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Abstract. We give some q-supercongruences from a q-analogue of Watson’s 3F2 summa-
tion and the method of “creative microscoping”, introduced by the author and Zudilin.
These q-supercongruences may be considered as further generalizations of the (A.2) super-
congruence of Van Hamme modulo p3 or p2 for any odd prime p. Meanwhile, we confirm
a supercongruence conjecture of Wang and Yue through establishing its q-analogue.
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AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

In 1997, Van Hamme [11, (A.2)] proposed the following conjecture:

(p−1)/2∑
k=0

(−1)k(4k + 1)
(1
2
)5k

k!5
≡

−
p

Γp(
3
4
)4

(mod p3), if p ≡ 1 (mod 4),

0 (mod p3), if p ≡ 3 (mod 4).
(1.1)

where p is an odd prime, (a)k = a(a + 1) · · · (a + k − 1) is the rising factorial, and Γp(x)
stands for the p-adic Gamma function. Note that the following infinite series

∞∑
k=0

(−1)k(4k + 1)
(1
2
)5k

k!5
=

2

Γ(3
4
)4
,

where Γ(x) is the Gamma function, first appeared in Ramanujan’s second letter to Hardy
on February 27, 1913. The supercongruence (1.1) was confirmed by McCarthy and Os-
burn [7]. Swisher [9] further proved that (1.1) is true modulo p5 for p ≡ 1 (mod 4) and
p > 5. Later Liu [6] extended the second case of (1.1) to the modulus p4 case.

Using the method of ‘creative microscoping’ introduced in [4] and a q-analogue of
Watson’s 3F2 summation (see (1.9)), Wang and Yue [13] and the author [2] gave a q-
analogue of (1.1) as follows: for odd n, modulo [n]Φn(q)2,

(n−1)/2∑
k=0

(−1)k[4k + 1]
(q; q2)4k(q

2; q4)k
(q2; q2)4k(q

4; q4)k
qk ≡


(q2; q4)2(n−1)/4
(q4; q4)2(n−1)/4

[n], if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(1.2)
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At the moment we need to familiarize ourselves with the standard q-hypergeometric nota-
tion. The q-shifted factorial is defined as (a; q)0 = 1 and (a; q)n = (1− a)(1− aq) · · · (1−
aqn−1) for n > 1 or n = ∞. For simplicity, we also adopt the condensed notation
(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n for n > 0 or n = ∞. The q-integer is
defined by [n] = [n]q = (1 − qn)/(1 − q). Moreover, the n-th cyclotomic polynomial is
given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. We refer the reader to [3, 5, 8, 12, 14–17] for
some other q-supercongruences.

In this paper, we shall give some generalizations of (1.2), where the modulo [n]Φn(q)2

condition will be substituted with the weaker condition modulo Φn(q)3 or Φn(q)2. Our
first result can be stated as follows.

Theorem 1.1. Let d > 2 and r > 1 be integers with gcd(d, r) = 1. Let n be a positive
integer with n ≡ d+ r (mod 2d) and n > d+ r. Then

(n−r)/d∑
k=0

(−1)k[2dk + r]
(qr; qd)4k(q

d; q2d)kq
(d−r)k

(qd; qd)4k(q
d+2r; q2d)k

≡ 0 (mod Φn(q)3). (1.3)

Note that the (d, r) = (2, 1) case of (1.3) reduces to the second part of (1.2) modulo
Φn(q)3, and the r = 1 case of (1.3) was first obtained by Wang and Yue [13, Theorem
1.2]. It is easy to see that Φn(qm) is divisible by Φmn(q) for all positive integers m and n.
Hence, the q-supercongruence (1.3) is also true in the gcd(d, r) > 1 case. Letting n = ps

be a prime power and q → 1 in (1.3), we get the following result: for d > 2, r, s > 1 and
any prime p with ps ≡ d+ r (mod 2d) and ps > d+ r,

(ps−r)/d∑
k=0

(−1)k(2dk + r)
( r
d
)4k(

1
2
)k

k!4(d+2r
2d

)k
≡ 0 (mod p3). (1.4)

We shall also establish another two generalizations of the n ≡ 3 (mod 4) case of (1.2)
modulo Φn(q)2.

