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1. Introduction

In 1859, Bauer [2] proved the following hypergeometric identity:

∞∑

k=0

4k + 1

(−64)k

(
2k

k

)3

=
2

π
. (1.1)

One reason why such identities are interesting is that the fastest known algorithms for
computing decimal digits of π are based on this kind of identities. See, for example, the
monograph [3] by Borwein and Borwein. In 1997, Van Hamme [36, (B.2)] conjectured
that the formula (1.1) possesses a nice p-adic analogue:

(p−1)/2∑

k=0

4k + 1

(−64)k

(
2k

k

)3

≡ p(−1)(p−1)/2 (mod p3), (1.2)

where p is an odd prime. This supercongruence was first proved by Mortenson [30] using
an idea of McCarthy and Osburn [29] to evaluate of a quotient of Gamma functions. It was
reproved by Zudilin [40] using the Wilf–Zeilberger (WZ) method, and by Long [28] using
hypergeometric series identities and evaluations. A refinement of (1.2) modulo p4 was
given by Sun [33] using the WZ method again together with some properties of the Euler
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numbers. Swisher [34, (B.3)] made an interesting conjecture on a further generalization
of (1.2).

Motivated by Zudilin’s work [40], the author [10] considered more WZ-pairs related
to some generalizations of (1.2) and proved partial results on them. He also raised the
following conjecture [10, Conjecture 1.1].

Conjecture 1.1. For any positive odd integer s, there exists an integer as such that, for
any odd prime p and positive integer r, there hold

(pr−1)/2∑

k=0

(4k + 1)s

(−64)k

(
2k

k

)3

≡ asp
r(−1)

(p−1)r
2 (mod pr+2), (1.3)

pr−1∑

k=0

(4k + 1)s

(−64)k

(
2k

k

)3

≡ asp
r(−1)

(p−1)r
2 (mod pr+2). (1.4)

In particular, we have a1 = 1, a3 = −3, a5 = 41, a7 = −1595, a9 = 124689 and
a11 = −16253107.

As mentioned in [10], there are no ‘Archimedean’ analogues of (1.3) and (1.4) for
s > 3, ie.,

∞∑

k=0

(4k + 1)s

(−64)k

(
2k

k

)3

= ∞ for s > 3.

Note that, for r = 1, the supercongruence (1.3) is equivalent to (1.4), since
(
2k
k

) ≡ 0
(mod p) for (p + 1)/2 6 k 6 p − 1. The author [10] himself proved that (1.3) holds
modulo p2 for (r, s) = (1, 3) and that it also holds modulo p3 for (r, s) = (1, 3) and p 6≡ 3
(mod 8). The author [11] later proved that (1.3) is true for s = 1 and all positive integers
r. The author and Zudilin [24] proved that so is the supercongruence (1.4). Some other
partial results of (1.3) were obtained by Liu [27], who showed that (1.3) is true for r = 1
and s = 3, 5, 7, 9, 11. Jana and Kalita [26] confirmed (1.3) for s = 3 and r > 1, and almost
simultaneously the author [13] succeeded in proving (1.3) and (1.4) for s = 3 and r > 1.
Recently, Gu and the author [8] proved (1.3) and (1.4) for s = 5 and r > 1. Moreover,
Hou, Mu, and Zeilberger [25] further proved Conjecture 1.1 for r = 1 and all positive odd
integers s. Until now, Conjecture 1.1 is still open for s > 7.

It is worth mentioning that q-analogues of supercongruences have been studied by
many authors in recent years (see, for example, [6, 7, 9,11–13,15–22,24,31,32,35,40]). In
particular, the author and Zudilin [24] devised a method, called ‘creative microscoping’,
to prove many q-supercongruences by introducing an extra parameter and considering
asymptotic behavior of q-series at roots of unity. We believe that the creative microscoping
method can be utilized to prove more supercongruences and q-supercongruences. In fact,
the author [13] proved (1.3) and (1.4) for s = 3 by establishing their q-analogues in the
spirit of [24].

We shall consider congruences in Z(a, q) (or in Z(q) when a = 1), a bivariate ratio-
nal functional field. The congruence A1(a, q)/B1(a, q) ≡ 0 (mod C(a, q)) for A1(a, q),
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B1(a, q), C(a, q) ∈ Z[a, q] is meant that A1(a, q) is divisible by C(a, q) in Z[a, q], while
B1(a, q) is relatively prime to C(a, q) in Z[a, q]. More generally, A(a, q) ≡ B(a, q)
(mod C(a, q)) for rational functions A(a, q), B(a, q) ∈ Z(a, q) is understood as A(a, q)−
B(a, q) ≡ 0 (mod C(a, q)).

