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1. Introduction

In 1997, Van Hamme [27, (C.2)] proved that, for any odd prime p,

(p−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ p (mod p3). (1.1)

In 2011, applying hypergeometric identities, Long [22] further proved that the above
supercongruence also holds modulo p4 for primes p > 3. In 2015, Swisher [25, (C.3)]
made an interesting conjecture on a generalization of Long’s result. In 2018, motivated
by Zudilin’s work [31] on proving supercongruences through the WZ (Wilf–Zeilberger)
method [29], using the Zeilberger algorithm Wang [28] proved some generalizations of
(1.1), such as

(p−1)/2∑

k=0

(4k + 1)3

256k

(
2k

k

)4

≡ −p (mod p4) (1.2)

for any odd prime p with p ≡ 2 (mod 3). In 2019, by applying a combinatorial identity
Liu [20] confirmed (1.2) for all primes p > 3. Recently, Hou, Mu, and Zeilberger [19]
investigated some supercongruences related to (1.2).
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The aim of this paper is to confirm the following generalizations of (1.2), which were
originally conjectured by the author (see [5, Conjecture 4.3]): for any prime p > 3 and
positive integer r,

(pr−1)/2∑

k=0

(4k + 1)3

256k

(
2k

k

)4

≡ −pr (mod pr+3), (1.3)

pr−1∑

k=0

(4k + 1)3

256k

(
2k

k

)4

≡ −pr (mod pr+3). (1.4)

Note that when r = 1 the supercongruences (1.3) and (1.4) are equivalent to each
other, since

(
2k
k

) ≡ 0 (mod p) for (p + 1)/2 6 k 6 p− 1. Moreover, in an early paper [6]
the author has proved (1.3) and (1.4) modulo pr+2 by showing the q-supercongruences:
for odd n > 1,

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]2
(q2; q4)4

k

(q4; q4)4
k

q−4k ≡ −[n]q2

2q2−n

1 + q2
(mod [n]q2Φn(q2)2), (1.5)

n−1∑

k=0

[4k + 1]q2 [4k + 1]2
(q2; q4)4

k

(q4; q4)4
k

q−4k ≡ −[n]q2

2q2−n

1 + q2
(mod [n]q2Φn(q2)2), (1.6)

where (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) denotes the q-shifted factorial, [n] = [n]q =
1 + q + · · ·+ qn−1 is the q-integer, and Φn(q) stands for the n-th cyclotomic polynomial in
q, i.e.,

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk)

with ζ being an n-th primitive root of unity.
Throughout the paper, for polynomials A1(q), A2(q), P (q) ∈ Z[q], we say that

A1(q)/A2(q) ≡ 0 (mod P (q)) if P (q) divides A1(q) but is relatively prime to A2(q).
More generally, for rational functions A(q), B(q) ∈ Z(q), the congruence A(q) ≡ B(q)
(mod P (q)) is meant that A(q) − B(q) ≡ 0 (mod P (q)). The reader is referred to
[2–4,6–11,13–18,21,23,24,26,30,32] for some recent q-supercongruences.

We shall prove (1.3) and (1.4) by establishing the following complete q-analogues of
them, which were originally conjectured by the author [6, Conjecture 1.5].
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Theorem 1.1. Let n > 1 be an odd integer. Then, modulo [n]q2Φn(q2)3,

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]2
(q2; q4)4

k

(q4; q4)4
k

q−4k ≡ −[n]q2

2q2−n

1 + q2
− [n]3q2

(n2 − 1)(1− q2)2q2−n

12(1 + q2)
,

(1.7)

n−1∑

k=0

[4k + 1]q2 [4k + 1]2
(q2; q4)4

k

(q4; q4)4
k

q−4k ≡ −[n]q2

2q2−n

1 + q2
− [n]3q2

(n2 − 1)(1− q2)2q2−n

12(1 + q2)
.

(1.8)

Note that, for k > 0 and any prime power pr, there hold

lim
q→1

(q2; q4)k

(q4; q4)k

=
1

4k

(
2k

k

)
and Φpr(1) = p.

