A \(q \)-analogue of the (A.2) supercongruence of Van Hamme for primes \(p \equiv 1 \pmod{4} \)

Victor J. W. Guo

School of Mathematics and Statistics, Huaiyin Normal University, Huai’an 223300, Jiangsu, People’s Republic of China

jwguo@hytc.edu.cn

Abstract. Recently, Wang and Yue gave a \(q \)-analogue of the (A.2) supercongruence of Van Hamme for any prime \(p \equiv 3 \pmod{4} \) by using a \(q \)-analogue of Watson’s \(3F_2 \) summation and the creative microscoping method, devised by the author and Zudilin. In this note, we give the corresponding \(q \)-analogue of the (A.2) supercongruence of Van Hamme for all primes \(p \equiv 1 \pmod{4} \) in the same manner. A supercongruence conjecture similar to the (A.3) conjecture of Swisher is also presented.

Keywords: basic hypergeometric series; \(q \)-analogue of Watson’s \(3F_2 \) summation; \(q \)-congruences; supercongruences; creative microscoping

AMS Subject Classifications: 33D15; Secondary 11A07, 11B65

1. Introduction

In his second letter to Hardy on February 27, 1913, Ramanujan referred to the following identity

\[
\sum_{k=0}^{\infty} (-1)^k (4k + 1) \left(\frac{1}{2} \right)_k^5 = \frac{2}{\Gamma(\frac{3}{4})^4},
\]

where \(\Gamma(x) \) denotes the Gamma function and \((a)_k = a(a+1)\cdots(a+k-1) \) is the rising factorial. In 1997, Van Hamme [27, Eq. (A.2)] observed that (1.1) posses a nice a \(p \)-adic analogue as follows:

\[
\sum_{k=0}^{(p-1)/2} (-1)^k (4k + 1) \left(\frac{1}{2} \right)_k^5 \equiv \begin{cases} \frac{p}{\Gamma_p(\frac{3}{4})^4} \pmod{p^3}, & \text{if } p \equiv 1 \pmod{4}, \\ 0 \pmod{p^3}, & \text{if } p \equiv 3 \pmod{4}. \end{cases}
\]

Here and in what follows, \(p \) always denotes an odd prime and \(\Gamma_p(x) \) stands for the \(p \)-adic Gamma function. The congruence (1.2) was first proved by McCarthy and Osburn [20]. Later Swisher [25] showed that the supercongruence (1.2) is also true modulo \(p^5 \) for \(p \equiv 1 \pmod{4} \) and \(p > 5 \). Recently, Liu [17] generalized the supercongruence (1.2) for \(p \equiv 3 \pmod{4} \) and \(p > 3 \) to the modulus \(p^4 \) case.

It should be mentioned that Van Hamme [27] proposed 13 supercongruence including (1.2). Nowadays all of these supercongruences have been confirmed by different authors
is defined by \((1.3)\) analogue of the supercongruence and a complete
\(n\)-th supercongruence:

\[
\sum_{k=0}^{(p-1)/2} \frac{(\frac{1}{2})_k^3}{k!^{15}} \equiv \begin{cases}
-\Gamma_p \left(\frac{1}{4} \right)^4 \pmod{p^2}, & \text{if } p \equiv 1 \pmod{4}, \\
0 \pmod{p^2}, & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\] (1.3)

Since \(\Gamma_p \left(\frac{1}{4} \right)^4 \Gamma_p \left(\frac{3}{4} \right)^4 = 1\), from (1.2) and (1.3) we immediately deduce that

\[
\sum_{k=0}^{(p-1)/2} (-1)^k (4k + 1) \frac{(\frac{1}{2})_k^4}{k!^{15}} \equiv p \sum_{k=0}^{(p-1)/2} \frac{(\frac{1}{2})_k^3}{k!^{15}} \pmod{p^3},
\] (1.4)

which was already noticed by Mortenson \[21\].