Theorem 1.2. Let d and r be positive integers with gcd(d, r) = 1 and d > r. Let n be a
positive integer with n ≡ −1 (mod 2d). Then

(dn−rn−r)/d∑
k=0

(−1)k[2dk + r]
(qr; qd)4k(q

d; q2d)kq
(d−r)k

(qd; qd)4k(q
d+2r; q2d)k

≡ 0 (mod Φn(q)2). (1.5)

Similarly as before, when n is a prime power, taking q → 1 in (1.5), we arrive at the
following supercongruence: for 1 6 r < d, s > 1 and any prime p with and ps ≡ −1
(mod 2d),

(dps−rps−r)/d∑
k=0

(−1)k(2dk + r)
( r
d
)4k(

1
2
)k

k!4(d+2r
2d

)k
≡ 0 (mod p2).
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Theorem 1.3. Let d > 2 and r > 1 be integers with r odd and gcd(d, r) = 1. Let n > 1
be an integer with n ≡ −r (mod 2d) and dn > n+ r. Then

(dn−n−r)/d∑
k=0

(−1)k[2dk + r]
(qr; qd)4k(q

d; q2d)kq
(d−r)k

(qd; qd)4k(q
d+2r; q2d)k

≡ 0 (mod Φn(q)2). (1.6)

Likewise, the q-supercongruence (1.6) implies the following result: for d > 2, r, s > 1
and any odd prime p with ps ≡ −r (mod 2d) and (d− 1)ps > r,

(dps−ps−r)/d∑
k=0

(−1)k(2dk + r)
( r
d
)4k(

1
2
)k

k!4(d+2r
2d

)k
≡ 0 (mod p2).

The fourth result of this paper is to build a generalization of (1.2) modulo Φn(q)3 for
n ≡ 1 (mod 4).

Theorem 1.4. Let d > 2 and r > 1 be integers with gcd(d, r) = 1. Let n be a positive
integer with n ≡ r (mod 2d) and n > r. Then

(n−r)/d∑
k=0

(−1)k[2dk + r]
(qr; qd)4k(q

d; q2d)kq
(d−r)k

(qd; qd)4k(q
d+2r; q2d)k

≡
(q2r, qd; q2d)(n−r)/(2d)[n]

(qd+2r, q2d; q2d)(n−r)/(2d)
(mod Φn(q)3).

(1.7)

Note that the (d, r) = (2, 1) case of (1.7) is just the first part of (1.2) modulo Φn(q)3,
and the r = 1 case of (1.7) was already obtained by the author in an earlier paper [2,
Theorem 3.1]. Moreover, the q-supercongruence leads to the following result: for d > 2,
r, s > 1 and any prime p with ps ≡ r (mod 2d) and ps > r,

(ps−r)/d∑
k=0

(−1)k(2dk + r)
( r
d
)4k(

1
2
)k

k!4(d+2r
2d

)k
≡

( r
d
)(ps−r)/(2d)(

1
2
)(ps−r)/(2d)

(d+2r
2d

)(ps−r)/(2d)(1)(ps−r)/(2d)
pr (mod p3).

We shall also prove the following generalization of (1.4) for r = 1, which was originally
conjectured by Wang and Yue [13, Conjecture 5.1].

Theorem 1.5. Let d > 2 and s > 1 be integers, and let p be a prime with p ≡ d + 1
(mod 2d). Then

M∑
k=0

(−1)k(2dk + 1)
(1
d
)4k(

1
2
)k

k!4(d+2
2d

)k
≡ 0 (mod ps+2), (1.8)

where M = (ps − 1)/d or ps − 1.

Recall that the basic hypergeometric series r+1φr with r+1 upper parameters a1, . . . , ar+1,
r lower parameters b1, . . . , br, base q, and argument z is defined by (see [1]):

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=
∞∑
k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k
.
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Then a q-analogue of Watson’s 3F2 summation [1, Appendix (II.16)] can be stated as
follows:

8φ7

[
λ, qλ

1
2 , −qλ 1

2 , a, b, c, −c, λq/c2

λ
1
2 , −λ 1

2 , λq/a, λq/b, λq/c, −λq/c, c2
; q, −λq

ab

]

=
(λq, c2/λ; q)∞(aq, bq, c2q/a, c2q/b; q2)∞

(λq/a, λq/b; q)∞(q, abq, c2q, c2q/ab; q2)∞
, (1.9)

where λ = c(ab/q)
1
2 .

