A symmetric generalization of an identity of Andrews and Yee

Victor J. W. Guo and Su-Dan Wang

1School of Mathematical Sciences, Huaiyin Normal University, Huai’an 223300, Jiangsu, People’s Republic of China
jwguo@hytc.edu.cn

2College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia, People’s Republic of China
sudan199219@126.com

Abstract. We give a symmetric generalization of an identity of Andrews and Yee, which may also be deemed a \(q \)-analogue of the Chaundy–Bullard identity for \(x = 1/2 \). We give two proofs of our identity. The first one uses the \(q \)-Wilf-Zeilberger method, while the second one is a combinatorial proof.

Keywords: \(q \)-Wilf–Zeilberger method; Chaundy–Bullard identity; partition; \(q \)-binomial theorem.

2010 Mathematics Subject Classifications: 05A17; 05A30; 05A19; 11P81.

1. Introduction

Andrews et al. [2] introduced two partition functions \(p_\omega(n) \) and \(p_\nu(n) \), where \(p_\omega(n) \) counts the number of partitions of \(n \) in which all odd parts are less than twice the smallest part, and \(p_\nu(n) \) counts the number of partitions of \(n \) with the same constraints as \(p_\omega(n) \) plus all parts being distinct. Recently, Andrews and Yee [3] studied two-variable generalizations of two identities involving the functions \(p_\omega(n) \) and \(p_\nu(n) \) and gave the following results:

\[
\sum_{n=1}^{\infty} \frac{q^n}{(zq^n; q)_{n+1}(zq^{2n+2}; q^2)_\infty} = \sum_{n=0}^{\infty} \frac{z^n q^{2n^2+n+1}}{(q; q^2)_{n+1}(zq; q^2)_{n+1}},
\]

(1.1)

\[
\sum_{n=0}^{\infty} q^n (-zq^{n+1}; q)_n (-zq^{2n+2}; q^2)_\infty = \sum_{n=0}^{\infty} \frac{z^n q^{n^2+n}}{(q; q^2)_{n+1}},
\]

(1.2)

where \((a; q)_n = (1-a)(1-aq) \cdots (1-aq^{n-1})\) and \((a; q)_\infty = \lim_{n \to \infty} (a; q)_n\).

The following intriguing identity [3, Lemma 6]

\[
\sum_{k=0}^{n} \frac{q^k(q; q)_{n+k}}{(q^2; q^2)_k} = (q^2; q^2)_n
\]

(1.3)
plays an important part in the proof of (1.1) and (1.2). Andrews and Yee’s proof of (1.3) depends on certain recurrence relations of
\[S_n(i) := \sum_{k=0}^{n} q^k(q; q)_{n+k}/(q^2; q^2)_k. \]
An interesting combinatorial proof of the equivalent form of (1.3):
\[\sum_{k=0}^{n} q^k(-q^{k+1}; q)_{n-k} \left[\frac{n+k}{k} \right] = (-q; q)_n^2 \quad (1.4) \]
was given by Chern [6]. Here
\[\left[\frac{n+k}{k} \right] = \frac{(q; q)_{n+k}}{(q; q)_n(q; q)_k} \]
denotes the \(q \)-binomial coefficient.

The aim of this paper is to give the following result.

Theorem 1.1. Let \(m \) and \(n \) be non-negative integers. Then
\[
\sum_{k=0}^{m} \frac{q^k}{(-q; q)_n(-q; q)_k} \left[\frac{n+k}{k} \right] + \sum_{k=0}^{n} \frac{q^k}{(-q; q)_m(-q; q)_k} \left[\frac{m+k}{k} \right] = 2. \quad (1.5)
\]
It is clear that, when \(m = n \), the identity (1.5) reduces to
\[
\sum_{k=0}^{n} \frac{q^k}{(-q; q)_n(-q; q)_k} \left[\frac{n+k}{k} \right] = 1,
\]
which is equivalent to (1.3) and (1.4). On the other hand, the \(q = 1 \) case of (1.5) gives
\[
\sum_{k=0}^{m} 2^{-n-k} \left(\frac{n+k}{k} \right) + \sum_{k=0}^{n} 2^{-m-k} \left(\frac{m+k}{k} \right) = 2, \quad (1.6)
\]
which is the \(x = 1/2 \) case of the famous Chaundy–Bullard identity [4]:
\[
(1-x)^{n+1} \sum_{k=0}^{m} \left(\frac{n+k}{k} \right) x^k + x^{m+1} \sum_{k=0}^{n} \left(\frac{m+k}{k} \right) (1-x)^k = 1. \quad (1.7)
\]

