A new q-analogue of Van Hamme's (A.2) supercongruence

Victor J. W. Guo
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's
Republic of China
jwguo@math.ecnu.edu.cn

Abstract

We give a new q-analogue of the (A.2) supercongruence of Van Hamme. Our proof employs Andrews' multiseries generalization of Watson's ${ }_{8} \phi_{7}$ transformation, Andrews' terminating q-analogue of Watson's ${ }_{3} F_{2}$ summation, a q-Watson-type summation due to Wei-Gong-Li, and the creative microscoping method, developed by the author and Zudilin. As a conclusion, we confirm a weaker form of Conjecture 4.5 in [Integral Transforms Spec. Funct. 28 (2017), 888-899].

Keywords: basic hypergeometric series; q-congruences; supercongruences; creative microscoping
AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

India's great mathematician Ramanujan mentioned the following formula

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}}=\frac{2}{\Gamma\left(\frac{3}{4}\right)^{4}} \tag{1.1}
\end{equation*}
$$

in his second letter to Hardy on February 27, 1913. Here $\Gamma(x)$ stands for the Gamma function and $(a)_{k}=a(a+1) \cdots(a+k-1)$ is the rising factorial. In 1997, Van Hamme [15] observed that thirteen Ramanujan-type formulas possess neat p-adic analogues. For instance, the formula (1.1) corresponds to the following supercongruence modulo p^{3} :

$$
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv\left\{\begin{array}{lll}
-\frac{p}{\Gamma_{p}\left(\frac{3}{4}\right)^{4}}\left(\bmod p^{3}\right), & \text { if } p \equiv 1 & (\bmod 4) \tag{1.2}\\
0 \quad\left(\bmod p^{3}\right), & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

(tagged as (A.2) in [15]). Here and in what follows, p always denotes an odd prime and $\Gamma_{p}(x)$ is Morita's p-adic Gamma function (see, for example, [12, Chapter 7]). The supercongruence (1.2) was first confirmed by McCarthy and Osburn [11]. Swisher [13] further proved that (1.2) is true modulo p^{5} for $p \equiv 1(\bmod 4)$ and $p>5$. On the other hand, Liu $[10]$ extended (1.2) for $p \equiv 3(\bmod 4)$ to the modulus p^{4} case. Recently, among other things, Wei [18] gave the following generalization of the second case of (1.2):

$$
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv p^{2} \frac{\left(\frac{3}{4}\right)_{(p-1) / 2}}{\left(\frac{5}{4}\right)_{(p-1) / 2}} \quad\left(\bmod p^{5}\right) \quad \text { for } p \equiv 3 \quad(\bmod 4)
$$

During the past few years, more and more authors become interested in q-analogues of supercongruences. In particular, using the creative microscoping method introduced by the author and Zudilin [7], Wang and Yue [16], together with the author [5], gave a q-analogue of (1.2): modulo $[n] \Phi_{n}(q)^{2}$,

$$
\sum_{k=0}^{M}(-1)^{k}[4 k+1] \frac{\left(q ; q^{2}\right)_{k}^{4}\left(q^{2} ; q^{4}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}^{4}\left(q^{4} ; q^{4}\right)_{k}} q^{k} \equiv\left\{\begin{array}{lll}
\frac{\left(q^{2} ; q^{4}\right)_{(n-1) / 4}^{2}}{\left(q^{4} ; q^{4}\right)_{(n-1) / 4}^{2}}[n], & \text { if } n \equiv 1 & (\bmod 4) \tag{1.3}\\
0, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

where $M=(n-1) / 2$ or $n-1$. Moreover, Wei [17,18] further generalized (1.3) to the moduli $[n] \Phi_{n}(q)^{3}$ and $[n] \Phi_{n}(q)^{4}$ cases.

