Some \$q\$-supercongruences from a \$q\$-analogue of Watson's \$_3F_2\$ summation

Journal:	Forum Mathematicum
Manuscript ID	FORUM.2023.0475.R1
Manuscript Type:	Original Research Article
Date Submitted by the Author:	05-Mar-2024
Complete List of Authors:	Guo, Victor; Hangzhou Normal University, School of Mathematics
MSC-Classification -- go to www.ams.org/msc to find your classifications:	33D15, 11A07, 11B65
Keywords:	cyclotomic polynomial, \$q\$-analogue of Watson's \$_3F_2\$ summation, \$q\$-congruences; supercongruences, creative microscoping

Some q-supercongruences from a q-analogue of Watson's ${ }_{3} F_{2}$ summation

Victor J. W. Guo
School of Mathematics, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
jwguo@math.ecnu.edu.cn

Abstract. We give some q-supercongruences from a q-analogue of Watson's ${ }_{3} F_{2}$ summation and the method of "creative microscoping", introduced by the author and Zudilin. These q-supercongruences may be considered as further generalizations of the (A.2) supercongruence of Van Hamme modulo p^{3} or p^{2} for any odd prime p. Meanwhile, we confirm a supercongruence conjecture of Wang and Yue through establishing its q-analogue.

Keywords: cyclotomic polynomial; q-analogue of Watson's ${ }_{3} F_{2}$ summation; q-congruences; supercongruences; creative microscoping

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In 1997, Van Hamme [11, (A.2)] proposed the following conjecture:

$$
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv\left\{\begin{array}{lll}
-\frac{p}{\Gamma_{p}\left(\frac{3}{4}\right)^{4}}\left(\bmod p^{3}\right), & \text { if } p \equiv 1 & (\bmod 4) \tag{1.1}\\
0 \quad\left(\bmod p^{3}\right), & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

where p is an odd prime, $(a)_{k}=a(a+1) \cdots(a+k-1)$ is the rising factorial, and $\Gamma_{p}(x)$ stands for the p-adic Gamma function. Note that the following infinite series

$$
\sum_{k=0}^{\infty}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}}=\frac{2}{\Gamma\left(\frac{3}{4}\right)^{4}},
$$

where $\Gamma(x)$ is the Gamma function, first appeared in Ramanujan's second letter to Hardy on February 27, 1913. The supercongruence (1.1) was confirmed by McCarthy and Osburn [7]. Swisher [9] further proved that (1.1) is true modulo p^{5} for $p \equiv 1(\bmod 4)$ and $p>5$. Later Liu [6] extended the second case of (1.1) to the modulus p^{4} case.

Using the method of 'creative microscoping' introduced in [4] and a q-analogue of Watson's ${ }_{3} F_{2}$ summation (see (1.9)), Wang and Yue [13] and the author [2] gave a q analogue of (1.1) as follows: for odd n, modulo $[n] \Phi_{n}(q)^{2}$,

$$
\sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1] \frac{\left(q ; q^{2}\right)_{k}^{4}\left(q^{2} ; q^{4}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}^{4}\left(q^{4} ; q^{4}\right)_{k}} q^{k} \equiv\left\{\begin{array}{lll}
\frac{\left(q^{2} ; q^{4}\right)_{(n-1) / 4}^{2}}{\left(q^{4} ; q^{4}\right)_{(n-1) / 4}^{2}}[n], & \text { if } n \equiv 1 & (\bmod 4) \tag{1.2}\\
0, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

At the moment we need to familiarize ourselves with the standard q-hypergeometric notation. The q-shifted factorial is defined as $(a ; q)_{0}=1$ and $(a ; q)_{n}=(1-a)(1-a q) \cdots(1-$ $a q^{n-1}$) for $n \geqslant 1$ or $n=\infty$. For simplicity, we also adopt the condensed notation $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$ for $n \geqslant 0$ or $n=\infty$. The q-integer is defined by $[n]=[n]_{q}=\left(1-q^{n}\right) /(1-q)$. Moreover, the n-th cyclotomic polynomial is given by

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity. We refer the reader to $[3,5,8,12,14-17]$ for some other q-supercongruences.