In recent years, \(q\)-analogues of supercongruences have attracted the interests of many authors (see, for example, \[2–15,18,22,24,28–30\]). In particular, the author and Zeng \[12, Cor. 1.2\] gave a \(q\)-analogue of (1.3) as follows:

\[
\sum_{k=0}^{(p-1)/2} \frac{(q; q^2)_k^5(q^2; q^4)_k}{(q^2; q^2)_k^5(q^4; q^4)_k^2} k^{2k} \equiv \begin{cases}
\frac{(q^2; q^4)^2}{(q^4; q^4)^2} q^{(p-1)/4} g^{(p-1)/4} \pmod{[p]^2}, & \text{if } p \equiv 1 \pmod{4}, \\
0 \pmod{[p]^2}, & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\] (1.5)

Here we need to familiarize ourselves with the standard \(q\)-notation. The \(q\)-shifted factorial is defined by \((a; q)_0 = 1\) and \((a; q)_n = (1 + a)(1 + aq) \cdots (1 + aq^{n-1})\) for \(n \geq 1\) or \(n = \infty\). For convenience, we also compactly write \((a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n(a_2; q)_n \cdots (a_m; q)_n\) for \(n \geq 0\) or \(n = \infty\). The \(q\)-integer is given by \([n] = [n]_q = 1 + q + \cdots + q^{n-1}\). Moreover, the \(n\)-th cyclotomic polynomial, denoted by \(\Phi_n(q)\), is defined by

\[
\Phi_n(q) = \prod_{\substack{1 \leq k \leq n \gcd(n,k) = 1}} (q - \zeta^k),
\]

where \(\zeta\) is an \(n\)-th primitive root of unity.

The author and Zudilin \[13\] devised a method, called ‘creative microscoping’, to prove many \(q\)-supercongruences modulo powers of a cyclotomic polynomial, including a partial \(q\)-analogue of the (J.2) supercongruence and a complete \(q\)-analogue of the (L.2) supercongruence of Van Hamme \[27\] \((q\)-analogues of the (B.2), (C.2), (E.2), (F.2), (I.2) supercongruences of Van Hamme were already given in \[3,5,6,11\]). The author and Zudilin \[14, Thm. 2\] also gave a slighter generalization of (1.5). The author and Schlosser \[10, Thm. 2.2\] used the creative microscoping method to give more \(q\)-supercongruences, such as

\[
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(q; q^2)_k^5}{(q^2; q^2)_k^5} q^k \equiv [n] q^{1-n}/2 \sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k^3}{(q^2; q^2)_k^3} q^k \pmod{[n][\Phi_n(q)]^2},
\]
which is a q-analogue of (1.4). However, they did not find a direct q-analogue of Van Hamme’s (A.2) supercongruence (1.2).

Very recently, using the creative microscoping method and a q-analogue of Watson’s $3F_2$ summation [1, Appendix (II.16)], Wang and Yue [29] gave a q-analogue of (1.2) for $p \equiv 3 \pmod{4}$ as follows: for $n \equiv 3 \pmod{4},$

$$
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(q; q^2)_k^4 (q^2; q^4)_k}{(q^2; q^4)^4_k} q^k \equiv 0 \pmod{[n] \Phi_n(q)^2},
$$

(1.6)

$$
\sum_{k=0}^{n-1} (-1)^k [4k + 1] \frac{(q; q^2)_k^4 (q^2; q^4)_k}{(q^2; q^4)^4_k} q^k \equiv 0 \pmod{[n] \Phi_n(q)^2}.
$$

(1.7)

In this note, we shall give a q-analogue of (1.2) for $p \equiv 1 \pmod{4}$, as a complement to Wang and Yue’s results (1.6) and (1.7).