The paper is a continuation of [13] and we shall confirm Conjecture 1.1 completely by
establishing the following q-analogues of (1.3) and (1.4).

Theorem 1.2. Let n and s be positive odd integers with n > 1. Then, modulo [n]q2Φn(q2)2,

(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1) ≡ [n]q2(−1)(n−1)/2q(n−1)2/2As(q), (1.5)

n−1∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1) ≡ [n]q2(−1)(n−1)/2q(n−1)2/2As(q), (1.6)

where As(q) is a Laurent polynomial in q given by

As(q) =
1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−2(l1+···+lm−1)−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2; q4)2

l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1

with m =
s + 1

2
. (1.7)

Note that as may be defined by As(1). We now already need to familiarize our-
selves with the standard q-notation. The q-shifted factorial is defined as (a; q)0 = 1
and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n > 1. For simplicity, we also com-
pactly write (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n. The q-integer is given by
[n] = [n]q = 1 + q + · · · + qn−1. Moreover, the n-th cyclotomic polynomial, denoted by
Φn(q), is defined by

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity. It is easy to see that Φn(q2) = Φn(q)Φn(−q)
for odd n.

Note that the indices l1, . . . , lm−1 in (1.7) take values 0 and 1, and so

(q2; q4)l1+···+lm−1

(1− q)l2+···+lm−1(q; q4)l1

,
(1− q)l2(q5; q4)l1

(q; q4)l1+l2

, . . . ,
(1− q)lm−1(q5; q4)l1+···+lm−2

(q; q4)l1+···+lm−1

(1.8)

are all polynomials in q. This means that the expression As(q) given by (1.7) is indeed a
Laurent polynomial in q. For the reader’s convenience, we give the first values of As(q)
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in Theorem 1.2 as follows: A1(q) = 1, A3(q) = −(2q + 1)/q2, and

A5(q) =
5q6 + 8q5 + 8q4 + 8q3 + 7q2 + 4q + 1

q8
,

A7(q) = −(2q5 + 2q4 + 2q3 + 2q2 + 2q + 1)

q18

× (7q10 + 14q9 + 18q8 + 22q7 + 23q6 + 20q5 + 16q4 + 12q3 + 8q2 + 4q + 1).

It is clear that, for k > 0 and any prime power pr, we have

lim
q→1

(q2; q4)k

(q4; q4)k

=
1

4k

(
2k

k

)
and Φpr(1) = p.

Therefore, letting n = pr and q → 1 in (1.5) and (1.6), and noticing that (−1)(pr−1)/2 =
(−1)(p−1)r/2 for odd p, we are led to (1.3) and (1.4) immediately.

The second objective of this paper is to partially confirm the following (corrected
version of) conjecture of the author (see [10, Conjecture 4.3]).

Conjecture 1.3. For any positive odd integer s, there exists an integer bs such that, for
any odd prime p > (s + 1)/2 and positive integer r, there hold

(pr−1)/2∑

k=0

(4k + 1)s

256k

(
2k

k

)4

≡ (−1)(s−1)/2bsp
r (mod pr+3), (1.9)

pr−1∑

k=0

(4k + 1)s

256k

(
2k

k

)4

≡ (−1)(s−1)/2bsp
r (mod pr+3), (1.10)

In particular, we have b1 = 1, b3 = 1, b5 = 3, b7 = 23, b9 = 371 and b11 = 10515.

For r = s = 1, the supercongruence (1.9) is equivalent to (1.10) and is a refinement of
the (C.2) supercongruence of Van Hamme [36]. This case was first proved by Long [28,
Theorem 1.1], who also observed the supercongruence (1.9) for s = 1 and all positive
integers r. Some other special cases of (1.9) were proved by Wang [37], Liu [27], the
author and Wang [23], the author [13], and Hou, Mu, and Zeilberger [25]. Here we shall
prove that (1.9) and (1.10) are true modulo pr+2 for any odd prime p and arbitrary r by
establishing the following q-congruences.