Hence, letting n = pr and q → 1 in (1.7) and (1.8), we immediately obtain (1.3) and (1.4).
Furthermore, if we let n = pr and q → −1 in (1.7) and (1.8), then we get

(pr−1)/2∑

k=0

4k + 1

256k

(
2k

k

)4

≡ pr (mod pr+3), (1.9)

pr−1∑

k=0

4k + 1

256k

(
2k

k

)4

≡ pr (mod pr+3), (1.10)

which are generalizations of (1.1). The supercongruence (1.9) was first observed by Long
[22] (she only proved the r = 1 case) and proved by the author and Wang [16] along with
the following q-analogue:

(n−1)/2∑

k=0

[4k + 1]
(q; q2)4

k

(q2; q2)4
k

≡ [n]q(1−n)/2 +
(n2 − 1)(1− q)2

24
[n]3q(1−n)/2 (mod [n]Φn(q)3)

for odd n. The same q-analogue of (1.10) was formulated by the author and Wang [16,
Conjecture 5.1] and was later confirmed by the author and Schlosser in the proof of [15,
Theorem 12.9].

We shall also prove the following q-congruences.

Theorem 1.2. Let n > 1 be an odd integer. Then

(n+1)/2∑

k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4

k

(q4; q4)4
k

q4k ≡ 0 (mod [n]q2Φn(q2)3), (1.11)

n−1∑

k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4

k

(q4; q4)4
k

q4k ≡ 0 (mod [n]q2Φn(q2)3). (1.12)
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Note that the q-supercongruences (1.11) and (1.12) modulo [n]q2Φn(q2)2 were proved
by the author [6, Theorem 5.4]. Moreover, letting n = pr and q → 1 in Theorem 1.2, we
are led to the following conclusion, which confirms the m = 3 case of [12, Conjecture 5.2].

Corollary 1.3. Let p be an odd prime and let r be a positive integer. Then

(pr+1)/2∑

k=0

(4k − 1)3

256k(2k − 1)4

(
2k

k

)4

≡ 0 (mod pr+3),

pr−1∑

k=0

(4k − 1)3

256k(2k − 1)4

(
2k

k

)4

≡ 0 (mod pr+3).

The rest of the paper is organized as follows. We recall some known auxiliary results
in Section 2. We shall prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. More
precisely, we shall first use Watson’s 8φ7 transformation, the method of creative micro-
scoping recently introduced by the author and Zudilin [17] and the Chinese remainder
theorem for coprime polynomials to establish the corresponding q-congruences modulo
[n]q2(1−aq2n)(a−q2n)(b−q2n) (see [10] for some similar q-congruences). Then we deduce
Theorems 1.1 and 1.2 from these q-congruences with parameters a and b by taking the
limits as a, b → 1. We give a remark in Section 5 for further study.

2. Some auxiliary results

We will make use of Watson’s 8φ7 transformation formula (see [1, Appendix (III.18)]):

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

=
(aq; q)n(aq/de; q)n

(aq/d; q)n(aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
, (2.1)

where the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1; q)k(a2; q)k · · · (ar+1; q)k

(q; q)k(b1; q)k · · · (br; q)k

zk.

We shall also use the following easily proved results (see [15, Lemma 3.1] and [10, Lemma
2.1]).

Lemma 2.1. Let n be a positive odd integer. Then, for 0 6 k 6 (n− 1)/2,

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k

q(n−1)2/4+k (mod Φn(q)).
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Lemma 2.2. Let n be a positive odd integer. Then

(aq2, q2)(n−1)/2(q
2/a, q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q−(n−1)2/4

(1− a)a(n−1)/2
(mod Φn(q)),

(aq, q2)(n−1)/2(q/a, q2)(n−1)/2 ≡ (−1)(n−1)/2 (1− an)q(1−n2)/4

(1− a)a(n−1)/2
(mod Φn(q)).

3. Proof of Theorem 1.1

We first present the following two-parametric generalization of (1.5). Note that the b = 1
case has already been given in [6, Theorem 4.1].

Theorem 3.1. Let n > 1 be an odd integer and let a, b be indeterminates. Then, modulo
Φn(q2)(1− aq2n)(a− q2n),

(n−1)/d∑

k=0

[4k + 1]q2 [4k + 1]2
(aq2; q4)k(q

2/a; q4)k(q
2/b; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

(
b

q4

)k

≡ b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)
, (3.1)

where d = 1, 2.