Theorem 1.1. Let $n > 1$ be an integer with $n \equiv 1 \pmod{4}$. Then

$$
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(q; q^2)_k^4 (q^2; q^4)_k}{(q^2; q^4)^4_k} q^k \equiv \frac{(q^2; q^4)^2_{(n-1)/4}}{(q^4; q^4)^2_{(n-1)/4}} [n] \pmod{[n] \Phi_n(q)^2},
$$

(1.8)

$$
\sum_{k=0}^{n-1} (-1)^k [4k + 1] \frac{(q; q^2)_k^4 (q^2; q^4)_k}{(q^2; q^4)^4_k} q^k \equiv \frac{(q^2; q^4)^2_{(n-1)/4}}{(q^4; q^4)^2_{(n-1)/4}} [n] \pmod{[n] \Phi_n(q)^2}.
$$

(1.9)

Let $n = p \equiv 1 \pmod{4}$ be a prime and let $q \to 1$. Then (1.8) reduces to

$$
\sum_{k=0}^{(p-1)/2} (-1)^k (4k + 1) \frac{\left(\frac{1}{2}\right)^5_k}{k!^4} \equiv \frac{\left(\frac{1}{2}\right)^2_{(p-1)/4}}{(p^2-1)^2_{(p-1)/4}} p = \left(-\frac{1}{2}/(p-1)/4\right)^2 p \pmod{p^3}.
$$

(1.10)

Note that Van Hamme [26, Theorem 3] proved that

$$
\left(-\frac{1}{2}/(p-1)/4\right) = -\frac{\Gamma_p(\frac{1}{4})^2}{\Gamma_p(\frac{3}{4})} \pmod{p^2}.
$$

(1.11)

Since $\Gamma_p(\frac{3}{2}) = -1$ for $p \equiv 1 \pmod{4}$, by the aforementioned identity $\Gamma_p(\frac{1}{4})^4 \Gamma_p(\frac{3}{4})^4 = 1$, we see that the supercongruence (1.10) is just (1.2) for $p \equiv 1 \pmod{4}$. This means that (1.8) (or (1.9)) is indeed a q-analogue of the (A.2) supercongruence of Van Hamme for $p \equiv 1 \pmod{4}$.

The paper is organized as follows. We shall prove Theorem 1.1 in the next section. A generalization of Theorem 1.1 will be given in Section 3. Finally, in Section 4, we shall propose a related conjecture on supercongruences.

2. Proof of Theorem 1.1

The following easily proved result (see [10, Lemma 3.1]) will be used in our proof.
Lemma 2.1. Let \(n \) be a positive odd integer. Then, for \(0 \leq k \leq (n-1)/2 \), we have
\[
\frac{(aq; q^2)_{(n-1)/2-k}}{(q^2/a; q^2)_{(n-1)/2-k}} \equiv (-a)^{(n-1)/2-2k} \frac{(aq; q^2)^{k}}{(q^2/a; q^2)^{k}} q^{(n-1)/4 + k} \pmod{\Phi_n(q)}.
\]

Following Gasper and Rahman [1], the basic hypergeometric series \(r+1 \phi_r \) is defined as
\[
\sum_{k=0}^{\infty} \frac{(a_1, a_2, \ldots, a_{r+1}; q)_{k} z^k}{(q, b_1, b_2, \ldots, b_r; q)_{k}}.
\]

We will make use of a \(q \)-analogue of Watson’s \(3F_2 \) summation [1, Appendix (II.16)]:
\[
s_7\phi_7 \left[\begin{array}{c} \lambda, q^{\frac{1}{2}}, -q^{\frac{1}{2}}, a, b, c, -c, \lambda q/c^2 \\ \lambda^2, -\lambda^2, \lambda q/a, \lambda q/b, \lambda q/c, -\lambda q/c, c^2 \\ q, -\frac{\lambda q}{ab} \end{array} \right] = \left(\frac{\lambda q, c^2/\lambda; q)_\infty (aq, bq,c_2q/a, c^2q/b, q^2)_\infty}{(\lambda q/a, \lambda q/b, q)_\infty (aq, c^2q, c^2q/ab, q^2)_\infty} \right), \tag{2.1}
\]

where \(\lambda = c(ab/q)^{\frac{1}{2}} \).

We first give the following parametric version of Theorem 1.1.