Theorem 1.4. Let n and s be positive odd integers with n > 1. Then, modulo [n]q2Φn(q2)2,

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2; q4)4
k

(q4; q4)4
k

q(2−2s)k ≡ [n]q2q1−nBs(q) (mod [n]q2Φn(q2)2), (1.11)

n−1∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2; q4)4
k

(q4; q4)4
k

q(2−2s)k ≡ [n]q2q1−nBs(q) (mod [n]q2Φn(q2)2), (1.12)

4



where Bs(q) is a rational function of q given by

Bs(q) =
1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2; q4)3

l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1
(q4; q4)l1+···+lm−1

with m =
s + 1

2
. (1.13)

Note that bs can be defined as (−1)(s−1)/2Bs(1). The first values of Bs(q) in Theo-
rem 1.4 are listed as follows: B1(q) = 1, B3(q) = −2q/(q2 + 1), and

B5(q) =
q2(5q4 + 4q3 + 6q2 + 4q + 5)

(q4 + 1)(q2 + 1)2
,

B7(q) = −2q3(7q8 + 14q7 + 23q6 + 30q5 + 36q4 + 30q3 + 23q2 + 14q + 7)

(q6 + 1)(q4 + 1)(q2 + 1)2
.

It is clear that, when n = pr and q → 1, the congruences (1.11) and (1.12) reduce to
(1.9) and (1.10) modulo pr+2 (for any odd prime p), respectively. To see that Bs(1) is an
integer, first notice that

(q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2; q4)3

l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1
(q4; q4)l1+···+lm−1

=
(q5; q4)2

l1
· · · (q5; q4)2

l1+···+lm−2
(q2; q4)2

l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1

· (q2; q4)l1+···+lm−1

(q4; q4)l1+···+lm−1

.

Moreover, for l1, . . . , lm−1 ∈ {0, 1}, the first fraction is a square of the product of the m−1
polynomials in (1.8), and the first one in (1.8) is clearly divisible by (1+q)l1+···+lm−1 . Thus,
the limit of the first fraction as q → 1 is an integer divisible by 22(l1+···+lm−1). Finally,
observe that

lim
q→1

(q2; q4)l1+···+lm−1

(q4; q4)l1+···+lm−1

= 2−2(l1+···+lm−1)

(
2(l1 + · · ·+ lm−1)

l1 + · · ·+ lm−1

)
.

The rest of the paper is organized as follows. We shall prove Theorems 1.2 and 1.4
in Sections 2 and 3, respectively. To accomplish this we shall make use of not only the
aforementioned creative microscoping method [24] but also Andrews’ multiseries general-
ization of the Watson transformation [1, Theorem 4] (Andrews’ was already utilized by
Zudilin [39] to solve a problem of Schmidt, and was used in [14] to prove some q-analogues
of Calkin’s congruence [4]. It was also applied by the author and Schlosser [18, 20, 22] to
prove some q-congruences for truncated basic hypergeometric series). Meanwhile, a sim-
ple property of fractions of q-shifted factorials (Lemma 2.1) plays an important role in
our proof. We shall give some similar q-congruences in Section 4. Finally, in Section 5,
we propose three related conjectures including a refinement of Theorem 1.4, which is also
a complete q-analogue of Conjecture 1.3.
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2. Proof of Theorem 1.2

We will need the following easily proved result (see [21, Lemma 3.1]).

Lemma 2.1. Let n be a positive odd integer and let a be an indeterminate. Then, for
0 6 k 6 (n− 1)/2, we have

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)).

We first establish the following parametric generalization of Theorem 1.2.

Theorem 2.2. Let n and s be positive odd integers with n > 1 and let a be an indeter-
minate. Then, modulo Φn(q2)(1− aq2n)(a− q2n),

(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2, aq2, q2/a; q4)k

(q4, aq4, q4/a; q4)k

q2k(k−s+1)

≡ [n]q2(−1)(n−1)/2q(n−1)2/2

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−2(l1+···+lm−1)−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(aq2, q2/a; q4)l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1

, (2.1)

where m = (s + 1)/2.

Proof. The s = 1 case is just [24, Theorem 4.1] with q 7→ q2. Now suppose that s > 3.
We need to use a complicated transformation formula due to Andrews [1, Theorem 4]:

∑

k>0

(a, q
√

a,−q
√

a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√

a,−√a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N

(aq/bm, aq/cm; q)N

∑

l1,...,lm−1>0

(aq/b1c1; q)l1 · · · (aq/bm−1cm−1; q)lm−1

(q; q)l1 · · · (q; q)lm−1

× (b2, c2; q)l1 . . . (bm, cm; q)l1+···+lm−1

(aq/b1, aq/c1; q)l1 . . . (aq/bm−1, aq/cm−1; q)l1+···+lm−1

× (q−N ; q)l1+···+lm−1

(bmcmq−N/a; q)l1+···+lm−1

(aq)lm−2+···+(m−2)l1ql1+···+lm−1

(b2c2)l1 · · · (bm−1cm−1)l1+···+lm−2
, (2.2)

which is a multiseries generalization of Watson’s 8φ7 transformation formula (see [5, Ap-
pendix (III.18)]):

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

=
(aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
.