Proof. For a = q−2n or a = q2n, the left-hand side of (3.1) is equal to

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]2
(q2−2n; q4)k(q

2+2n; q4)k(q
2/b; q4)k(q

2; q4)k

(q4−2n; q4)k(q4+2n; q4)k(bq4; q4)k(q4; q4)k

bkq−4k

= 8φ7

[
q2, q5, −q5, q5, q5, q2/b, q2+2n, q2−2n

q, −q, q, q, bq4, q4−2n, q4+2n ; q4, bq−4

]
. (3.2)

By Watson’s 8φ7 transformation (2.1), we can write the right-hand side of (3.2) as

(q6; q4)(n−1)/2(bq
2−2n; q4)(n−1)/2

(bq4; q4)(n−1)/2(q4−2n; q4)(n−1)/2
4φ3

[
q−4, q2/b, q2+2n, q2−2n

q, q, q4/b
; q4, q4

]

= b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

(
1− (1− q2−2n)(1− q2+2n)(1− q2/b)

(1− q)2(1− q4/b)

)
. (3.3)

This proves that the congruence (3.1) holds modulo 1− aq2n and a− q2n.
Further, by Lemma 2.1 it is not hard to check that the k-th and ((n−1)/2−k)-th terms

on the left-hand side of (3.1) modulo Φn(q2) cancel each other for 0 6 k 6 (n−1)/2. This
indicates that the left-hand side of (3.1) is congruent to 0 modulo Φn(q2), and therefore
the congruence (3.1) is true modulo Φn(q2). 2

5



We now give a simpler congruence as follows.

Theorem 3.2. Let n > 1 be an odd integer and let a, b be indeterminates. Then, modulo
b− q2n,

(n−1)/d∑

k=0

[4k + 1]q2 [4k + 1]2
(aq2; q4)k(q

2/a; q4)k(q
2/b; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

(
b

q4

)k

≡
[n]q2(q2; q4)2

(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2

(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)
, (3.4)

where d = 1, 2.

Proof. For b = q2n, the left-hand side of (3.1) is equal to

(n−1)/2∑

k=0

[4k + 1]q2 [4k + 1]2
(aq2; q4)k(q

2/a; q4)k(q
2−2n; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(q4+2n; q4)k(q4; q4)k

q(2n−4)k

= 8φ7

[
q2, q5, −q5, q5, q5, aq2, q2/a, q2−2n

q, −q, q, q, q4/a, aq4, q4+2n ; q4, q2n−4

]
. (3.5)

By Watson’s transformation (2.1), the right-hand side of (3.5) may be written as

(q6; q4)(n−1)/2(q
2; q4)(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2
4φ3

[
q−4, aq2, q2/a, q2−2n

q, q, q4−2n ; q4, q4

]

=
[n]q2(q2; q4)2

(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2

(
1− (1− aq2)(1− q2/a)(1− q2−2n)

(1− q)2(1− q4−2n)

)
. (3.6)

This proves that the congruence (3.4) is true modulo b− q2n. 2

With the help of Theorems 3.1, 3.2 and the Chinese remainder theorem for coprime
polynomials, we are able to prove Theorem 1.1. More precisely, we shall prove Theorem
1.1 by establishing the following parametric generalization.

Theorem 3.3. Let n > 1 be an odd integer and a an indeterminate. Then, modulo
Φn(q2)2(1− aq2n)(a− q2n),

(n−1)/d∑

k=0

[4k + 1]q2 [4k + 1]2
(aq2; q4)k(q

2/a; q4)k(q
2; q4)2

k

(aq4; q4)k(q4/a; q4)k(q4; q4)2
k

q−4k

≡ q1−n[n]q2

(
1− (1− aq2)(1− q2/a)

(1 + q2)(1− q)2

)

×
{

1 +
(1− aq2n)(a− q2n)

(1− a)2

(
1− n(1− a)a(n−1)/2

1− an

)}
, (3.7)

where d = 1, 2.
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Proof. It is easy to see that Φn(q2)(1−aq2n)(a−q2n) and b−q2n are relatively prime polyno-
mials. By the Chinese reminder theorem for coprime polynomials, we can uniquely deter-
mine the remainder of the left-hand side of (3.1) modulo Φn(q2)(1−aq2n)(a−q2n)(b−q2n)
from the congruences (3.1) and (3.4). To this end, we need the following q-congruences:

(b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)
≡ 1 (mod (1− aq2n)(a− q2n)), (3.8)

(1− aq2n)(a− q2n)

(a− b)(1− ab)
≡ 1 (mod b− q2n). (3.9)

Thus, from (3.1) and (3.4) we deduce that

(n−1)/d∑

k=0

[4k + 1]q2 [4k + 1]2
(aq2; q4)k(q

2/a; q4)k(q
2/b; q4)k(q

2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

bkq−4k

≡ b(n−1)/2q1−n[n]q2

(q4/b; q4)(n−1)/2

(bq4; q4)(n−1)/2

(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)