Theorem 2.2. Let \(n > 1 \) be an integer with \(n \equiv 1 \pmod{4} \). Then, modulo \(\Phi_n(q)(1-aq^n)(a-q^n) \),
\[
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(aq, q/a; q^2)_k(q; q^2)_k(q^2; q^4)_k}{(aq^2, q^2/a; q^2)_k(q^2; q^4)_k(q^4; q^4)_k} q^k \equiv \frac{(q^2; q^4)^2}{(q^4; q^4)^2(n-1)/4}[n]. \tag{2.2}
\]

Proof. For \(a = q^{-n} \) or \(a = q^n \), the left-hand side of (2.2) may be written as
\[
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(aq^{-n}, q^{-1+n}; q^2)_k(q^2; q^4)_k}{(q^{-2+n}, q; q^2)_k(q^2; q^4)_k(q^4; q^4)_k} q^{-n} q^k = s_7\phi_7 \left[\begin{array}{c} q, q^{\frac{1}{2}}, -q^{\frac{1}{2}}, q^{-\frac{1}{2}}, q^{1-n}, q^{-1-n}, q, -q, q, q^2, -q \end{array} \right].
\]

Letting \(q \mapsto q^2, a \mapsto q^{-n}, b \mapsto q^{1+n}, c \mapsto q \) (and so \(\lambda = q \)) in (2.1), we see that the above \(s_7\phi_7 \) summation is equal to
\[
\frac{(q^3; q^3)_\infty (q^{3-n}; q^2)_\infty (q^3; q^4)_\infty}{(q^{2+n}; q^2)_\infty (q^3; q^4)_\infty (q^4; q^4)_\infty} = \frac{(q^2; q^4)^{3-n}_\infty}{(q^{2-n}; q^2)_\infty (q; q^2)_\infty (q^2; q^4)_\infty (q^4; q^4)_\infty} = \frac{(q^2; q^4)^2(n-1)/4}[n].
\]

This proves that the \(q \)-congruence (2.2) holds modulo \(1-aq^n \) or \(a-q^n \). On the other hand, by Lemma 2.1 it is easy to check that the \(k \)-th summand and \(((n-1)/2-k) \)-th summand cancel each other modulo \(\Phi_n(q) \) for any odd \(n \). It follows that
\[
\sum_{k=0}^{(n-1)/2} (-1)^k [4k + 1] \frac{(aq, q/a; q^2)_k(q; q^2)_k(q^2; q^4)_k}{(aq^2, q^2/a; q^2)_k(q^2; q^4)_k(q^4; q^4)_k} q^k \equiv 0 \pmod{\Phi_n(q)}. \tag{2.3}
\]
(for a more general form, see Wang and Yue [29, Lemma 2.2]). Since \([n] \equiv 0 \pmod{\Phi_n(q)} \) for \(n > 1 \), we have proved that the \(q \)-congruence (2.2) also holds modulo \(\Phi_n(q) \). Noticing that \(1 - aq^n \), \(a - q^n \) and \(\Phi_n(q) \) are pairwise relatively prime polynomials in \(q \), we finish the proof of the theorem. \(\square \)

Proof of Theorem 1.1. The limits of the denominators on both sides of (2.2) as \(a \to 1 \) are relatively prime to \(\Phi_n(q) \), since \(0 \leq k \leq (n - 1)/2 \). On the other hand, the limit of \((1 - aq^n)(a - q^n) \) as \(a \to 1 \) contains the factor \(\Phi_n(q)^2 \). Therefore, the limiting case \(a \to 1 \) of (2.2) leads to the following congruence

\[
\sum_{k=0}^{(n-1)/2} (-1)^k[4k + 1] \left(\frac{q^2}{q^2} \right)_k^4 \left(\frac{q^4}{q^4} \right)_k \equiv \left(\frac{q^4}{q^4} \right)_{(n-1)/4}^2 \pmod{n} \quad \text{(mod } \Phi_n(q)^3), \tag{2.4}
\]