6



For a = q−2n or a = q2n, the left-hand side of (2.1) is equal to

(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2, q2−2n, q2+2n; q4)k

(q4, q4−2n, q4+2n; q4)k

q2k(k−s+1)

= lim
N→∞

(n−1)/2∑

k=0

(q2, q5,−q5,

(s− 1)’s q5

︷ ︸︸ ︷
q5, . . . , q5, q2−2n, q2+2n, q−4N ; q4)k

(q4, q,−q, q, . . . , q, q4+2n, q4−2n, q4N+6; q4)k

q(4N−2s+4)k,

which, by (2.2) with the parameter substitutions m = (s + 1)/2, q 7→ q4, a = q2, b1 =
c1 = · · · = bm−1 = cm−1 = q5, bm = q2−2n and cm = q2+2n, can be written as

(q6, q2; q4)∞
(q4+2n, q4−2n; q4)∞

∑

l1,...,lm−1>0

(q−4; q4)l1 · · · (q−4; q4)lm−1

(q4; q4)l1 · · · (q4; q4)lm−1

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2−2n, q2+2n; q4)l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1

q2(l1+···+lm−1)−4(lm−2+···+(m−2)l1).

It is easy to see that

(q6, q2; q4)∞
(q4+2n, q4−2n; q4)∞

=
(q2; q4)(n+1)/2

(q4−2n; q4)(n+1)/2

= [n]q2(−1)(n−1)/2q(n−1)2/2,

and

(q−4; q4)k

(q4; q4)k

=

{
(−1)kq−4k, if k = 0, 1,

0, otherwise,
(2.3)

This proves that the congruence (2.1) is true modulo 1− aq2n or a− q2n.
Moreover, by Lemma 2.1, it is easy to verify that, for 0 6 k 6 (n− 1)/2, the k-th and

((n− 1)/2− k)-th terms on the left-hand side of (2.1) cancel each other modulo Φn(q2),
i.e.,

(−1)k[2n− 4k − 1]q2 [2n− 4k − 1]s−1 (q2, aq2, q2/a; q4)(n−1)/2−k

(q4; q4)3
(n−1)/2−k

× q2((n−1)/2−k)2−2(s−1)((n−1)/2−k)

≡ −(−1)k[4k + 1]q2 [4k + 1]s−1 (q2, aq2, q2/a; q4)k

(q4; q4)3
k

q2k2−2(s−1)k (mod Φn(q2)).

Note that the above congruence also holds if k = (n−1)/2−k (in this case the (n−1)/4-th
term itself is clearly congruent to 0 modulo Φn(q2)). Thus, we conclude that the left-hand
side of (2.1) is congruent to 0 modulo Φn(q2), and therefore the congruence (2.1) holds
modulo Φn(q2). Since Φn(q2), 1− aq2n, and a− q2n are relatively prime polynomials, we
complete the proof of (2.1). 2
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Proof of Theorem 1.2. It is easy to see that the limits of the denominators on the left-
hand side of (2.1) as a → 1 are relatively prime to Φn(q2), since 0 6 k 6 (n − 1)/2.
Moreover, the limit of (1− aq2n)(a− q2n) as a → 1 contains the factor Φn(q2)2. It follows
that the limiting case a → 1 of (2.1) leads to the following congruence

(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1)

≡ [n]q2(−1)(n−1)/2q(n−1)2/2as(q) (mod Φn(q2)3), (2.4)

where as(q) is the Laurent polynomial in q defined in (1.7).
The congruence (2.4) also implies that

n−1∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1)

≡ [n]q2(−1)(n−1)/2q(n−1)2/2as(q) (mod Φn(q2)3), (2.5)

since (q2; q4)3
k/(q

4; q4)3
k ≡ 0 (mod Φn(q2)3) for k in the range (n− 1)/2 < k 6 n− 1.