We now need to familiarize ourselves with the standard q-notation. The q-shifted factorial is defined by $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n \geqslant 1$ and $(a ; q)_{0}=1$. For simplicity, we also use the abbreviated notation $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$ for $n \geqslant 0$. The q-integer is defined as $[n]=[n]_{q}=\left(1-q^{n}\right) /\left(1-q^{n}\right)$. Moreover, the n-th cyclotomic polynomial $\Phi_{n}(q)$ is given by

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity.
Letting $n=p \equiv 1(\bmod 4)$ and taking $q \rightarrow 1$ in (1.3), we obtain

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv \frac{\left(\frac{1}{2}\right)_{(p-1) / 4}^{2}}{(1)_{(p-1) / 4}^{2}} p=\binom{-1 / 2}{(p-1) / 4}^{2} p \quad\left(\bmod p^{3}\right) \tag{1.4}
\end{equation*}
$$

From [14, Theorem 3] we know that

$$
\binom{-1 / 2}{(p-1) / 4} \equiv \frac{\Gamma_{p}\left(\frac{1}{4}\right)^{2}}{\Gamma_{p}\left(\frac{1}{2}\right)} \quad\left(\bmod p^{2}\right) .
$$

Since $\Gamma_{p}\left(\frac{1}{2}\right)^{2}=-1$ for $p \equiv 1(\bmod 4)$, by the identity $\Gamma_{p}\left(\frac{1}{4}\right)^{4} \Gamma_{p}\left(\frac{3}{4}\right)^{4}=1$, we see that the supercongruence (1.4) is just (1.2) for $p \equiv 1(\bmod 4)$. This implies that (1.3) for $M=(n-1) / 2$ is really a q-analogue of the (A.2) supercongruence of Van Hamme.

Note that supercongruences may have different q-analogues. See [8] for such examples. In this note, we shall give the following new q-analogue of (1.2).
Theorem 1.1. Let $n>1$ be an odd integer. Then, modulo $[n]_{q^{2}} \Phi_{n}\left(q^{2}\right)^{2}$,

$$
\begin{align*}
& \sum_{k=0}^{M}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2} ; q^{4}\right)_{k}^{4}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{4}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \\
& \quad \equiv\left\{\begin{array}{ll}
-\frac{2 q\left(q^{4} ; q^{8}\right)_{(n-1) / 4}^{2}}{\left(1+q^{2}\right)\left(q^{8} ; q^{8}\right)_{(n-1) / 4}^{2}}[n]_{q^{2}}, & \text { if } n \equiv 1 \quad(\bmod 4), \\
\frac{(1+q)^{2}\left(q^{4}, q^{12} ; q^{8}\right)_{(n-3) / 4}}{\left(1+q^{2}\right)\left(1+q^{4}\right)\left(q^{8}, q^{16} ; q^{8}\right)_{(n-3) / 4}}[n]_{q^{2}}, & \text { if } n \equiv 3
\end{array} \quad(\bmod 4) .\right. \tag{1.5}
\end{align*}
$$

where $M=(n-1) / 2$ or $n-1$.
For n prime, letting $q \rightarrow-1$ in Theorem 1.1, we get (1.2). On the other hand, for n prime and $q \rightarrow 1$ in Theorem 1.1, we arrive at

$$
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(4 k+1)^{3} \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv\left\{\begin{array}{lll}
\frac{p}{\Gamma_{p}\left(\frac{3}{4}\right)^{4}}\left(\bmod p^{3}\right), & \text { if } p \equiv 1 & (\bmod 4) \tag{1.6}\\
\frac{\left(\frac{1}{2}\right)_{(p-3) / 4}\left(\frac{3}{2}\right)_{(p-3) / 4} p}{\left(\frac{p-3}{4}\right)!\left(\frac{p+1}{4}\right)!} & \left(\bmod p^{3}\right), & \text { if } p \equiv 3
\end{array}(\bmod 4)\right.
$$

Thus, Theorem 1.1 may be considered as a common q-analogue of (1.2) and (1.6).
Moreover, letting n be an odd prime power and $q \rightarrow 1$ in (1.3) and (1.5), respectively, we are led to the following results: If $p^{r} \equiv 1(\bmod 4)$, then

$$
\begin{gather*}
\sum_{k=0}^{\left(p^{r}-1\right) / d}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv\binom{\left(p^{r}-1\right) / 2}{\left(p^{r}-1\right) / 4}^{2} \frac{p^{r}}{2^{p^{r}-1}} \quad\left(\bmod p^{r+2}\right) \tag{1.7}\\
\sum_{k=0}^{\left(p^{r}-1\right) / d}(-1)^{k}(4 k+1)^{3} \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv-\binom{\left(p^{r}-1\right) / 2}{\left(p^{r}-1\right) / 4}^{2} \frac{p^{r}}{2^{p^{r}-1}} \quad\left(\bmod p^{r+2}\right) \tag{1.8}
\end{gather*}
$$

where $d=1$ or 2 . Since $4+1+(4 k+1)^{3}=2(4 k+1)\left(8 k^{2}+4 k+1\right)$, combining (1.7) and (1.8) we obtain the following conclusion.