which also means that

\[
\sum_{k=0}^{n-1} (-1)^k[4k + 1] \left(\frac{q^2}{q^2} \right)_k^4 \left(\frac{q^4}{q^4} \right)_k \equiv \left(\frac{q^4}{q^4} \right)_{(n-1)/4}^2 \pmod{n} \quad \text{(mod } \Phi_n(q)^3), \tag{2.5}
\]

since \((q^2; q^2)_k^4 ((q^2; q^2)_k^4 (q^4; q^4)_k) \equiv 0 \pmod{\Phi_n(q)^5} \) for \(k \) in the range \((n - 1)/2 < k \leq n - 1\). It remains to show that the above two congruences also hold modulo \([n]\), i.e.,

\[
\sum_{k=0}^{(n-1)/2} (-1)^k[4k + 1] \left(\frac{q^2}{q^2} \right)_k^4 \left(\frac{q^4}{q^4} \right)_k \equiv 0 \pmod{n}, \tag{2.6}
\]

\[
\sum_{k=0}^{n-1} (-1)^k[4k + 1] \left(\frac{q^2}{q^2} \right)_k^4 \left(\frac{q^4}{q^4} \right)_k \equiv 0 \pmod{n}. \tag{2.7}
\]

For \(n > 1 \), let \(\zeta \neq 1 \) be an \(n \)-th root of unity, perhaps not primitive. Namely, \(\zeta \) is a primitive root of unity of odd degree \(d \) with \(d \mid n \). Let \(c_q(k) \) stand for the \(k \)-th term on the left-hand side of the congruences (2.6) and (2.7), i.e.,

\[
c_q(k) = (-1)^k[4k + 1] \left(\frac{q^2}{q^2} \right)_k^4 \left(\frac{q^4}{q^4} \right)_k q^k .
\]

Note that (2.3) holds for any odd \(n > 1 \). Thus, letting \(a \to 1 \) and \(n = d \) in (2.3) yields

\[
\sum_{k=0}^{(d-1)/2} c_\zeta(k) = \sum_{k=0}^{d-1} c_\zeta(k) = 0.
\]

Observing that

\[
\frac{c_\zeta(\ell d + k)}{c_\zeta(\ell d)} = \lim_{q \to \zeta} \frac{c_q(\ell d + k)}{c_q(\ell d)} = c_\zeta(k),
\]
we have
\[\sum_{k=0}^{n-1} c_\zeta(k) = \sum_{\ell=0}^{n/d-1} \sum_{k=0}^{d-1} c_\zeta(\ell d + k) = \sum_{\ell=0}^{n/d-1} c_\zeta(\ell d) \sum_{k=0}^{d-1} c(k) = 0, \]
and
\[\sum_{k=0}^{(n-1)/2} c_\zeta(k) = \sum_{\ell=0}^{(n/d-3)/2} c_\zeta(\ell d) \sum_{k=0}^{d-1} c(k) + \sum_{k=0}^{(d-1)/2} c((n - d)/2 + k) = 0. \]
This implies that the sums \(\sum_{k=0}^{n-1} c_\zeta(k) \) and \(\sum_{k=0}^{(n-1)/2} c_\zeta(k) \) are both divisible \(\Phi_d(q) \). Since each cyclotomic polynomial \(\Phi_d(q) \) is irreducible in \(\mathbb{Z}[q] \), we conclude that they are divisible by
\[\prod_{d|n, d>1} \Phi_d(q) = [n], \]
thus establishing (2.6) and (2.7).

3. A generalization of Theorem 1.1

Wang and Yue [29] observed that, for \(d, n > 1 \) with \(n \equiv 1 \pmod{d} \),
\[\sum_{k=0}^{(n-1)/d} (-1)^k [2dk + 1] \frac{(q; q^d)_k^2(aq, q/a; q^d)_k(q^d; q^{2d})_k}{(q^d; q^d)_k^2(q^d/a, qa; q^d)_k(q^d+a; q^d)_k(q^{d+2}; q^{2d})_k} \equiv 0 \pmod{\Phi_n(q)}. \tag{3.1} \]
They further proved that, for \(d, n > 1 \) with \(n \equiv d + 1 \pmod{2d} \),
\[\sum_{k=0}^{(n-1)/d} (-1)^k [2dk + 1] \frac{(q; q^d)_k^4(q^d; q^{2d})_k}{(q^d; q^d)_k^4(q^d+2; q^{2d})_k} \equiv 0 \pmod{\Phi_n(q)^3}. \tag{3.2} \]
In this section, we shall give a \(q \)-congruence on the left-hand side of (3.2) for \(n \equiv 1 \pmod{2d} \), which is also a generalization of the \(q \)-congruence (1.8) modulo \(\Phi_n(q)^3 \).