We shall prove Theorems 1.1–1.4 by employing the creative microscoping method and
the q-analogue of Watson’s 3F2 summation (1.9) once more. In order to prove Theorem
1.5, we shall first establish its q-analogue, which is on the basis of the respective r = 1
case of Theorems 1.1 and 1.4.

2. Proof of Theorem 1.1

We first build the following parametric version of Theorem 1.1.

Theorem 2.1. Let d > 2 and r > 1 be integers with gcd(d, r) = 1. Let n be a positive
integer with n ≡ d+ r (mod 2d) and n > d+ r. Then, modulo Φn(q)(1− aqn)(a− qn),

(n−r)/d∑
k=0

(−1)k[2dk + r]
(aqr, qr/a; q)k(q

r; qd)2k(q
d; q2d)kq

(d−r)k

(aqd, qd/a; qd)k(qd; qd)2k(q
d+2r; q2d)k

≡ 0. (2.1)

Proof. For a = q−n or a = qn, the left-hand side of (2.1) may be written as

(n−r)/d∑
k=0

(−1)k[2dk + r]
(qr−n, qr+n; qd)k(q

r; qd)2k(q
d; q2d)k

(qd−n, qd+n; qd)k(qd; qd)2k(q
d+2r; q2d)k

q(d−r)k

= [r]8φ7

[
qr, qd+

r
2 , −qd+ r

2 , qr−n, qr+n, qr, −q d
2 , q

d
2

q
r
2 , −q r

2 , qd+n, qd−n, qd −q d
2
+r, q

d
2
+r

; qd, −qd−r
]
,

where we have used (qr−n; qd)k = 0 for k > (n − r)/d. Letting q 7→ qd, a 7→ qr−n,

b 7→ qr+n, c 7→ q
d
2 (and consequently λ = qr) in (1.9), we see that the 8φ7 summation on

the right-hand side equals

(qd+r, qd−r; qd)∞(qd+r−n, qd+r+n, q2d−r+n, q2d−r−n; q2d)∞
(qd+n, qd−n; qd)∞(qd, qd+2r, q2d, q2d−2r; q2d)∞

= 0,

since (qd+r−n; q2d)∞ = 0. This proves that the q-congruence (2.1) holds modulo 1 − aqn
and a− qn.

4
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Moreover, performing the substitutions q 7→ qd, a 7→ aqr, b 7→ qr/a, c = q
d
2
−n (and so

λ = qr−n) in (1.9) and observing that (qd+r−n; qd)∞ = 0, we obtain

(n−r)/d∑
k=0

(−1)k
(1− q2dk+r−n)(aqr, qr/a; q)k(q

r−n, qr+n; qd)k(q
d−2n; q2d)kq

(d−r−n)k

(1− qr−n)(aqd−n, qd−n/a; qd)k(qd, qd−2n; qd)k(qd+2r; q2d)k
= 0. (2.2)

By the condition gcd(d, r) = 1 and n ≡ d+ r (mod 2d), we have gcd(d, n) = 1. Note that
1− qN ≡ 0 (mod Φn(q)) if and only if N is divisible by n. The minimum positive integer
k such that (qd−2n; qd)k ≡ 0 (mod Φn(q)) is n. The minimum k for (qd+2r; q2d)k ≡ 0
(mod Φn(q)) is (dn + 2n − d − 2r)/(2d) + 1 if n is odd, and does not exist otherwise.
This means that the polynomial (qd−n; qd)k(q

d+2r; q2d)k is coprime with Φn(q) for 0 6 k 6
(n− r)/d because 0 < (n− r)/d 6 (dn + 2n− d− 2r)/(2d). Since qn ≡ 1 (mod Φn(q)),
from (2.2) we deduce that (2.1) is true modulo Φn(q).