It remains to show that (2.4) and (2.5) are also true modulo [n]q2 , i.e.,

(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1) ≡ 0 (mod [n]q2), (2.6)

n−1∑

k=0

(−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1) ≡ 0 (mod [n]q2). (2.7)

Let ζ 6= 1 be an n-th root of unity. Namely, ζ is a primitive root of unity of odd degree d
with d | n. Denote by cq(k) the k-th term on the left-hand side of (2.6). In other words,

cq(k) = (−1)k[4k + 1]q2 [4k + 1]s−1 (q2; q4)3
k

(q4; q4)3
k

q2k(k−s+1).

The congruences (2.4) and (2.5) with n = d imply that

(d−1)/2∑

k=0

cζ(k) =
d−1∑

k=0

cζ(k) = 0, and

(d−1)/2∑

k=0

c−ζ(k) =
d−1∑

k=0

c−ζ(k) = 0.

Noticing that
cζ(`d + k)

cζ(`d)
= lim

q→ζ

cq(`d + k)

cq(`d)
= cζ(k),
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we get

(n−1)/2∑

k=0

cζ(k) =

(n/d−3)/2∑

`=0

cζ(`d)
d−1∑

k=0

cζ(k) +

(d−1)/2∑

k=0

cζ((n− d)/2 + k) = 0,

n−1∑

k=0

cζ(k) =

n/d−1∑

`=0

d−1∑

k=0

cζ(`d + k) =

n/d−1∑

`=0

cζ(`d)
d−1∑

k=0

cζ(k) = 0.

This proves that the sums
∑(n−1)/2

k=0 cq(k) and
∑n−1

k=0 cq(k) are both congruent to 0 modulo
Φd(q). In the same way we can show that they are also congruent to 0 modulo Φd(−q).
Since d can be any divisor of n greater than 1, we conclude that these two sums are
congruent to 0 modulo ∏

d|n, d>1

Φd(q)Φd(−q) = [n]q2 ,

thus establishing (2.6) and (2.7). 2

3. Proof of Theorem 1.4

We first establish the following parametric generalization of Theorem 1.4.

Theorem 3.1. Let n and s be positive odd integers with n > 1 and let a be an indeter-
minate. Then, modulo Φn(q2)(1− aq2n)(a− q2n),

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2, q2, aq2, q2/a; q4)k

(q4, q4, aq4, q4/a; q4)k

q(2−2s)k

≡ [n]q2q1−n

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2, aq2, q2/a; q4)l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1
(q4; q4)l1+···+lm−1

. (3.1)

Proof. The s = 1 case is just a special case of [24, Theorem 4.2]. We now suppose that
s > 3. For a = q−2n or a = q2n, the left-hand side of (3.1) is equal to

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2, q2, q2−2n, q2+2n; q4)k

(q4, q4, q4−2n, q4+2n; q4)k

q(2−2s)k

=

(n−1)/2∑

k=0

(q2, q5,−q5,

(s− 1)’s q5

︷ ︸︸ ︷
q5, . . . , q5, q2, q2+2n, q2−2n; q4)k

(q4, q,−q, q, . . . , q, q4, q4−2n, q4+2n; q4)k

q(2−2s)k, (3.2)
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which, by Andrews’ transformation formula (2.2) with the parameter substitutions m =
(s + 1)/2, q 7→ q4, a = q2, b1 = c1 = · · · = bm−1 = cm−1 = q5, bm = q2, cm = q2+2n and
N = (n− 1)/2, can be written as

(q6, q2−2n; q4)(n−1)/2

(q4, q4−2n; q4)(n−1)/2

∑

l1,...,lm−1>0

(q−4; q4)l1 · · · (q−4; q4)lm−1

(q4; q4)l1 · · · (q4; q4)lm−1

q4(l1+···+lm−1)−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2, q2−2n, q2+2n; q4)l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1
(q4; q4)l1+···+lm−1

.

By (2.3) and the following identity

(q6, q2−2n; q4)(n−1)/2

(q4, q4−2n; q4)(n−1)/2

= [n]q2q1−n,

we can simplify the above expression as follows:

[n]q2q1−n

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−4(lm−2+···+(m−2)l1)

× (q5; q4)2
l1
· · · (q5; q4)2

l1+···+lm−2
(q2, q2−2n, q2+2n; q4)l1+···+lm−1

(q; q4)2
l1
· · · (q; q4)2

l1+···+lm−1
(q4; q4)l1+···+lm−1

.

