 7→ q4,
a = q−2, b1 = c1 = · · · = cm−1 = dm−1 = q3, bm = q−2/b, cm = q−2+2n and N = (n + 1)/2.
the right-hand side of (3.2) is equal to

− q−s−1 (q2, bq6−2n; q4)(n+1)/2

(bq4, q4−2n; q4)(n+1)/2

×
∑

j1,...,jm−1>0

(q−4; q4)j1 · · · (q−4; q4)jm−1

(q4; q4)j1 · · · (q4; q4)jm−1

q4(j1+···+jm−1)−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(q−2/b, q−2+2n, q−2−2n; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q−4/b; q4)j1+···+jm−1

. (3.3)

It is easy to see that

(q2, bq6−2n; q4)(n+1)/2

(bq4, q4−2n; q4)(n+1)/2

= b(n−1)/2qn−1[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

.

Applying (2.5), we see that the expression (3.3) is just the a = q−2n or a = q2n case of
the right-hand side of (3.1). This proves that (3.1) holds modulo 1− aq2n and a− q2n.

Furthermore, in light of Lemma 2.1, we have

(aq−1; q2)(n+1)/2−k

(q2/a; q2)(n+1)/2−k

=
(1− aq−1)(aq; q2)(n−1)/2−k

(1− qn+1−2k/a)(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (1− aq−1)(aq; q2)k

(1− q1−2k/a)(q2/a; q2)k

q(n−1)2/4+k

= (−a)(n+1)/2−2k (aq−1; q2)k

(q2/a; q2)k

q(n−1)2/4+3k−1 (mod Φn(q))

for 0 6 k 6 (n + 1)/2. Using the above congruence with q 7→ q2, we can easily check
that the sum of the k-th and ((n + 1)/2 − k)-th terms on the left-hand side of (3.1) is
congruent to 0 modulo Φn(q2). Hence the congruence (3.1) holds modulo Φn(q2). 2

As before, we also need the following congruence modulo b− q2n.
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Theorem 3.2. Let n > 1 and s > 1 be odd integers. Let a and b be indeterminates.
Then, modulo b− q2n,

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (aq−2, q−2/a, q−2/b, q−2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(10−2s)k

≡ −
[n]q2(q2; q4)2

(n−1)/2(1− b)(1− bq4)

qs+1(aq4, q4/a; q4)(n+1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(aq−2, q−2/a, q−2/b; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q−4/b; q4)j1+···+jm−1

, (3.4)

where m = (s + 1)/2

Proof. For b = q2n, by (2.2) and (2.5), the left-hand side of (3.4) is equal to

− q−s−1

(n+1)/2∑

k=0

(q−2, q3,−q3,

(s− 1)’s q3

︷ ︸︸ ︷
q3, . . . , q3, aq−2, q−2/a, q−2−2n; q4)k

(q4, q−1,−q−1, q−1, . . . , q−1, q4/a, aq4, q4+2n; q4)k

bkq(10−2s)k

= −q−s−1 (q2, q6; q4)(n+1)/2

(aq4, q4/a; q4)(n+1)/2

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(aq−2, q−2/a, q−2−2n; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q−4−2n; q4)j1+···+jm−1

,

which is just the right-hand side of (3.4). Namely, the congruence (3.4) holds. 2

With the help of Theorems 3.1 and 3.2, we can prove the following parametric gener-
alization of Theorem 1.4.

Theorem 3.3. Let n > 1 and s > 1 be odd integers with n > (s − 1)/2. Then, modulo
Φn(q2)2(1− aq2n)(a− q2n),

M∑

k=0

[4k − 1]q2 [4k − 1]s−1 (aq−2, q−2/a, q−2, q−2; q4)k

(aq4, q4/a, q4, q4; q4)k

q(10−2s)k

≡ −q4−n−s[n]q2Xs(a, q)

{
1

(1− q2−2n)(1− q2+2n)

+
(1− aq2n)(a− q2n)

(1− a)2(1− q2)2

(
1− n(1− a)a(n−1)/2(1− q2)2

(1− an)(1− aq2)(1− q2/a)

)}
, (3.5)
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where M = (n + 1)/2 or n− 1, and

Xs(a, q) =
1∑

j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(aq−2, q−2/a, q−2; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q4; q4)j1+···+jm−1−2

. (3.6)

with m = (s + 1)/2.