× (b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)

+
[n]q2(q2; q4)2

(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2

(
1− (1− aq2)(1− q2/a)(1− q2/b)

(1− q)2(1− q4/b)

)

× (1− aq2n)(a− q2n)

(a− b)(1− ab)
(mod Φn(q2)(1− aq2n)(a− q2n)(b− q2n)). (3.10)

By Lemma 2.2, we have

(q2; q4)2
(n−1)/2

(aq4; q4)(n−1)/2(q4/a; q4)(n−1)/2

≡ n(1− a)a(n−1)/2

(1− an)qn−1
(mod Φn(q2)). (3.11)

It is clear that 1 − q2n has the factor Φn(q2). Moreover, the factor (q4; q4)(n−1)/d in the
denominator of the left-hand side of (3.10) is relatively prime to Φn(q2). Thus, letting
b = 1 in (3.10), applying the congruence (3.11) and using

(1− q2n)(1 + a2 − a− aq2n) = (1− a)2 + (1− aq2n)(a− q2n),

we conclude that (3.7) holds modulo Φn(q2)2(1− aq2n)(a− q2n). 2

Proof of Theorem 1.1. By l’Hôpital’s rule, we have

lim
a→1

(1− aq2n)(a− q2n)

(1− a)2

(1− an − n(1− a)a(n−1)/2)

(1− an)
=

(n2 − 1)(1− q2)2

24
[n]2q2 .

Thus, letting a → 1 in (3.7), we see that the congruences (1.7) and (1.8) hold modulo
Φn(q2)4. In view of (1.5) and (1.6), they are true modulo [n]q2 . The proof then follows
from the fact that the least common multiple of [n]q2 and Φn(q2)4 is just [n]q2Φn(q2)3. 2

7



4. Proof of Theorem 1.2

Similarly as before, we first give a two-parametric q-congruence. Note that the b = 1 case
is just [6, eq. (5.5)].

Theorem 4.1. Let n > 1 be an odd integer and let a, b be indeterminates. Then, modulo
Φn(q2)(1− aq2n)(a− q2n),

M∑

k=0

[4k − 1]q2 [4k − 1]2
(aq−2; q4)k(q

−2/a; q4)k(q
−2/b; q4)k(q

−2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

(
bq4

)k

≡ b(n−1)/2qn−5[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

(
(1− aq−2)(1− q−2/a)(1− q−2/b)

(1− q−1)2(1− q−4/b)
− 1

)
, (4.1)

where M = (n + 1)/2 or n− 1.

Proof. For a = q−2n or a = q2n, by Watson’s 8φ7 transformation (2.1), the left-hand side
of (4.1) is equal to

− q−4
8φ7

[
q−2, q3, −q3, q3, q3, q−2/b, q−2+2n, q−2−2n

q−1, −q−1, q−1, q−1, bq4, q4−2n, q4+2n ; q4, bq4

]

= −q−4 (q2; q4)(n+1)/2(bq
6−2n; q4)(n+1)/2

(bq4; q4)(n+1)/2(q4−2n; q4)(n+1)/2
4φ3

[
q−4, q−2/b, q−2+2n, q−2−2n

q−1, q−1, q−4/b
; q4, q4

]

= b(n−1)/2qn−5[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

(
(1− q−2−2n)(1− q−2+2n)(1− q−2/b)

(1− q−1)2(1− q−4/b)
− 1

)
.

Namely, the congruence (4.1) holds modulo 1− aq2n or a− q2n.
On the other hand, by Lemma 2.1, for odd n > 1 and 0 6 k 6 (n + 1)/2, we get

(aq−1; q2)(n+1)/2−k

(q2/a; q2)(n+1)/2−k

=
(1− aq−1)(aq; q2)(n−1)/2−k

(1− qn+1−2k/a)(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (1− aq−1)(aq; q2)k

(1− q1−2k/a)(q2/a; q2)k

q(n−1)2/4+k

= (−a)(n+1)/2−2k (aq−1; q2)k

(q2/a; q2)k

q(n−1)2/4+3k−1 (mod Φn(q)). (4.2)