Theorem 3.1. Let \(d, n > 1 \) be integers with \(n \equiv 1 \pmod{2d} \). Then
\[\sum_{k=0}^{(n-1)/d} (-1)^k [2dk + 1] \frac{(aq; q^d)_k(q^d+a; q^d)_k(q^d; q^{2d})_k}{(aq^2, q^d+a; q^d+a)_k(q^d+2; q^{2d})_k(q^d+a; q^d)_k(q^d+2+a; q^{2d})_k} \equiv \frac{(q^2, q^d, q^{2d})(n-1)/2d}{(q^{d+2}, q^{2d}, q^{2d})(n-1)/2d} [n] \pmod{\Phi_n(q)^3}. \tag{3.3} \]

Proof. We first establish the following parametric generalization of (3.3):
\[\sum_{k=0}^{(n-1)/d} (-1)^k [2dk + 1] \frac{(aq, q/a; q^d)_k(q^2; q^{2d})_k}{(aq^2, q^2/a; q^2)_k(q^d+2; q^{2d})_k(q^2; q^{2d})_k} \equiv \frac{(q^2, q^2; q^{2d})(n-1)/2d}{(q^{d+2}, q^{2d}, q^{2d})(n-1)/2d} [n] \pmod{\Phi_n(q)(1 - aq^n)(a - q^n)}. \tag{3.4} \]
Since Wang and Yue [29] have proved (3.1), it remains to show that the above q-congruence holds modulo $(1-aq^n)(a-q^n)$, or equivalently, both sides of (3.4) are equal when $a = q^{-n}$ or $a = q^n$. But this immediately follows from (2.1) by setting $q \mapsto q^d$, $a \mapsto q^{1-n}$, $b \mapsto q^{1+n}$, $c \mapsto q^{d/2}$ (and so $\lambda = q$) and noticing that

\[
\frac{(q^{d+1}, q^{d_1-n}, q^{d+1+n}, q^{2d-1-n}, q^{2d-1+n}, q^{2d})}{(q^{d-n}, q^{d+n}, q^{2d-2d}; q^{2d})} = \frac{(q^{d+1}, q^{d_1-n}, q^{2d-1-n}, q^{2d})}{(q^{d-n}, q^{d_1-n}, q^{2d})}\frac{(q^{d+1}, q^{d_1-n}, q^{2d-1-n}, q^{2d})}{(q^{d-n}, q^{d_1-n}, q^{2d})}
\]

Letting $n \equiv 1$ in (3.4).

\[
\frac{(q^{d+1}, q^{d_1-n}, q^{d+1+n}, q^{2d-1-n}, q^{2d-1+n}, q^{2d})}{(q^{d-n}, q^{d+n}, q^{2d-2d}; q^{2d})} = \frac{(q^{d+1}, q^{d_1-n}, q^{2d-1-n}, q^{2d})}{(q^{d-n}, q^{d_1-n}, q^{2d})}[n].
\]

The proof of (3.3) then follows by letting $a \to 1$ in (3.4).

We point out that (3.3) also holds for $d = 1$, since both sides are equal in this case.

Letting n be an odd prime power and $q \to 1$ in Theorem 3.1, we obtain the following generalization of the supercongruence (1.2) for $p \equiv 1 \pmod{4}$.