Thus we have proved that the congruence (3.1) holds modulo 1− aq2n or a− q2n.
Furthermore, by Lemma 2.1, it is easily seen that the k-th and ((n−1)/2−k)-th terms

on the left-hand side of (3.1) cancel each other modulo Φn(q2) for 0 6 k 6 (n−1)/2. This
means that the left-hand side of (3.1) is congruent to 0 modulo Φn(q2), and therefore the
congruence (3.1) also holds modulo Φn(q2). This completes the proof of (3.1). 2

Proof of Theorem 1.4. The limits of the denominators on the left-hand side of (3.1) as
a → 1 are relatively prime to Φn(q2). It is easy to see that the denominators of the reduced
forms of fractions in (3.1) are relatively prime to Φn(q2) (for odd n) as well. Letting a → 1
in (3.1), we see that the congruences (1.11) and (1.12) hold modulo Φn(q2)3. It remains
to show that they are also true modulo [n]q2 . This is exactly the same as the proof of
(2.6) and (2.7), and is left to the interested reader. 2

4. More similar results

In this section, we give some q-congruences similar to Theorems 1.2 and 1.4. The au-
thor proved in [12, Theorem 1.3] and [13, Theorem 5.1] that, for odd n > 1, modulo
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[n]q2Φn(q2)2,

M∑

k=0

(−1)k[4k − 1]q2

(q−2; q4)3
k

(q4; q4)3
k

q2k2+4k ≡ [n]q2(−q2)(n−3)(n+1)/4, (4.1)

M∑

k=0

(−1)k[4k − 1]q2 [4k − 1]2
(q−2; q4)3

k

(q4; q4)3
k

q2k2 ≡ [n]q2(−1)(n−1)/2q(n−1)2/2 q + 2

q3
, (4.2)

where M = (n + 1)/2 or n − 1. We shall give the following generalization of (4.1) and
(4.2), which is very similar to Theorem 1.2.

Theorem 4.1. Let n and s be positive odd integers with n > 1. Then, modulo [n]q2Φn(q2)2,

M∑

k=0

(−1)k[4k − 1]q2 [4k − 1]s−1 (q−2; q4)3
k

(q4; q4)3
k

q2k(k−s+3) ≡ [n]q2(−1)(n−1)/2q(n−1)2/2Cs(q), (4.3)

where M = (n + 1)/2 or n− 1, and Cs(q) is a Laurent polynomial in q given by

Cs(q) = −q−s−1

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q2(l1+···+lm−1)−4(lm−2+···+(m−2)l1)

× (q3; q4)2
l1
· · · (q3; q4)2

l1+···+lm−2
(q−2; q4)2

l1+···+lm−1

(q−1; q4)2
l1
· · · (q−1; q4)2

l1+···+lm−1

with m =
s + 1

2
. (4.4)

The reason why (4.4) gives a Laurent polynomial in q is similar to As(q). Using the
formula (4.4), we can easily obtain the first values of Cs(q) as follows: C1(q) = −q−2,
C3(q) = (q + 2)q−3, and

C5(q) =
7q2 + 3q4 + 8q3 + 4q + 1

q8
,

C7(q) =
(2q2 + 2q + 1)(3q6 + 6q5 + 2q4 − 2q3 − 5q2 − 4q − 1)

q14
.

Sketch of Proof of Theorem 4.1. Like before, we need to establish the following paramet-
ric generalization. Modulo Φn(q2)(1− aq2n)(a− q2n),

(n+1)/2∑

k=0

(−1)k[4k − 1]q2 [4k − 1]s−1 (q−2, aq−2, q−2/a; q4)k

(q4, aq4, q4/a; q4)k

q2k(k−s+3)

≡ −[n]q2(−1)(n−1)/2q(n−1)2/2−s−1

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q2(l1+···+lm−1)−4(lm−2+···+(m−2)l1)

× (q3; q4)2
l1
· · · (q3; q4)2

l1+···+lm−2
(aq−2, q−2/a; q4)l1+···+lm−1

(q−1; q4)2
l1
· · · (q−1; q4)2

l1+···+lm−1

, (4.5)
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where m = (s + 1)/2.
The congruence (4.5) modulo 1−aq2n or a−q2n follows from Andrews’ transformation

formula (2.2) by taking m = (s+1)/2, q 7→ q4, a = q−2, b1 = c1 = · · · = cm−1 = dm−1 = q3,
bm = q−2−2n and cm = q−2+2n, and then letting N →∞.