Noticing that 1 − aqn, a − qn and Φn(q) are pairwise coprime polynomials in q, we
complete the proof of the theorem. 2

Proof of Theorem 1.1. For a = 1, the denominators on both sides of (2.1) are coprime
with Φn(q), since 0 6 k 6 (n − r)/d. On the other hand, the polynomial (1 − qn)2

contains the factor Φn(q)2. Thus, taking a = 1 in (2.1), we immediately get the desired
q-congruence (1.3). 2

3. Proof of Theorem 1.2

Likewise, we first establish the following parametric version of Theorem 1.2.

Theorem 3.1. Let d and r be positive integers with gcd(d, r) = 1 and d > r. Let n be a
positive integer with n ≡ −1 (mod 2d). Then, modulo (1− aq(d−r)n)(a− q(d−r)n),

(dn−rn−r)/d∑
k=0

(−1)k[2dk + r]
(aqr, qr/a; q)k(q

r; qd)2k(q
d; q2d)kq

(d−r)k

(aqd, qd/a; qd)k(qd; qd)2k(q
d+2r; q2d)k

≡ 0. (3.1)

Proof. The proof is very similar to that of Theorem 2.1. For a = q−(d−r)n or a = q(d−r)n,
the left-hand side of (3.1) may be written as

(dn−rn−r)/d∑
k=0

(−1)k[2dk + r]
(qr−(d−r)n, qr+(d−r)n; qd)k(q

r; qd)2k(q
d; q2d)k

(qd−(d−r)n, qd+(d−r)n; qd)k(qd; qd)2k(q
d+2r; q2d)k

q(d−r)k

= [r]8φ7

[
qr, qd+

r
2 , −qd+ r

2 , qr−(d−r)n, qr+(d−r)n, qr, −q d
2 , q

d
2

q
r
2 , −q r

2 , qd+(d−r)n, qd−(d−r)n, qd −q d
2
+r, q

d
2
+r

; qd, −qd−r
]
,

Letting q 7→ qd, a 7→ qr−(d−r)n, b 7→ qr+(d−r)n, c 7→ q
d
2 (and consequently λ = qr) in (1.9),

we see that the 8φ7 summation on the right-hand side equals

(qd+r, qd−r; qd)∞(qd+r−(d−r)n, qd+r+(d−r)n, q2d−r+(d−r)n, q2d−r−(d−r)n; q2d)∞
(qd+(d−r)n, qd−(d−r)n; qd)∞(qd, qd+2r, q2d, q2d−2r; q2d)∞

= 0,
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since (qd+r−(d−r)n; q2d)∞ = 0. This proves that the q-congruence (3.1) holds modulo
1− aq(d−r)n and a− q(d−r)n. 2

Proof of Theorem 1.2. For a = 1, the denominators on both sides of (3.1) are coprime
with Φn(q), since 0 6 k 6 (dn − rn − r)/d. Moreover, the polynomial (1 − q(d−r)n)2 has
the factor Φn(q)2. Thus, taking a = 1 in (3.1), we obtain the desired q-congruence (1.5).
2

4. Proof of Theorem 1.3

We need to establish the following parametric version of Theorem 1.3.

Theorem 4.1. Let d > 2 and r > 1 be integers with r odd and gcd(d, r) = 1. Let n > 1 be
an integer with n ≡ −r (mod 2d) and dn > n+r. Then, modulo (1−aq(d−1)n)(a−q(d−1)n),

(dn−n−r)/d∑
k=0

(−1)k[2dk + r]
(aqr, qr/a; q)k(q

r; qd)2k(q
d; q2d)kq

(d−r)k

(aqd, qd/a; qd)k(qd; qd)2k(q
d+2r; q2d)k

≡ 0. (4.1)

Proof. Similarly as before, for a = q−(d−1)n or a = q(d−1)n, the left-hand side of (4.1) may
be written as