In this paper, we shall give some generalizations of (1.2), where the modulo $[n] \Phi_{n}(q)^{2}$ condition will be substituted with the weaker condition modulo $\Phi_{n}(q)^{3}$ or $\Phi_{n}(q)^{2}$. Our first result can be stated as follows.
Theorem 1.1. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with $\operatorname{gcd}(d, r)=1$. Let n be a positive integer with $n \equiv d+r(\bmod 2 d)$ and $n \geqslant d+r$. Then

$$
\begin{equation*}
\sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r} ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{3}\right) \tag{1.3}
\end{equation*}
$$

Note that the $(d, r)=(2,1)$ case of (1.3) reduces to the second part of (1.2) modulo $\Phi_{n}(q)^{3}$, and the $r=1$ case of (1.3) was first obtained by Wang and Yue [13, Theorem 1.2]. It is easy to see that $\Phi_{n}\left(q^{m}\right)$ is divisible by $\Phi_{m n}(q)$ for all positive integers m and n. Hence, the q-supercongruence (1.3) is also true in the $\operatorname{gcd}(d, r)>1$ case. Letting $n=p^{s}$ be a prime power and $q \rightarrow 1$ in (1.3), we get the following result: for $d \geqslant 2, r, s \geqslant 1$ and any prime p with $p^{s} \equiv d+r(\bmod 2 d)$ and $p^{s} \geqslant d+r$,

$$
\begin{equation*}
\sum_{k=0}^{\left(p^{s}-r\right) / d}(-1)^{k}(2 d k+r) \frac{\left(\frac{r}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2 r}{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod p^{3}\right) \tag{1.4}
\end{equation*}
$$

We shall also establish another two generalizations of the $n \equiv 3(\bmod 4)$ case of (1.2) modulo $\Phi_{n}(q)^{2}$.
Theorem 1.2. Let d and r be positive integers with $\operatorname{gcd}(d, r)=1$ and $d>r$. Let n be a positive integer with $n \equiv-1(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{(d n-r n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r} ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.5}
\end{equation*}
$$

Similarly as before, when n is a prime power, taking $q \rightarrow 1$ in (1.5), we arrive at the following supercongruence: for $1 \leqslant r<d, s \geqslant 1$ and any prime p with and $p^{s} \equiv-1$ $(\bmod 2 d)$,

$$
\sum_{k=0}^{\left(d p^{s}-r p^{s}-r\right) / d}(-1)^{k}(2 d k+r) \frac{\left(\frac{r}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2 r}{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Theorem 1.3. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with r odd and $\operatorname{gcd}(d, r)=1$. Let $n>1$ be an integer with $n \equiv-r(\bmod 2 d)$ and $d n>n+r$. Then

$$
\begin{equation*}
\sum_{k=0}^{(d n-n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r} ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.6}
\end{equation*}
$$

Likewise, the q-supercongruence (1.6) implies the following result: for $d \geqslant 2, r, s \geqslant 1$ and any odd prime p with $p^{s} \equiv-r(\bmod 2 d)$ and $(d-1) p^{s}>r$,

$$
\sum_{k=0}^{\left(d p^{s}-p^{s}-r\right) / d}(-1)^{k}(2 d k+r) \frac{\left(\frac{r}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2 r}{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

The fourth result of this paper is to build a generalization of (1.2) modulo $\Phi_{n}(q)^{3}$ for $n \equiv 1(\bmod 4)$.

Theorem 1.4. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with $\operatorname{gcd}(d, r)=1$. Let n be a positive integer with $n \equiv r(\bmod 2 d)$ and $n>r$. Then

$$
\begin{equation*}
\sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r} ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv \frac{\left(q^{2 r}, q^{d} ; q^{2 d}\right)_{(n-r) /(2 d)}[n]}{\left(q^{d+2 r}, q^{2 d} ; q^{2 d}\right)_{(n-r) /(2 d)}} \quad\left(\bmod \Phi_{n}(q)^{3}\right) \tag{1.7}
\end{equation*}
$$

Note that the $(d, r)=(2,1)$ case of (1.7) is just the first part of (1.2) modulo $\Phi_{n}(q)^{3}$, and the $r=1$ case of (1.7) was already obtained by the author in an earlier paper [2, Theorem 3.1]. Moreover, the q-supercongruence leads to the following result: for $d \geqslant 2$, $r, s \geqslant 1$ and any prime p with $p^{s} \equiv r(\bmod 2 d)$ and $p^{s}>r$,

$$
\sum_{k=0}^{\left(p^{s}-r\right) / d}(-1)^{k}(2 d k+r) \frac{\left(\frac{r}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2 r}{2 d}\right)_{k}} \equiv \frac{\left(\frac{r}{d}\right)_{\left(p^{s}-r\right) /(2 d)}\left(\frac{1}{2}\right)_{\left(p^{s}-r\right) /(2 d)}}{\left(\frac{d+2 r}{2 d}\right)_{\left(p^{s}-r\right) /(2 d)}(1)_{\left(p^{s}-r\right) /(2 d)}} p^{r} \quad\left(\bmod p^{3}\right)
$$