Note that, the above identity was also found by Kesava Menon [11]. For a survey on different proofs of (1.7) and historical remarks, see Koornwinder and Schlosser [9, 10]. Koornwinder and Schlosser later (in a talk by Schlosser) gave the following \(q \)-analogue of (1.7):
\[
(x; q)_{n+1} \sum_{k=0}^{m} \left[\frac{n+k}{k} \right] x^k + x^{m+1} \sum_{k=0}^{n} \left[\frac{m+k}{k} \right] q^k(x; q)_k = 1. \quad (1.8)
\]
It is obvious that (1.5) is not a special case of (1.8). Recently, a generalization of (1.7) with more variables was given by Ma [12, Corollary 4.2]:

\[
\sum_{k=0}^{m} \binom{n+k}{k} \frac{(c; q)_{m-k}(aq^{-n}/b; q)_{m-k}}{(-aq; q)_{m-k}(-cq/b; q)_{m-k}} q^{(n+1)(m-k)} \frac{b+1}{b+c} \sum_{k=0}^{m} \binom{n+k}{k} \frac{(c; q)_{m-k}(aq^{-m}/a; q)_{m-k}}{(-bq; q)_{m-k}(-cq/a; q)_{m-k}} q^{(m+1)(n-k)} \frac{a+1}{a+c} \sum_{k=0}^{n} \binom{m+k}{k} \frac{(c; q)_{m-k}(bq^{-m}/a; q)_{m-k}}{(-bq; q)_{m-k}(-cq/a; q)_{m-k}} q^{(m+1)(n-k)}
\]

\[
= \left(\frac{1}{b} - \frac{1}{a} \right) \frac{(aq/b; q)_{m}(aq/b; q)_{n}(c; q)_{m+n+1}}{(-aq; q)_{m}(-bq; q)_{n}(-c/b; q)_{m+1}(-c/a; q)_{n+1}}.
\]

Moreover, a proof of (1.7) using the Wilf–Zeilberger method [13] was given by Chen [5]. We shall give two different proofs of Theorem 1.1. The first one is based on the \(q\)-Wilf–Zeilberger method [14], which is motivated by Chen’s proof of (1.7). We point out that the \(q\)-Wilf–Zeilberger method was also used by the first author [7, 8] to prove two other curious \(q\)-series identities recently. The second one is purely combinatorial and is very similar to Chern’s combinatorial proof of (1.4). Not like that there are seven different proofs of (1.7) in [9], we cannot even find a simple inductive proof of Theorem 1.1. The reader is encouraged to find any other proof of this theorem.

2. A proof using the \(q\)-Wilf–Zeilberger method

Let \([n] := (1 - q^n)/(1 - q)\) be the \(q\)-integer. We define two functions in \(q\):

\[
F(n, k) = \frac{q^k}{(-q; q)_n(-q; q)_k} \binom{n+k}{k},
\]

\[
G(n, k) = -\frac{q^{n+1}[2k]}{[2n+2](-q; q)_n(-q; q)_k} \binom{n+k}{k}.
\]

It is easy to check that they satisfy the following relation

\[
F(n + 1, k) - F(n, k) = G(n, k + 1) - G(n, k).
\]

(2.1)

Namely, the functions \(F(n, k)\) and \(G(n, k)\) form a \(q\)-Wilf–Zeilberger pair. Summing (2.1) over \(k\) from 0 to \(m\), we obtain

\[
\sum_{k=0}^{m} (F(n + 1, k) - F(n, k)) = G(n, m + 1) - G(n, 0).
\]

Letting \(n \to j\) in the above identity and then summing it over \(j = 0, 1, \ldots, n - 1\), we get

\[
\sum_{k=0}^{m} (F(n, k) - F(0, k)) = \sum_{j=0}^{n-1} (G(j, m + 1) - G(j, 0)) = \sum_{j=0}^{n-1} G(j, m + 1),
\]
where we have used the fact that $G(j, 0) = 0$ for any non-negative integer j.

Namely, we have

$$
\sum_{k=0}^{m} \frac{q^k}{(-q; q)_n(-q; q)_k} \left[\frac{n+k}{k} \right] - \sum_{k=0}^{m} \frac{q^k}{(-q; q)_k} = \sum_{j=0}^{n-1} \frac{-q^{j+1}[2m+2]}{[2j+2](-q; q)_j(-q; q)_{m+1}} \left[\frac{j+m+1}{j} \right]
$$

$$
= \sum_{j=1}^{n} \frac{q^j[2m+2]}{[2j](-q; q)_{j-1}(-q; q)_{m+1}} \left[\frac{j+m}{j-1} \right]
$$

$$
= \sum_{j=1}^{n} \frac{q^j}{(-q; q)_j(-q; q)_{m}} \left[\frac{j+m}{j} \right]. \quad (2.2)
$$

Finally, it is easy to prove by induction that

$$
\sum_{k=0}^{m} \frac{q^k}{(-q; q)_k} = 2 - \frac{1}{(-q; q)_m}. \quad (2.3)
$$

Combining (2.2) and (2.3), we obtain the desired identity (1.5).

3. A combinatorial proof

We shall give a combinatorial proof of the following equivalent form of (1.5):

$$
\sum_{k=0}^{m} q^k(-q^{k+1}; q)_{m-k} \left[\frac{n+k}{k} \right] + \sum_{k=0}^{n} q^k(-q^{k+1}; q)_{n-k} \left[\frac{m+k}{k} \right] = 2(-q; q)_m(-q; q)_n. \quad (3.1)
$$

In order to prove (3.1), we need the following result, which is a generalization of [6, Lemma 1].