Furthermore, by Lemma 2.1 we have

(aq−1; q2)(n+1)/2−k

(q2/a; q2)(n+1)/2−k

=
(1− aq−1)(aq; q2)(n−1)/2−k

(1− qn+1−2k/a)(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (1− aq−1)(aq; q2)k

(1− q1−2k/a)(q2/a; q2)k

q(n−1)2/4+k

= (−a)(n+1)/2−2k (aq−1; q2)k

(q2/a; q2)k

q(n−1)2/4+3k−1 (mod Φn(q)) (4.6)

for 0 6 k 6 (n + 1)/2. Using the above congruence with q replaced by q2, we see that the
k-th and ((n + 1)/2− k)-th terms on the left-hand side of (4.5) cancel each other modulo
Φn(q2). Hence the congruence (4.5) hold modulo Φn(q2), and we finish the proof of (4.5).

The process of the proof of (4.3) from (4.5) is exactly the same as the proof of (1.5)
and (1.6). 2

Letting n = pr and q → 1 in Theorem 4.1 and noticing that

lim
q→1

(q−2; q4)k

(q4; q4)k

=
−1

4k(2k − 1)

(
2k

k

)
=

(−1
2
)k

k!
, (4.7)

where (a)k = a(a + 1) · · · (a + k − 1), we obtain the following conclusion, which was
originally conjectured by the author and Liu [16, Conjecture 5.1].

Corollary 4.2. For any odd positive integer s, there exists an integer cs = Cs(1) such
that, for any odd prime p and positive integer r, there hold

(pr+1)/2∑

k=0

(−1)k(4k − 1)s (−1
2
)3
k

k!3
≡ csp

r(−1)
(p−1)r

2 (mod pr+2),

pr−1∑

k=0

(−1)k(4k − 1)s (−1
2
)3
k

k!3
≡ csp

r(−1)
(p−1)r

2 (mod pr+2).

In particular, we have c1 = −1, c3 = 3, c5 = 23, c7 = −5, c9 = 1647, and c11 = −96973.

We shall also give the following result similar to Theorem 1.4.

Theorem 4.3. Let n and s be positive odd integers with n > 1. Then, modulo [n]q2Φn(q2)2,

M∑

k=0

[4k − 1]q2 [4k − 1]s−1 (q−2; q4)4
k

(q4; q4)4
k

q(10−2s)k ≡ [n]q2q1−nDs(q), (4.8)
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where M = (n + 1)/2 or n− 1, and Ds(q) is a rational function of q given by

Ds(q) = − q3−s

(1− q2)2

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−4(lm−2+···+(m−2)l1)

× (q3; q4)2
l1
· · · (q3; q4)2

l1+···+lm−2
(q−2; q4)3

l1+···+lm−1

(q−1; q4)2
l1
· · · (q−1; q4)2

l1+···+lm−1
(q4; q4)l1+...+lm−1−2

(4.9)

with m = (s + 1)/2 and 1/(q4; q4)k = 0 for any negative integer k.

Using the formula (4.9), we obtain the first values of Ds(q): D1(q) = D3(q) = 0,
D5(q) = (q + 1)4/q8, and

D7(q) =
2(2q2 + q + 2)(q + 1)4

(q2 + 1)q10
,

D9(q) =
(10q8 + 8q7 + 19q6 + 4q5 + 14q4 + 4q3 + 19q2 + 8q + 10)(q + 1)4

(q4 + 1)(q2 + 1)2q12
.

Noticing (4.7) and the fact that 1/(2k − 1)
(
2k
k

)
is always an integer, we can show that

Ds(1) is an integer as before.

Sketch of Proof of Theorem 4.3. The s = 1 case was already proved by the author and
Schlosser [21, Theorem 5.3]. For s > 3, we first give a parametric generalization of (4.8)
as follows. Modulo Φn(q2)(1− aq2n)(a− q2n),

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]s−1 (q−2, q−2, aq−2, q−2/a; q4)k

(q4, q4, aq4, q4/a; q4)k

q(10−2s)k

≡ − [n]q2q4−n−s

(1− aq2)(1− q2/a)

1∑

l1,...,lm−1=0

(−1)l1+···+lm−1q−4(lm−2+···+(m−2)l1)

× (q3; q4)2
l1
· · · (q3; q4)2

l1+···+lm−2
(q−2, aq−2, q−2/a; q4)l1+···+lm−1

(q−1; q4)2
l1
· · · (q−1; q4)2

l1+···+lm−1
(q4; q4)l1+...+lm−1−2

. (4.10)

The congruence (4.5) modulo 1−aq2n or a−q2n follows from Andrews’ transformation
formula (2.2) by first performing the parameter substitutions m = (s + 1)/2, q 7→ q4,
a = q−2, b1 = c1 = · · · = cm−1 = dm−1 = q3, bm = q−2, cm = q−2+2nz and N = (n + 1)/2,
and then letting z → 1.