We shall also prove the following generalization of (1.4) for $r=1$, which was originally conjectured by Wang and Yue [13, Conjecture 5.1].
Theorem 1.5. Let $d \geqslant 2$ and $s \geqslant 1$ be integers, and let p be a prime with $p \equiv d+1$ $(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{M}(-1)^{k}(2 d k+1) \frac{\left(\frac{1}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2}{2 d}\right)_{k}} \equiv 0 \quad\left(\bmod p^{s+2}\right) \tag{1.8}
\end{equation*}
$$

where $M=\left(p^{s}-1\right) / d$ or $p^{s}-1$.
Recall that the basic hypergeometric series ${ }_{r+1} \phi_{r}$ with $r+1$ upper parameters a_{1}, \ldots, a_{r+1}, r lower parameters b_{1}, \ldots, b_{r}, base q, and argument z is defined by (see [1]):

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r+1} ; q\right)_{k} z^{k}}{\left(q, b_{1}, \ldots, b_{r} ; q\right)_{k}} .
$$

Then a q-analogue of Watson's ${ }_{3} F_{2}$ summation [1, Appendix (II.16)] can be stated as follows:

$$
\begin{align*}
{ }_{8} \phi_{7} & {\left[\begin{array}{cccccc}
\lambda, & q \lambda^{\frac{1}{2}}, & -q \lambda^{\frac{1}{2}}, & a, & b, & c, \\
\lambda^{\frac{1}{2}}, & -\lambda^{\frac{1}{2}}, & \lambda q / a, & \lambda q / b, & \lambda q / c, & -\lambda, \\
& \lambda q / c, & c^{2} & ; q, & -\frac{\lambda q}{a b}
\end{array}\right] } \\
& =\frac{\left(\lambda q, c^{2} / \lambda ; q\right)_{\infty}\left(a q, b q, c^{2} q / a, c^{2} q / b ; q^{2}\right)_{\infty}}{(\lambda q / a, \lambda q / b ; q)_{\infty}\left(q, a b q, c^{2} q, c^{2} q / a b ; q^{2}\right)_{\infty}}, \tag{1.9}
\end{align*}
$$

where $\lambda=c(a b / q)^{\frac{1}{2}}$.
We shall prove Theorems 1.1-1.4 by employing the creative microscoping method and the q-analogue of Watson's ${ }_{3} F_{2}$ summation (1.9) once more. In order to prove Theorem 1.5 , we shall first establish its q-analogue, which is on the basis of the respective $r=1$ case of Theorems 1.1 and 1.4.

2. Proof of Theorem 1.1

We first build the following parametric version of Theorem 1.1.
Theorem 2.1. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with $\operatorname{gcd}(d, r)=1$. Let n be a positive integer with $n \equiv d+r(\bmod 2 d)$ and $n \geqslant d+r$. Then, modulo $\Phi_{n}(q)\left(1-a q^{n}\right)\left(a-q^{n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(a q^{r}, q^{r} / a ; q\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(a q^{d}, q^{d} / a ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 . \tag{2.1}
\end{equation*}
$$

Proof. For $a=q^{-n}$ or $a=q^{n}$, the left-hand side of (2.1) may be written as

$$
\begin{aligned}
& \sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r-n}, q^{r+n} ; q^{d}\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k}}{\left(q^{d-n}, q^{d+n} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} q^{(d-r) k} \\
& \quad=[r]_{8} \phi_{7}\left[\begin{array}{ccccccc}
q^{r}, & q^{d+\frac{r}{2}}, & -q^{d+\frac{r}{2}}, & q^{r-n}, & q^{r+n}, & q^{r}, & -q^{\frac{d}{2}}, \\
q^{\frac{r}{2}}, & -q^{\frac{r}{2}}, & q^{d+n}, & q^{d-n}, & q^{d} & -q^{\frac{d}{2}+r} & q^{\frac{d}{2}+r} ; q^{d},-q^{d-r}
\end{array}\right],
\end{aligned}
$$

where we have used $\left(q^{r-n} ; q^{d}\right)_{k}=0$ for $k>(n-r) / d$. Letting $q \mapsto q^{d}, a \mapsto q^{r-n}$, $b \mapsto q^{r+n}, c \mapsto q^{\frac{d}{2}}$ (and consequently $\lambda=q^{r}$) in (1.9), we see that the ${ }_{8} \phi_{7}$ summation on the right-hand side equals

$$
\frac{\left(q^{d+r}, q^{d-r} ; q^{d}\right)_{\infty}\left(q^{d+r-n}, q^{d+r+n}, q^{2 d-r+n}, q^{2 d-r-n} ; q^{2 d}\right)_{\infty}}{\left(q^{d+n}, q^{d-n} ; q^{d}\right)_{\infty}\left(q^{d}, q^{d+2 r}, q^{2 d}, q^{2 d-2 r} ; q^{2 d}\right)_{\infty}}=0
$$

since $\left(q^{d+r-n} ; q^{2 d}\right)_{\infty}=0$. This proves that the q-congruence (2.1) holds modulo $1-a q^{n}$ and $a-q^{n}$.