(dn−n−r)/d∑
k=0

(−1)k[2dk + r]
(qr−(d−1)n, qr+(d+1)n; qd)k(q

r; qd)2k(q
d; q2d)k

(qd−(d−1)n, qd+(d+1)n; qd)k(qd; qd)2k(q
d+2r; q2d)k

q(d−r)k

= [r]8φ7

[
qr, qd+

r
2 , −qd+ r

2 , qr−(d−1)n, qr+(d−1)n, qr, −q d
2 , q

d
2

q
r
2 , −q r

2 , qd+(d−1)n, qd−(d−1)n, qd −q d
2
+r, q

d
2
+r

; qd, −qd−r
]
,

Letting q 7→ qd, a 7→ qr−(d−1)n, b 7→ qr+(d−1)n, c 7→ q
d
2 (and so λ = qr) in (1.9), we see that

the 8φ7 summation on the right-hand side becomes

(qd+r, qd−r; qd)∞(qd+r−(d−1)n, qd+r+(d−1)n, q2d−r+(d−1)n, q2d−r−(d−1)n; q2d)∞
(qd+(d−1)n, qd−(d−1)n; qd)∞(qd, qd+2r, q2d, q2d−2r; q2d)∞

= 0,

since (qd+r−(d−1)n; q2d)∞ = 0. This proves that the q-congruence (4.1) holds modulo
1− aq(d−1)n and a− q(d−1)n. 2

Proof of Theorem 1.2. Putting a = 1 in (4.1), we are led to the desired q-congruence
(1.6). 2

6
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5. Proof of Theorem 1.4

We first build the following parametric version of Theorem 1.4.

Theorem 5.1. Let d > 2 and r > 1 be integers with gcd(d, r) = 1. Let n be a positive
integer with n ≡ r (mod 2d) and n > r. Then, modulo Φn(q)(1− aqn)(a− qn),

(n−r)/d∑
k=0

(−1)k[2dk + r]
(aqr, qr/a; q)k(q

r; qd)2k(q
d; q2d)kq

(d−r)k

(aqd, qd/a; qd)k(qd; qd)2k(q
d+2r; q2d)k

≡
(q2r, qd; q2d)(n−r)/(2d)[n]

(qd+2r, q2d; q2d)(n−r)/(2d)
.

(5.1)

Proof. The proof is similar to that of Theorem (2.1). For a = q−n or a = qn, the left-hand
side of (5.1) may be written as

(n−r)/d∑
k=0

(−1)k[2dk + r]
(qr−n, qr+n; qd)k(q

r; qd)2k(q
d; q2d)k

(qd−n, qd+n; qd)k(qd; qd)2k(q
d+2r; q2d)k

q(d−r)k

= [r]8φ7

[
qr, qd+

r
2 , −qd+ r

2 , qr−n, qr+n, qr, −q d
2 , q

d
2

q
r
2 , −q r

2 , qd+n, qd−n, qd −q d
2
+r, q

d
2
+r

; qd, −qd−r
]
. (5.2)

Letting q 7→ qd, a 7→ qr−n, b 7→ qr+n, c 7→ q
d
2 (and consequently λ = qr) in (1.9), we see

that the right-hand side of (5.2) equals

[r]
(qd+r, qd−r; qd)∞(qd+r−n, qd+r+n, q2d−r+n, q2d−r−n; q2d)∞

(qd+n, qd−n; qd)∞(qd, qd+2r, q2d, q2d−2r; q2d)∞

= [r]
(qd+r; qd)(n−r)/d(q

d+r−n, q2d−r−n; q2d)(n−r)/(2d)
(qd−n; qd)(n−r)/d(qd+2r, q2d; q2d)(n−r)/(2d)

=
(q2r, qd; q2d)(n−r)/(2d)

(qd+2r, q2d; q2d)(n−r)/(2d)
[n].

This proves that the q-congruence (5.1) holds modulo 1− aqn and a− qn.
Moreover, the identity (2.2) still holds for n ≡ r (mod 2d) and n > r. It follows that

the left-hand side of (5.1) is congruent to 0 modulo Φn(q). On the other hand, it is easy
to see that the right-hand side of (5.1) is also congruent to 0 modulo Φn(q). This means
that the q-congruence (5.1) holds modulo Φn(q). 2

Proof of Theorem 1.4. Letting a = 1 in (5.1), we arrive at the q-congruence (1.7). 2

6. Proof of Theorem 1.5

We first give the following q-supercongruence.