Corollary 1.2. If $p^{r} \equiv 1(\bmod 4)$, then

$$
\begin{equation*}
\sum_{k=0}^{\left(p^{r}-1\right) / d}(-1)^{k}(4 k+1)\left(8 k^{2}+4 k+1\right) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv 0 \quad\left(\bmod p^{r+2}\right) \tag{1.9}
\end{equation*}
$$

where $d=1$ or 2 .
Note that the author [4, Conjecture 4.5] conjectured that (1.9) is true modulo $p^{3 r}$ for $p \equiv 1(\bmod 4)$.

We shall prove Theorem 1.1 in the next section. In Section 3, we raise two related conjectures on supercongruences.

2. Proof of Theorem 1.1

We first give the following q-congruence. See $[6$, Lemma 3.1] for a short proof.
Lemma 2.1. Let n be a positive odd integer. Then, for $0 \leqslant k \leqslant(n-1) / 2$, we have

$$
\frac{\left(a q ; q^{2}\right)_{(n-1) / 2-k}}{\left(q^{2} / a ; q^{2}\right)_{(n-1) / 2-k}} \equiv(-a)^{(n-1) / 2-2 k} \frac{\left(a q ; q^{2}\right)_{k}}{\left(q^{2} / a ; q^{2}\right)_{k}} q^{(n-1)^{2} / 4+k} \quad\left(\bmod \Phi_{n}(q)\right)
$$

Meanwhile, we will utilize a powerful transformation of Andrews (see [1, Theorem 4]), which can be stated as follows:

$$
\begin{array}{r}
\sum_{k \geqslant 0} \frac{\left(a, q \sqrt{a},-q \sqrt{a}, b_{1}, c_{1}, \ldots, b_{m}, c_{m}, q^{-N} ; q\right)_{k}}{\left(q, \sqrt{a},-\sqrt{a}, a q / b_{1}, a q / c_{1}, \ldots, a q / b_{m}, a q / c_{m}, a q^{N+1} ; q\right)_{k}}\left(\frac{a^{m} q^{m+N}}{b_{1} c_{1} \cdots b_{m} c_{m}}\right)^{k} \\
=\frac{\left(a q, a q / b_{m} c_{m} ; q\right)_{N}}{\left(a q / b_{m}, a q / c_{m} ; q\right)_{N}} \sum_{j_{1}, \ldots, j_{m-1} \geqslant 0} \frac{\left(a q / b_{1} c_{1} ; q\right)_{j_{1}} \cdots\left(a q / b_{m-1} c_{m-1} ; q\right)_{j_{m-1}}}{(q ; q)_{j_{1}} \cdots(q ; q)_{j_{m-1}}} \\
\times \frac{\left(b_{2}, c_{2} ; q\right)_{j_{1}} \ldots\left(b_{m}, c_{m} ; q\right)_{j_{1}+\cdots+j_{m-1}}}{\left(a q / b_{1}, a q / c_{1} ; q\right)_{j_{1} \cdots} \cdots\left(a q / b_{m-1}, a q / c_{m-1} ; q\right)_{j_{1}+\cdots+j_{m-1}}} \\
\times \frac{\left(q^{-N} ; q\right)_{j_{1}+\cdots+j_{m-1}}}{\left(b_{m} c_{m} q^{-N} / a ; q\right)_{j_{1}+\cdots+j_{m-1}}} \frac{(a q)^{j_{m-2}+\cdots+(m-2) j_{1}} q^{j_{1}+\cdots+j_{m-1}}}{\left(b_{2} c_{2}\right)^{j_{1} \cdots\left(b_{m-1} c_{m-1}\right)^{j_{1}+\cdots+j_{m-2}}} .} \tag{2.1}
\end{array}
$$