Moreover, performing the substitutions $q \mapsto q^{d}, a \mapsto a q^{r}, b \mapsto q^{r} / a, c=q^{\frac{d}{2}-n}$ (and so $\lambda=q^{r-n}$) in (1.9) and observing that $\left(q^{d+r-n} ; q^{d}\right)_{\infty}=0$, we obtain

$$
\begin{equation*}
\sum_{k=0}^{(n-r) / d}(-1)^{k} \frac{\left(1-q^{2 d k+r-n}\right)\left(a q^{r}, q^{r} / a ; q\right)_{k}\left(q^{r-n}, q^{r+n} ; q^{d}\right)_{k}\left(q^{d-2 n} ; q^{2 d}\right)_{k} q^{(d-r-n) k}}{\left(1-q^{r-n}\right)\left(a q^{d-n}, q^{d-n} / a ; q^{d}\right)_{k}\left(q^{d}, q^{d-2 n} ; q^{d}\right)_{k}\left(q^{d+2 r} ; q^{2 d}\right)_{k}}=0 \tag{2.2}
\end{equation*}
$$

By the condition $\operatorname{gcd}(d, r)=1$ and $n \equiv d+r(\bmod 2 d)$, we have $\operatorname{gcd}(d, n)=1$. Note that $1-q^{N} \equiv 0\left(\bmod \Phi_{n}(q)\right)$ if and only if N is divisible by n. The minimum positive integer k such that $\left(q^{d-2 n} ; q^{d}\right)_{k} \equiv 0\left(\bmod \Phi_{n}(q)\right)$ is n. The minimum k for $\left(q^{d+2 r} ; q^{2 d}\right)_{k} \equiv 0$ $\left(\bmod \Phi_{n}(q)\right)$ is $(d n+2 n-d-2 r) /(2 d)+1$ if n is odd, and does not exist otherwise. This means that the polynomial $\left(q^{d-n} ; q^{d}\right)_{k}\left(q^{d+2 r} ; q^{2 d}\right)_{k}$ is coprime with $\Phi_{n}(q)$ for $0 \leqslant k \leqslant$ $(n-r) / d$ because $0<(n-r) / d \leqslant(d n+2 n-d-2 r) /(2 d)$. Since $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, from (2.2) we deduce that (2.1) is true modulo $\Phi_{n}(q)$.

Noticing that $1-a q^{n}, a-q^{n}$ and $\Phi_{n}(q)$ are pairwise coprime polynomials in q, we complete the proof of the theorem.

Proof of Theorem 1.1. For $a=1$, the denominators on both sides of (2.1) are coprime with $\Phi_{n}(q)$, since $0 \leqslant k \leqslant(n-r) / d$. On the other hand, the polynomial $\left(1-q^{n}\right)^{2}$ contains the factor $\Phi_{n}(q)^{2}$. Thus, taking $a=1$ in (2.1), we immediately get the desired q-congruence (1.3).

3. Proof of Theorem 1.2

Likewise, we first establish the following parametric version of Theorem 1.2.
Theorem 3.1. Let d and r be positive integers with $\operatorname{gcd}(d, r)=1$ and $d>r$. Let n be a positive integer with $n \equiv-1(\bmod 2 d)$. Then, modulo $\left(1-a q^{(d-r) n}\right)\left(a-q^{(d-r) n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(d n-r n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(a q^{r}, q^{r} / a ; q\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(a q^{d}, q^{d} / a ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 . \tag{3.1}
\end{equation*}
$$

Proof. The proof is very similar to that of Theorem 2.1. For $a=q^{-(d-r) n}$ or $a=q^{(d-r) n}$, the left-hand side of (3.1) may be written as

$$
\begin{aligned}
& \sum_{k=0}^{(d n-r n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r-(d-r) n}, q^{r+(d-r) n} ; q^{d}\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k}}{\left(q^{d-(d-r) n}, q^{d+(d-r) n} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} q^{(d-r) k} \\
& \quad=[r]_{8} \phi_{7}\left[\begin{array}{cccccc}
q^{r}, & q^{d+\frac{r}{2}}, & -q^{d+\frac{r}{2}}, & q^{r-(d-r) n}, & q^{r+(d-r) n}, & q^{r}, \\
q^{\frac{r}{2}}, & -q^{\frac{r}{2}}, & q^{d+(d-r) n}, & q^{d-(d-r) n}, & q^{d} & -q^{\frac{d}{2}+r}, \\
q^{\frac{d}{2}} & q^{\frac{d}{2}+r} ; q^{d},-q^{d-r}
\end{array}\right],
\end{aligned}
$$