Applying (4.6) with q 7→ q2 again, we can show that the k-th and ((n + 1)/2 − k)-
th terms on the left-hand side of (4.10) cancel each other modulo Φn(q2). Namely, the
congruence (4.10) hold modulo Φn(q2).

The proof of (4.8) is then exactly the same as that of Theorem 1.2. 2
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Letting n = pr and q → 1 in Theorem 4.3, we arrive at the following conclusion, which
confirms a weaker from of [16, Conjecture 5.2].

Corollary 4.4. For any odd positive integer s, there exists an integer ds = Ds(1) such
that, for any odd prime p and positive integer r, there hold

(pr+1)/2∑

k=0

(4k − 1)s (−1
2
)4
k

k!4
≡ dsp

r (mod pr+2),

pr−1∑

k=0

(4k − 1)s (−1
2
)4
k

k!4
≡ dsp

r (mod pr+2).

In particular, we have d1 = d3 = 0, d5 = 16, d7 = 80, d9 = 192, d11 = 640, d13 = −3472,
and d15 = 138480.

5. Some open problems

The author [10, Conjecture 4.3] further conjectured that the number bs in (1.9) and (1.10)
is the coefficient of x(s−1)/2 in the expansion

exp

( ∞∑
n=1

(−1)nE2n
xn

n

)
, (5.1)

where E2n is the 2n-th Euler number, i.e.,

2

exp(x) + exp(−x)
=

∞∑
n=0

En

n!
xn.

Letting q → 1 in Theorem 1.4, one sees that this assertion is equivalent to the following
conjecture.

Conjecture 5.1. For any integer m > 1, the coefficient of xm in (5.1) is equal to

1∑

l1,...,lm=0

(−1)l1+···+lm
(5

4
)2
l1
· · · (5

4
)2
l1+···+lm−1

(1
2
)3
l1+···+lm

(1
4
)2
l1
· · · (1

4
)2
l1+···+lm

(1)l1+···+lm

.

The author and Wang [23] have proved (1.9) for s = 1 by establishing the following
q-analogue: for odd n,

(n−1)/2∑

k=0

[4k + 1]
(q; q2)4

k

(q2; q2)4
k

≡ [n]q(1−n)/2 +
(n2 − 1)(1− q)2

24
[n]3q(1−n)/2 (mod [n]Φn(q)3).

(5.2)
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The corresponding q-analogue of (1.9) for s = 1 was also conjectured by the author and
Wang [23, Conjecture 5.1] and has been confirmed by the author and Schlosser in the
proof of [21, Theorem 12.9].

Motivated by the congruence (5.2), we would like to propose the following generaliza-
tion of Theorem 1.4, which is also a complete q-analogue of Conjecture 1.3.

Conjecture 5.2. Let n and s be positive odd integers with n > (s + 1)/2. Let Bs(q) be
given by (1.13). Then, modulo [n]q2Φn(q2)3,

m∑

k=0

[4k + 1]q2 [4k + 1]s−1 (q2; q4)4
k

(q4; q4)4
k

q(2−2s)k

≡ [n]q2q1−nBs(q) +
(n2 − 1)(1− q2)2

24
[n]3q2q1−nBs(q),

where m = (n− 1)/2 or n− 1.

Similarly, we have the following generalization of Theorem 4.3, which is also a complete
q-analogue of [16, Conjecture 5.2].

Conjecture 5.3. Let n and s be positive odd integers with n > (s − 1)/2. Let Ds(q) be
given by (4.9). Then, modulo [n]q2Φn(q2)3,

M∑

k=0

[4k − 1]q2 [4k − 1]s−1 (q−2; q4)4
k

(q4; q4)4
k

q(10−2s)k

≡ [n]q2q1−nDs(q) +
(n2 − 1)(1− q2)2

24
[n]3q2q1−nDs(q),

where M = (n + 1)/2 or n− 1.

There is a stronger version of Conjecture 5.3 for s = 1, 3. Using the q-WZ method [38],
the author and Schlosser [19] have proved that

M∑

k=0

[4k − 1]
(q−1; q2)4

k

(q2; q2)4
k

q4k ≡ −(1 + 3q + q2)[n]4 (mod [n]4Φn(q)).

Moreover, the author [13] conjectured that

M∑

k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4

k

(q4; q4)4
k

q4k ≡ 0 (mod [n]4q2).
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