It should be pointed out that Andrews' transformation is a multiseries generalization of Watson's ${ }_{8} \phi_{7}$ transformation:

$$
\begin{aligned}
& { }_{8} \phi_{7}\left[\begin{array}{cccccccc}
a, & q a^{\frac{1}{2}}, & -q a^{\frac{1}{2}}, & b, & c, & d, & e, & q^{-n} \\
& a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & a q / b, & a q / c, & a q / d, & a q / e, & a q^{n+1}
\end{array} q, \frac{a^{2} q^{n+2}}{b c d e}\right] \\
& =\frac{(a q, a q / d e ; q)_{n}}{(a q / d, a q / e ; q)_{n}}{ }_{4} \phi_{3}\left[\begin{array}{c}
a q / b c, d, e, q^{-n} \\
a q / b, a q / c, d e q^{-n} / a
\end{array} ; q, q\right]
\end{aligned}
$$

(see [3, Appendix (III.18)]), where the basic hypergeometric series ${ }_{r+1} \phi_{r}$ is defined as

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r+1} ; q\right)_{k}}{\left(q, b_{1}, \ldots, b_{r} ; q\right)_{k}} z^{k} .
$$

We shall also use Andrews' terminating q-analogue of Watson's ${ }_{3} F_{2}$ summation (see [2] or $[3,(I I .17)])$:

$$
{ }_{4} \phi_{3}\left[\begin{array}{cl}
q^{-n}, a^{2} q^{n+1}, c,-c \tag{2.2}\\
a q,-a q, c^{2}
\end{array}{ }^{-}, q\right]= \begin{cases}0, & \text { if } n \text { is odd } \\
\frac{c^{n}\left(q, a^{2} q^{2} / c^{2} ; q^{2}\right)_{n / 2}}{\left(a^{2} q^{2}, c^{2} q ; q^{2}\right)_{n / 2}}, & \text { if } n \text { is even },\end{cases}
$$

and the following q-Watson-type summation due to Wei et al. [19, Corollary 5]:

$$
{ }_{4} \phi_{3}\left[\begin{array}{cl}
q^{-n}, a^{2} q^{n+1}, c,-c q \tag{2.3}\\
a q,-a q, c^{2} q
\end{array} ; q, q\right]= \begin{cases}\frac{c^{n}\left(q ; q^{2}\right)_{(n+1) / 2}\left(a^{2} q^{2} / c^{2} ; q^{2}\right)_{(n-1) / 2}}{\left(a^{2} q^{2} ; q^{2}\right)_{(n-1) / 2}\left(c^{2} q ; q^{2}\right)_{(n+1) / 2}}, & \text { if } n \text { is odd } \\
\frac{c^{n}\left(q, a^{2} q^{2} / c^{2} ; q^{2}\right)_{n / 2}}{\left(a^{2} q^{2}, c^{2} q ; q^{2}\right)_{n / 2}}, & \text { if } n \text { is even. }\end{cases}
$$

We first give the following parametric version of Theorem 1.1.

Theorem 2.2. Let $n>1$ be an odd integer. Then, modulo $\Phi_{n}\left(q^{2}\right)\left(1-a q^{2 n}\right)\left(a-q^{2 n}\right)$,

$$
\begin{align*}
& \sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a ; q^{4}\right)_{k}\left(q^{2} ; q^{4}\right)_{k}^{2}\left(q^{4} ; q^{8}\right)_{k}}{\left(a q^{4}, q^{4} / a ; q^{4}\right)_{k}\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \\
& \quad \equiv\left\{\begin{array}{lll}
\left(1-\frac{(1+q)\left(1-a q^{2}\right)\left(1-q^{2} / a\right)}{(1-q)\left(1-q^{4}\right)}\right) \frac{\left(q^{4} ; q^{8}\right)_{(n-1) / 4}^{2}}{\left(q^{8} ; q^{8}\right)_{(n-1) / 4}^{2}}[n]_{q^{2}}, & \text { if } n \equiv 1 & (\bmod 4), \\
\frac{(1+q)\left(1-a q^{2}\right)\left(1-q^{2} / a\right)\left(q^{4}, q^{12} ; q^{8}\right)_{(n-3) / 4}}{(1-q)\left(1-q^{8}\right)\left(q^{8}, q^{16} ; q^{8}\right)_{(n-3) / 4}}\left[n q_{q^{2}},\right. & \text { if } n \equiv 3 & (\bmod 4) .
\end{array}\right. \tag{2.4}
\end{align*}
$$