Letting $q \mapsto q^{d}, a \mapsto q^{r-(d-r) n}, b \mapsto q^{r+(d-r) n}, c \mapsto q^{\frac{d}{2}}$ (and consequently $\lambda=q^{r}$) in (1.9), we see that the ${ }_{8} \phi_{7}$ summation on the right-hand side equals

$$
\frac{\left(q^{d+r}, q^{d-r} ; q^{d}\right)_{\infty}\left(q^{d+r-(d-r) n}, q^{d+r+(d-r) n}, q^{2 d-r+(d-r) n}, q^{2 d-r-(d-r) n} ; q^{2 d}\right)_{\infty}}{\left(q^{d+(d-r) n}, q^{d-(d-r) n} ; q^{d}\right)_{\infty}\left(q^{d}, q^{d+2 r}, q^{2 d}, q^{2 d-2 r} ; q^{2 d}\right)_{\infty}}=0
$$

since $\left(q^{d+r-(d-r) n} ; q^{2 d}\right)_{\infty}=0$. This proves that the q-congruence (3.1) holds modulo $1-a q^{(d-r) n}$ and $a-q^{(d-r) n}$.

Proof of Theorem 1.2. For $a=1$, the denominators on both sides of (3.1) are coprime with $\Phi_{n}(q)$, since $0 \leqslant k \leqslant(d n-r n-r) / d$. Moreover, the polynomial $\left(1-q^{(d-r) n}\right)^{2}$ has the factor $\Phi_{n}(q)^{2}$. Thus, taking $a=1$ in (3.1), we obtain the desired q-congruence (1.5).

4. Proof of Theorem 1.3

We need to establish the following parametric version of Theorem 1.3.
Theorem 4.1. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with r odd and $\operatorname{gcd}(d, r)=1$. Let $n>1$ be an integer with $n \equiv-r(\bmod 2 d)$ and $d n>n+r$. Then, modulo $\left(1-a q^{(d-1) n}\right)\left(a-q^{(d-1) n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(d n-n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(a q^{r}, q^{r} / a ; q\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(a q^{d}, q^{d} / a ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv 0 . \tag{4.1}
\end{equation*}
$$

Proof. Similarly as before, for $a=q^{-(d-1) n}$ or $a=q^{(d-1) n}$, the left-hand side of (4.1) may be written as

$$
\begin{aligned}
& \sum_{k=0}^{(d n-n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r-(d-1) n}, q^{r+(d+1) n} ; q^{d}\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k}}{\left(q^{d-(d-1) n}, q^{d+(d+1) n} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} q^{(d-r) k} \\
& \quad=[r]_{8} \phi_{7}\left[\begin{array}{cccccc}
q^{r}, & q^{d+\frac{r}{2}}, & -q^{d+\frac{r}{2}}, & q^{r-(d-1) n}, & q^{r+(d-1) n}, & q^{r}, \\
q^{\frac{r}{2}}, & -q^{\frac{r}{2}}, & q^{d+(d-1) n}, & q^{\frac{d}{2}}, & q^{\frac{d}{2}} ; q^{d},-q^{d-r} \\
\hline
\end{array}\right],
\end{aligned}
$$

Letting $q \mapsto q^{d}, a \mapsto q^{r-(d-1) n}, b \mapsto q^{r+(d-1) n}, c \mapsto q^{\frac{d}{2}}$ (and so $\lambda=q^{r}$) in (1.9), we see that the ${ }_{8} \phi_{7}$ summation on the right-hand side becomes

$$
\frac{\left(q^{d+r}, q^{d-r} ; q^{d}\right)_{\infty}\left(q^{d+r-(d-1) n}, q^{d+r+(d-1) n}, q^{2 d-r+(d-1) n}, q^{2 d-r-(d-1) n} ; q^{2 d}\right)_{\infty}}{\left(q^{d+(d-1) n}, q^{d-(d-1) n} ; q^{d}\right)_{\infty}\left(q^{d}, q^{d+2 r}, q^{2 d}, q^{2 d-2 r} ; q^{2 d}\right)_{\infty}}=0
$$

since $\left(q^{d+r-(d-1) n} ; q^{2 d}\right)_{\infty}=0$. This proves that the q-congruence (4.1) holds modulo $1-a q^{(d-1) n}$ and $a-q^{(d-1) n}$.