Utilizing (4.2) we can verify that the k-th and ((n + 1)/2− k)-th terms on the left-hand
side of (4.1) cancel each other modulo Φn(q2). Namely, the congruence (4.1) is also true
modulo Φn(q2) for M = (n + 1)/2. Since [4k − 1]q2 is congruent to 0 modulo Φn(q2) for
any integer k in the range (n + 1)/2 < k 6 n − 1, we conclude that (4.1) is still true
modulo Φn(q2) for M = n− 1. This proves the theorem. 2

We also need the following simpler q-congruence.
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Theorem 4.2. Let n > 1 be an odd integer and let a, b be indeterminates. Then, modulo
b− q2n,

M∑

k=0

[4k − 1]q2 [4k − 1]2
(aq−2; q4)k(q

−2/a; q4)k(q
−2/b; q4)k(q

−2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

(
bq4

)k

≡ [n]q2(q2; q4)(n−1)/2(q
2; q4)(n+3)/2

q4(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2

(
(1− aq−2)(1− q−2/a)(1− q−2/b)

(1− q−1)2(1− q−4/b)
− 1

)
, (4.3)

where M = (n + 1)/2 or n− 1.

Proof. For b = q2n, by (2.1) the left-hand side of (4.1) is equal to

− q−4
8φ7

[
q−2, q3, −q3, q3, q3, aq−2, q−2/a, q−2−2n

q−1, −q−1, q−1, q−1, q4/a, aq4, q4+2n ; q4, bq4

]

= −q−4 (q2; q4)(n+1)/2(q
6; q4)(n+1)/2

(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2
4φ3

[
q−4, aq−2, q−2/a, q−2−2n

q−1, q−1, q−4−2n ; q4, q4

]

=
[n]q2(q2; q4)(n−1)/2(q

2; q4)(n+3)/2

q4(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2

(
(1− aq−2)(1− q−2/a)(1− q−2−2n)

(1− q−1)2(1− q−4−2n)
− 1

)
.

This means that the congruence (4.3) is true modulo b− q2n. 2

With the help of Theorems 4.1 and 4.2, we can prove the following parametric gener-
alization of Theorem 1.2.

Theorem 4.3. Let n > 1 be an odd integer and a an indeterminate. Then, modulo
Φn(q2)2(1− aq2n)(a− q2n),

M∑

k=0

[4k − 1]q2 [4k − 1]2
(aq−2; q4)k(q

−2/a; q4)k(q
−2; q4)2

k

(aq4; q4)k(q4/a; q4)k(q4; q4)2
k

q4k ≡ 0, (4.4)

where M = (n + 1)/2 or n− 1.
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Proof. Using (3.8) and (3.9), we deduce from (4.1) and (4.3) that

M∑

k=0

[4k − 1]q2 [4k − 1]2
(aq−2; q4)k(q

−2/a; q4)k(q
−2/b; q4)k(q

−2; q4)k

(aq4; q4)k(q4/a; q4)k(bq4; q4)k(q4; q4)k

(
bq4

)k

≡ b(n−1)/2qn−5[n]q2

(1/b; q4)(n−1)/2

(bq8; q4)(n−1)/2

(
(1− aq−2)(1− q−2/a)(1− q−2/b)

(1− q−1)2(1− q−4/b)
− 1

)

× (b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)

+
[n]q2(q2; q4)(n−1)/2(q

2; q4)(n+3)/2

q4(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2

(
(1− aq−2)(1− q−2/a)(1− q−2/b)

(1− q−1)2(1− q−4/b)
− 1

)

× (1− aq2n)(a− q2n)

(a− b)(1− ab)
(mod Φn(q2)(1− aq2n)(a− q2n)(b− q2n)). (4.5)

It is clear that 1− q2n ≡ 0 (mod Φn(q2)), (1; q4)(n−1)/2 = 0 and

(q2; q4)(n−1)/2(q
2; q4)(n+3)/2

(aq4; q4)(n+1)/2(q4/a; q4)(n+1)/2

≡ 0 (mod Φn(q2)).

Hence, taking b = 1 in (4.5) we conclude that (3.7) holds modulo Φn(q2)2(1−aq2n)(a−q2n).
2

5. A remark

The author and Schlosser [14, Conjecture 3] proposed the following generalization of
Theorem 1.2, which remains open:

Conjecture 5.1. Let n > 1 be an odd integer. Then

M∑

k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4

k

(q4; q4)4
k

q4k ≡ (2q + 2q−1 − 1)[n]4q2 (mod [n]4q2Φn(q2)),

where M = (n + 1)/2 or n− 1.
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