Lemma 3.1. Let m and n be non-negative integers. Then

$$
\sum_{k=0}^{m} q^k(-q^{k+1}; q)_{m-k} \left[\frac{n+k}{k} \right] = \sum_{k=0}^{m} q^{(\frac{k+1}{2})} \left[\frac{m+n+1}{m-k} \right]. \quad (3.2)
$$

Proof. We follow the idea of Chern’s proof of [6, Lemma 1]. Let \mathcal{B}_1 be the set of bipartitions (λ, π) such that λ is a partition into distinct parts (perhaps empty) with largest part $\leq m$ and π is a partition with at most $n+1$ parts and largest part less than the smallest part of λ whenever λ is not empty. Moreover, if λ is empty, then the largest part of π is assumed to be at most m. Let $|\lambda|$ denote the sum of all parts of λ. Then

$$
\sum_{(\lambda, \pi) \in \mathcal{B}_1} q^{|\lambda|+|\pi|} = \sum_{k=0}^{m} q^k(-q^{k+1}; q)_{m-k} \left[\frac{n+k}{k} \right].
$$

We denote by \mathcal{B}_2 the set of bipartitions (μ, ν) such that μ is a partition with parts being the first k consecutive positive integers for some $0 \leq k \leq m$ (i.e., $\mu = (k, k - 1, \ldots, 1)$) and ν is a partition with at most $n + 1 + k$ parts and largest part being at most $m - k$. Then

$$\sum_{(\mu, \nu) \in \mathcal{B}_2} q^{\mu + \nu} = \sum_{k=0}^{m} q^{\binom{k+1}{2}} \left[\frac{m + n + 1}{m - k} \right].$$

Let $\ell = \ell(\lambda)$ denote the number of parts of λ, and let λ_1 and λ_ℓ stand for the largest part and smallest part of λ, respectively. For $(\lambda, \pi) \in \mathcal{B}_1$, let $\phi((\lambda, \pi)) = (\mu, \nu)$ given by

- $\mu = (\ell(\lambda), \ell(\lambda) - 1, \ldots, 1)$;
- $\nu = (\lambda_1 - \ell(\lambda), \lambda_2 - (\ell(\lambda) - 1), \ldots, \lambda_\ell - 1, \pi_1, \pi_2, \ldots, \pi_\ell)$.

For example, when $m = 7$ and $n = 5$, if $\lambda = (7, 5, 4)$ and $\pi = (3, 2, 2, 1, 1)$ then $\phi((\lambda, \pi)) = (\mu, \nu)$ with $\mu = (3, 2, 1)$ and $\nu = (4, 3, 3, 2, 2, 1, 1)$.

It is easy to see that ν is a partition (i.e., a decreasing sequence) with at most $n + 1 + \ell(\lambda)$ parts and largest part at most $m - \ell(\lambda)$. Namely, ϕ is a map from \mathcal{B}_1 to \mathcal{B}_2. It is clear that this map is weight-preserving ($|\lambda| + |\pi| = |\mu| + |\nu|$). It is also easy to verify that the map ϕ is invertible, and therefore it is a bijection. This proves the lemma. \qed

Proof of (1.5). By Lemma 3.1, it remains to prove

$$\sum_{k=0}^{m} q^{\binom{k+1}{2}} \left[\frac{m + n + 1}{m - k} \right] + \sum_{k=0}^{n} q^{\binom{k+1}{2}} \left[\frac{m + n + 1}{n - k} \right] = 2(-q; q)_m(-q; q)_n.$$ \hspace{1cm} (3.3)

But this is just a special case of the q-binomial theorem (cf. [1, p. 36, Theorem 3.3]):

$$(z; q)_N = \sum_{k=0}^{N} \binom{N}{k} (-1)^k q^{\binom{k}{2}} z^k$$ \hspace{1cm} (3.4)

with $z = -q^{-m}$ and $N = m + n + 1$. \qed

A combinatorial proof of (3.4) is well known and can be given by just comparing the coefficients of z^k on both sides of (3.4) and using the partition interpretation of q-binomial coefficients (see [1, Theorem 3.1]). When $z = -q^{-m}$ and $N = m + n + 1$, we may consider (3.4) as the $z = 1$ case of the following identity

$$(-zq^{-m}; q)_{m+n+1} = \sum_{k=0}^{m+n+1} \binom{m+n+1}{k} z^k q^{-mk},$$

whose combinatorial proof can also be given by comparing the coefficients of z^k. For this reason, we omit the combinatorial proof of (3.3) here. (When $m = n$, such a proof has already been given explicitly by Chern [6].)
Acknowledgments. We thank the two referees for helpful comments. We further thank Slobodan Lj. Damjanović for sending us the reference [11] and Schlosser’s talk containing (1.7). The first author was partially supported by the Natural Science Foundation of Jiangsu Province (grant BK20161304), and the Qing Lan Project of Education Committee of Jiangsu Province.

References