Proof of Theorem 1.2. Putting $a=1$ in (4.1), we are led to the desired q-congruence (1.6).

5. Proof of Theorem 1.4

We first build the following parametric version of Theorem 1.4.
Theorem 5.1. Let $d \geqslant 2$ and $r \geqslant 1$ be integers with $\operatorname{gcd}(d, r)=1$. Let n be a positive integer with $n \equiv r(\bmod 2 d)$ and $n>r$. Then, modulo $\Phi_{n}(q)\left(1-a q^{n}\right)\left(a-q^{n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(a q^{r}, q^{r} / a ; q\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-r) k}}{\left(a q^{d}, q^{d} / a ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} \equiv \frac{\left(q^{2 r}, q^{d} ; q^{2 d}\right)_{(n-r) /(2 d)}[n]}{\left(q^{d+2 r}, q^{2 d} ; q^{2 d}\right)_{(n-r) /(2 d)}} \tag{5.1}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem (2.1). For $a=q^{-n}$ or $a=q^{n}$, the left-hand side of (5.1) may be written as

$$
\begin{align*}
& \sum_{k=0}^{(n-r) / d}(-1)^{k}[2 d k+r] \frac{\left(q^{r-n}, q^{r+n} ; q^{d}\right)_{k}\left(q^{r} ; q^{d}\right)_{k}^{2}\left(q^{d} ; q^{2 d}\right)_{k}}{\left(q^{d-n}, q^{d+n} ; q^{d}\right)_{k}\left(q^{d} ; q^{d}\right)_{k}^{2}\left(q^{d+2 r} ; q^{2 d}\right)_{k}} q^{(d-r) k} \\
& \quad=[r]_{8} \phi_{7}\left[\begin{array}{ccccccc}
q^{r}, & q^{d+\frac{r}{2}}, & -q^{d+\frac{r}{2}}, & q^{r-n}, & q^{r+n}, & q^{r}, & -q^{\frac{d}{2}}, \\
q^{\frac{r}{2}}, & -q^{\frac{r}{2}}, & q^{d+n}, & q^{d-n}, & q^{d} & -q^{\frac{d}{2}+r}, & q^{\frac{d}{2}+r} ; q^{d},-q^{d-r}
\end{array}\right] . \tag{5.2}
\end{align*}
$$

Letting $q \mapsto q^{d}, a \mapsto q^{r-n}, b \mapsto q^{r+n}, c \mapsto q^{\frac{d}{2}}$ (and consequently $\lambda=q^{r}$) in (1.9), we see that the right-hand side of (5.2) equals

$$
\begin{aligned}
{[r] } & \frac{\left(q^{d+r}, q^{d-r} ; q^{d}\right)_{\infty}\left(q^{d+r-n}, q^{d+r+n}, q^{2 d-r+n}, q^{2 d-r-n} ; q^{2 d}\right)_{\infty}}{\left(q^{d+n}, q^{d-n} ; q^{d}\right)_{\infty}\left(q^{d}, q^{d+2 r}, q^{2 d}, q^{2 d-2 r} ; q^{2 d}\right)_{\infty}} \\
& =[r] \frac{\left(q^{d+r} ; q^{d}\right)_{(n-r) / d}\left(q^{d+r-n}, q^{2 d-r-n} ; q^{2 d}\right)_{(n-r) /(2 d)}}{\left(q^{d-n} ; q^{d}\right)_{(n-r) / d}\left(q^{d+2 r}, q^{2 d} ; q^{2 d}\right)_{(n-r) /(2 d)}} \\
& =\frac{\left(q^{2 r}, q^{d} ; q^{2 d}\right)_{(n-r) /(2 d)}}{\left(q^{d+2 r}, q^{2 d} ; q^{2 d}\right)_{(n-r) /(2 d)}}[n] .
\end{aligned}
$$

This proves that the q-congruence (5.1) holds modulo $1-a q^{n}$ and $a-q^{n}$.
Moreover, the identity (2.2) still holds for $n \equiv r(\bmod 2 d)$ and $n>r$. It follows that the left-hand side of (5.1) is congruent to 0 modulo $\Phi_{n}(q)$. On the other hand, it is easy to see that the right-hand side of (5.1) is also congruent to 0 modulo $\Phi_{n}(q)$. This means that the q-congruence (5.1) holds modulo $\Phi_{n}(q)$.

Proof of Theorem 1.4. Letting $a=1$ in (5.1), we arrive at the q-congruence (1.7).

6. Proof of Theorem 1.5

We first give the following q-supercongruence.