Corollary 3.2. Let $d > 1$ be an integer. Let p be an odd prime and let $r \geq 1$ with $p^r \equiv 1 \pmod{2d}$. Then

\[
\sum_{k=0}^{(p^r-1)/d} (-1)^k(2dk+1)\left(\frac{1}{2}\right)^k\frac{(\frac{1}{2})}{K_{k+1}(\frac{1}{2})} \equiv \frac{(1)}{2^{(p^r-1)/2d}}(\frac{1}{2})^{(p^r-1)/2d}p^{r^2} \pmod{p^3}.
\]

4. An open problem

Swisher [25] has proposed many amazing general Van Hamme-type conjectures. For instance, she [25, (A.3)] conjectured that

\[
\sum_{k=0}^{(p^r-1)/2} (-1)^k(4k+1)\left(\frac{1}{2}\right)^k\frac{(\frac{1}{2})}{K_{k+1}(\frac{1}{2})} \equiv \begin{cases} -p!\Gamma_p \left(\frac{1}{4}\right)^{p^r-1/2} \sum_{k=0}^{(p^r-2)/2} (-1)^k(4k+1)(\frac{1}{2})^k \pmod{p^5r}, & p \equiv 1 \pmod{4}, \ r \geq 1, \\
p! \sum_{k=0}^{(p^r-2)/2} (-1)^k(4k+1)(\frac{1}{2})^k \pmod{p^{5r-2}}, & p \equiv 3 \pmod{4} \ r \geq 2, \end{cases}
\]

where $p > 5$ if $p \equiv 1 \pmod{4}$.

Motivated by the above conjecture of Swisher, we shall put forward the following supercongruence conjecture.
Conjecture 4.1. We have

\[
\sum_{k=0}^{p^r-1} (-1)^k (4k+1) \left(\frac{1}{2}\right)_k \frac{5}{k!^5} \equiv \begin{cases} \\
-p \Gamma_p \left(\frac{1}{4}\right) 4^{p^r-1-1} \sum_{k=0}^{p^r-2-1} (-1)^k (4k+1) \frac{5}{k!^5} & \text{mod } p^{5r}, \quad p \equiv 1 \pmod{4}, \quad r \geq 1, \\
p^4 \sum_{k=0}^{p^r-2-1} (-1)^k (4k+1) \frac{5}{k!^5} & \text{mod } p^{5r-2}, \quad p \equiv 3 \pmod{4}, \quad r \geq 2,
\end{cases}
\]

(4.1)

where \(p > 5 \) if \(p \equiv 1 \pmod{4} \).

Recently, the author and Zudilin [16, Conjecture 4.1] have proposed a challenging \(q \)-analogue of (4.1) modulo \(p^{3r} \) for \(p \equiv 1 \pmod{4} \).

Note that, letting \(n = p^r \) and \(q \to 1 \) in Theorem 1.1, we obtain the following results: If \(p^r \equiv 1 \pmod{4} \), then

\[
\sum_{k=0}^{(p^r-1)/2} (-1)^k (4k+1) \frac{5}{k!^5} \equiv \left(\frac{(p^r - 1)/2}{p^r - 1}/4\right)^2 \frac{p^r}{2^{p^r-1}} \pmod{p^{r+2}},
\]

\[
\sum_{k=0}^{p^r-1} (-1)^k (4k+1) \frac{5}{k!^5} \equiv \left(\frac{(p^r - 1)/2}{p^r - 1}/4\right)^2 \frac{p^r}{2^{p^r-1}} \pmod{p^{r+2}}.
\]

Similar supercongruences can be deduced from Wang and Yue’s \(q \)-congruences (1.6) and (1.7) for \(p^r \equiv 3 \pmod{4} \).

Acknowledgment. This work was partially supported by the National Natural Science Foundation of China (grant 11771175).

References

X. Wang and M. Yue, Some \(q \)-supercongruences from Watson’s \(8 \phi 7 \) transformation formula, Results Math. 75 (2020), Art. 71.

X. Wang and M. Yue, A \(q \)-analogue of the (A.2) supercongruence of Van Hamme for any prime \(p \equiv 3 \pmod{4} \), Int. J. Number Theory, in press; https://doi.org/10.1142/S1793042120500694