Proof. Applying (2.8) and (2.9), from (3.1) and (3.4) we immediately deduce that

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (aq−2, q−2/a, q−2/b, q−2; q4)k

(aq4, q4/a, bq4, q4; q4)k

bkq(10−2s)k

≡ b(n−1)/2qn−1[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

Ds(a, b, q)
(b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)

+
[n]q2(q2; q4)2

(n−1)/2(1− b)(1− bq4)

(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2

Ds(a, b, q)
(1− aq2n)(a− q2n)

(a− b)(1− ab)

(mod Φn(q2)(1− aq2n)(a− q2n)(b− q2n)), (3.7)

where

Ds(a, b, q) = −q−s−1

1∑
j1,...,jm−1=0

(−1)j1+···+jm−1q−4(jm−2+···+(m−2)j1)

× (q3; q4)2
j1
· · · (q3; q4)2

j1+···+jm−2
(aq−2, q−2/a, q−2/b; q4)j1+···+jm−1

(q−1; q4)2
j1
· · · (q−1; q4)2

j1+···+jm−1
(q−4/b; q4)j1+···+jm−1

.

It is easy to see that

lim
b→1

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

Ds(a, b, q) = − q5−2n−s

(1− q2−2n)(1− q2+2n)
Xs(a, q),

lim
b→1

(1− b)(1− bq4)

(1− aq2n+2)(1− q2n+2/a)
Ds(a, b, q) = − q3−s

(1− aq2n+2)(1− q2n+2/a)
Xs(a, q),

where Xs(a, q) is given by (3.6). Note that the condition n > (s − 1)/2 in the theorem
guarantees the denominator of Xs(a, q) is always relatively prime to Φn(q2). Let b = 1
in (3.7) and use the above limits. Then we apply the congruence (2.12) and the relation
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(2.13) to obtain

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (aq−2, q−2/a, q−2, q−2; q4)k

(aq4, q4/a, q4, q4; q4)k

q(10−2s)k

≡ − q4−n−s[n]q2Xs(a, q)

(1− q2−2n)(1− q2+2n)

(
1 +

(1− aq2n)(a− q2n)

(1− a)2

)

+
q4−n−s[n]q2Xs(a, q)

(1− aq2n+2)(1− q2n+2/a)

(1− aq2n)(a− q2n)na(n−1)/2

(1− a)(1− an)

(mod Φn(q2)2(1− aq2n)(a− q2n)).

In view of q2n ≡ 1 (mod Φn(q2)), the above congruence is equivalent to (3.5) for M =
(n + 1)/2. Finally, since the k-th summand on the left-hand side of (3.5) is congruent to
0 modulo Φn(q2)2(1 − aq2n)(a − q2n) for (n + 1)/2 < k 6 n − 1, we conclude that (3.5)
also holds for M = n− 1. 2

Proof of Theorem 1.4. Let a → 1 in (3.5). By l’Hôpital’s rule, there holds

lim
a→1

(1− aq2n)(a− q2n)

(1− a)2

(
1− n(1− a)a(n−1)/2(1− q2)2

(1− an)(1− aq2)(1− q2/a)

)

=

(
(n2 − 1)(1− q2)2

24
− q2

)
[n]2q2 .

Employing the following easily checked congruence

1

(1− q2−2n)(1− q2+2n)
− q2[n]2q2

(1− q2)2
≡ 1

(1− q2)2
(mod Φn(q2)3),

we conclude that (1.8) holds modulo Φn(q2)4. In addition, the author [12] has proved
(1.8) also holds modulo [n]q2 . This completes the proof. 2
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