Theorem 6.1. Let $d, n \geqslant 2$ and $s \geqslant 1$ be integers with d even and $n \equiv d+1(\bmod 2 d)$. Then, modulo $\Phi_{n^{s}}(q)^{2} \prod_{j=1}^{s} \Phi_{n^{j}}(q)$,

$$
\sum_{k=0}^{M}(-1)^{k}[2 d k+1] \frac{\left(q ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-1) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2} ; q^{2 d}\right)_{k}} \equiv \begin{cases}0, & \text { if } s \text { is odd }, \tag{6.1}\\ \frac{\left(q^{2}, q^{d} ; q^{2 d}\right)_{\left(n^{s}-1\right) /(2 d)}}{\left(q^{d+2}, q^{2 d} ; q^{2 d}\right)_{\left(n^{s}-1\right) /(2 d)}}\left[n^{s}\right], & \text { if } s \text { is even } .\end{cases}
$$

where $M=\left(n^{s}-1\right) / d$ or $n^{s}-1$.
Proof. Since d is even and $n \equiv d+1(\bmod 2 d)$, we know that $n^{s} \equiv d+1(\bmod 2 d)$ if s is odd, and $n^{s} \equiv 1(\bmod 2 d)$ if s is even. By the respective $r=1$ case of Theorems 1.1 and 1.4, the q-supercongruence (6.1) is true modulo $\Phi_{n^{s}}(q)^{3}$ for $M=\left(n^{s}-1\right) / d$. Moreover, for $\left(n^{s}-1\right) / d<k \leqslant n^{s}-1$, the q-shifted factorial $\left(q ; q^{d}\right)_{k}$ is divisible by $\Phi_{n^{s}}(q)$, and $\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2} ; q^{2 d}\right)_{k}$ cannot be divisible by $\Phi_{n^{s}}(q)^{2}$, and therefore the k-th summand on the left-hand side of (6.1) is congruent to 0 modulo $\Phi_{n^{s}}(q)^{3}$. Thus, the q-supercongruence (6.1) is also true modulo $\Phi_{n^{s}}(q)^{3}$ for $M=n^{s}-1$.

We now assume that $s \geqslant 2$ and $1 \leqslant j \leqslant s-1$. Let ζ denote an n^{j}-th primitive root of unity, and let $c_{q}(k)$ be the k-th summand on the left-hand side of (6.1), ie.,

$$
c_{q}(k)=(-1)^{k}[2 d k+1] \frac{\left(q ; q^{d}\right)_{k}^{4}\left(q^{d} ; q^{2 d}\right)_{k} q^{(d-1) k}}{\left(q^{d} ; q^{d}\right)_{k}^{4}\left(q^{d+2} ; q^{2 d}\right)_{k}}
$$

Then the q-supercongruence (6.1) modulo $\Phi_{n}(q)$ for $s=j$ indicates that

$$
\sum_{k=0}^{\left(n^{j}-1\right) / d} c_{\zeta}(k)=\sum_{k=0}^{n^{j}-1} c_{\zeta}(k)=0
$$

Observing that, for any non-negative integer ℓ,

$$
\frac{c_{\zeta}\left(\ell n^{j}+k\right)}{c_{\zeta}\left(\ln ^{j}\right)}=\lim _{q \rightarrow \zeta} \frac{c_{q}\left(\ell n^{j}+k\right)}{c_{q}\left(\ell n^{j}\right)}=c_{\zeta}(k),
$$

we get

$$
\begin{aligned}
\sum_{k=0}^{\left(n^{s}-1\right) / d} c_{\zeta}(k) & =\sum_{\ell=0}^{\left(n^{s-j}-1\right) / d-1} \sum_{k=0}^{n^{j}-1} c_{\zeta}\left(\ell n^{j}+k\right)+\sum_{k=0}^{\left(n^{j}-1\right) / d} c_{\zeta}\left(\left(n^{s}-n^{j}\right) / d+k\right) \\
& =\sum_{\ell=0}^{\left(n^{s-j}-1\right) / d-1} c_{\zeta}\left(\ell n^{j}\right) \sum_{k=0}^{n^{j}-1} c_{\zeta}(k)+c_{\zeta}\left(\left(n^{s}-n^{j}\right) / d\right) \sum_{k=0}^{\left(n^{j}-1\right) / d} c_{\zeta}(k) \\
& =0,
\end{aligned}
$$

and

$$
\sum_{k=0}^{n^{s}-1} c_{\zeta}(k)=\sum_{\ell=0}^{n^{s-j}-1} \sum_{k=0}^{n^{j}-1} c_{\zeta}\left(\ell n^{j}+k\right)=\sum_{\ell=0}^{n^{s-j}-1} c_{\zeta}\left(\ell n^{j}\right) \sum_{k=0}^{n^{j}-1} c_{\zeta}(k)=0 .
$$

This means that, for $M=\left(n^{s}-1\right) / d$ and $n^{s}-1$, the sum $\sum_{k=0}^{M} c_{q}(k)$ is congruent to 0 modulo $\Phi_{n^{j}}(q)$. It is well known that each $\Phi_{n^{j}}(q)$ is an irreducible polynomial in $\mathbb{Z}[q]$, we conclude that the q-congruence (6.1) holds.