7
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Theorem 6.1. Let d, n > 2 and s > 1 be integers with d even and n ≡ d + 1 (mod 2d).
Then, modulo Φns(q)2

∏s
j=1 Φnj(q),

M∑
k=0

(−1)k[2dk + 1]
(q; qd)4k(q

d; q2d)kq
(d−1)k

(qd; qd)4k(q
d+2; q2d)k

≡


0, if s is odd,

(q2, qd; q2d)(ns−1)/(2d)

(qd+2, q2d; q2d)(ns−1)/(2d)
[ns], if s is even.

(6.1)

where M = (ns − 1)/d or ns − 1.

Proof. Since d is even and n ≡ d+ 1 (mod 2d), we know that ns ≡ d+ 1 (mod 2d) if s is
odd, and ns ≡ 1 (mod 2d) if s is even. By the respective r = 1 case of Theorems 1.1 and
1.4, the q-supercongruence (6.1) is true modulo Φns(q)3 for M = (ns − 1)/d. Moreover,
for (ns − 1)/d < k 6 ns − 1, the q-shifted factorial (q; qd)k is divisible by Φns(q), and
(qd; qd)4k(q

d+2; q2d)k cannot be divisible by Φns(q)2, and therefore the k-th summand on
the left-hand side of (6.1) is congruent to 0 modulo Φns(q)3. Thus, the q-supercongruence
(6.1) is also true modulo Φns(q)3 for M = ns − 1.

We now assume that s > 2 and 1 6 j 6 s − 1. Let ζ denote an nj-th primitive root
of unity, and let cq(k) be the k-th summand on the left-hand side of (6.1), i.e.,

cq(k) = (−1)k[2dk + 1]
(q; qd)4k(q

d; q2d)kq
(d−1)k

(qd; qd)4k(q
d+2; q2d)k

.

Then the q-supercongruence (6.1) modulo Φns(q) for s = j indicates that

(nj−1)/d∑
k=0

cζ(k) =
nj−1∑
k=0

cζ(k) = 0.

Observing that, for any non-negative integer `,

cζ(`n
j + k)

cζ(`nj)
= lim

q→ζ

cq(`n
j + k)

cq(`nj)
= cζ(k),

we get

(ns−1)/d∑
k=0

cζ(k) =

(ns−j−1)/d−1∑
`=0

nj−1∑
k=0

cζ(`n
j + k) +

(nj−1)/d∑
k=0

cζ((n
s − nj)/d+ k)

=

(ns−j−1)/d−1∑
`=0

cζ(`n
j)
nj−1∑
k=0

cζ(k) + cζ((n
s − nj)/d)

(nj−1)/d∑
k=0

cζ(k)

= 0,

and

ns−1∑
k=0

cζ(k) =
ns−j−1∑
`=0

nj−1∑
k=0

cζ(`n
j + k) =

ns−j−1∑
`=0

cζ(`n
j)
nj−1∑
k=0

cζ(k) = 0.
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This means that, for M = (ns − 1)/d and ns − 1, the sum
∑M

k=0 cq(k) is congruent to 0
modulo Φnj(q). It is well known that each Φnj(q) is an irreducible polynomial in Z[q], we
conclude that the q-congruence (6.1) holds. 2

We are now able to prove Theorem 1.5.

Proof of Theorem 1.5. It is easy to see that Φm(1) = 1 if m has at least two distinct
prime factors, and Φpr(1) = p. Moreover, the denominators on the left-hand side of (6.1)
are products of cyclotomic polynomials coprime with Φnj(q) for integers j > s. So is the
denominator on the right-hand side of (6.1). Thus, letting n = p be a prime and q → 1
in (6.1), we obtain

M∑
k=0

(−1)k(2dk + 1)
(1
d
)4k(

1
2
)k

k!4(d+2
2d

)k

≡


0, if s is odd,

(1
d
)(ps−1)/(2d)(

1
2
)(ps−1)/(2d)

(d+2
2d

)(ps−1)/(2d)(1)(ps−1)/(2d)
ps, if s is even,

(mod ps+2), (6.2)

where M = (ps − 1)/d or ps − 1. It is easy to see that, for s > 2,

(1
d
)(ps−1)/(2d)

(d+2
2d

)(ps−1)/(2d)
≡

(1
2
)(ps−1)/(2d)

(1)(ps−1)/(2d)
≡ 0 (mod p).

Substituting the above congruences into (6.2), we are led to (1.8). 2
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