We are now able to prove Theorem 1.5.
Proof of Theorem 1.5. It is easy to see that $\Phi_{m}(1)=1$ if m has at least two distinct prime factors, and $\Phi_{p^{r}}(1)=p$. Moreover, the denominators on the left-hand side of (6.1) are products of cyclotomic polynomials coprime with $\Phi_{n^{j}}(q)$ for integers $j>s$. So is the denominator on the right-hand side of (6.1). Thus, letting $n=p$ be a prime and $q \rightarrow 1$ in (6.1), we obtain

$$
\begin{align*}
& \sum_{k=0}^{M}(-1)^{k}(2 d k+1) \frac{\left(\frac{1}{d}\right)_{k}^{4}\left(\frac{1}{2}\right)_{k}}{k!^{4}\left(\frac{d+2}{2 d}\right)_{k}} \\
& \equiv\left\{\begin{array}{ll}
0, & \text { if } s \text { is odd, } \\
\frac{\left(\frac{1}{d}\right)_{\left(p^{s}-1\right) /(2 d)}\left(\frac{1}{2}\right)_{\left(p^{s}-1\right) /(2 d)}}{\left(\frac{d+2}{2 d}\right)_{\left(p^{s}-1\right) /(2 d)}(1)_{\left(p^{s}-1\right) /(2 d)},} & \text { if } s \text { is even, }
\end{array} \quad\left(\bmod p^{s+2}\right),\right. \tag{6.2}
\end{align*}
$$

where $M=\left(p^{s}-1\right) / d$ or $p^{s}-1$. It is easy to see that, for $s \geqslant 2$,

$$
\frac{\left(\frac{1}{d}\right)_{\left(p^{s}-1\right) /(2 d)}}{\left(\frac{d+2}{2 d}\right)_{\left(p^{s}-1\right) /(2 d)}} \equiv \frac{\left(\frac{1}{2}\right)_{\left(p^{s}-1\right) /(2 d)}}{(1)_{\left(p^{s}-1\right) /(2 d)}} \equiv 0 \quad(\bmod p)
$$

Substituting the above congruences into (6.2), we are led to (1.8).

References

[1] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[2] V.J.W. Guo, A q-analogue of the (A.2) supercongruence of Van Hamme for primes $p \equiv 1$ (mod 4), Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. RACSAM 114 (2020), Art. 123.
[3] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[4] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[5] H. He and X. Wang, Some congruences that extend Van Hamme's (D.2) supercongruence, J. Math. Anal. Appl. 527 (2023), Art. 127344.
[6] J.-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471 (2019), 613-622.
[7] D. McCarthy and R. Osburn, A p-adic analogue of a formula of Ramanujan, Arch. Math. 91 (2008), 492-504.
[8] N. Tang, A new q-supercongruence modulo the fourth power of a cyclotomic polynomial, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. RACSAM 117 (2023), Art. 101.
[9] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015), Art. 18.
[10] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, in: Proceedings of the Conference on p-Adic Analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, 1986, pp. 189-195,
[11] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[12] X. Wang and C. Xu, q-Supercongruences on triple and quadruple sums, Results Math. 78 (2023), Art. 27.
[13] X. Wang and M. Yue, A q-analogue of the (A.2) supercongruence of Van Hamme for any prime $p \equiv 3(\bmod 4)$, Int. J. Number Theory 16 (2020), 1325-1335.
[14] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory Ser. A 182 (2021), Art. 105469.
[15] C. Wei, q-Supercongruences from Gasper and Rahman's summation formula, Adv. Appl. Math. 139 (2022), Art. 102376.
[16] C. Wei, A q-supercongruence from a q-analogue of Whipple's ${ }_{3} F_{2}$ summation formula, J. Combin. Theory Ser. A 194 (2023), Art. 105705.
[17] C. Wei, q-Supercongruences from Jacksons ${ }_{8} \phi_{7}$ summation and Watson's ${ }_{8} \phi_{7}$ transformation, J. Combin. Theory Ser. A 204 (2024), Art. 105853.

We have revised the paper according the referee's suggestions.
All of his suggestions are taken into account.