Proof. For $a=q^{-2 n}$ or $a=q^{2 n}$, the left-hand side of (2.4) may be written as

$$
\sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2-2 n}, q^{2+2 n} ; q^{4}\right)_{k}\left(q^{2} ; q^{4}\right)_{k}^{2}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4-2 n}, q^{4+2 n} ; q^{4}\right)_{k}\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k}
$$

Letting $m=3, q \mapsto q^{4}, a=q^{2}, b_{1}=c_{1}=q^{5}, b_{2}=c_{2}=q^{2}, b_{3}=-q^{2}, c_{3}=q^{2+2 n}$, and $N=(n-1) / 2$ in (2.1), we see that the above summation is equal to

$$
\begin{align*}
& \frac{\left(q^{6},-q^{2-2 n} ; q^{4}\right)_{(n-1) / 2}}{\left(-q^{4}, q^{4-2 n} ; q^{4}\right)_{(n-1) / 2}} \\
& \quad \times \sum_{j_{1}, j_{2} \geqslant 0} \frac{\left(q^{-4} ; q^{4}\right)_{j_{1}}\left(q^{2} ; q^{4}\right)_{j_{2}}\left(q^{2}, q^{2} ; q^{4}\right)_{j_{1}}\left(-q^{2}, q^{2+2 n}, q^{2-2 n} ; q^{4}\right)_{j_{1}+j_{2}}}{\left(q^{4} ; q^{4}\right)_{j_{1}}\left(q^{4} ; q^{4}\right)_{j_{2}}\left(q, q ; q^{4}\right)_{j_{1}}\left(q^{4}, q^{4},-q^{4} ; q^{4}\right)_{j_{1}+j_{2}}} q^{2} \\
& =(-1)^{(n-1) / 2} q^{1-n}[n]_{q^{2}} \sum_{j_{2}=0}^{(n-1) / 2} \frac{\left(q^{2},-q^{2}, q^{2+2 n}, q^{2-2 n} ; q^{4}\right)_{j_{2}}}{\left(q^{4}, q^{4}, q^{4},-q^{4} ; q^{4}\right)_{j_{2}}} q^{2} \\
& \quad+(-1)^{(n+1) / 2} q^{3-n}[n]_{q^{2}}(1+q)^{2} \sum_{j_{2}=0}^{(n-3) / 2} \frac{\left(q^{2} ; q^{4}\right)_{j_{2}}\left(-q^{2}, q^{2+2 n}, q^{2-2 n} ; q^{4}\right)_{j_{2}+1}}{\left(q^{4} ; q^{4}\right) j_{2}\left(q^{4}, q^{4},-q^{4} ; q^{4}\right)_{j_{2}+1}} q^{4 j_{2}} \tag{2.5}
\end{align*}
$$

where we have used the fact that $\left(q^{-4} ; q^{4}\right)_{j_{1}}=0$ for $j_{1}>1$.
Taking $q \mapsto q^{4}, a=1, c=q^{2}$, and $n \mapsto(n-1) / 2$ in (2.2), we have

$$
\sum_{j_{2}=0}^{(n-1) / 2} \frac{\left(q^{2},-q^{2}, q^{2+2 n}, q^{2-2 n} ; q^{4}\right)_{j_{2}}}{\left(q^{4}, q^{4}, q^{4},-q^{4} ; q^{4}\right)_{j_{2}}} q^{4 j_{2}}=\left\{\begin{array}{lll}
q^{n-1} \frac{\left(q^{4} ; q^{8}\right)_{(n-1) / 4}^{2}}{\left(q^{8} ; q^{8}\right)_{(n-1) / 4}^{2}}, & \text { if } n \equiv 1 & (\bmod 4) \\
0, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Similarly, taking $q \mapsto q^{4}, a=q^{4}, c=q^{2}$, and $n \mapsto(n-3) / 2$ in (2.3), we get

$$
\begin{aligned}
& \sum_{j_{2}=0}^{(n-3) / 2} \frac{\left(q^{2} ; q^{4}\right)_{j_{2}}\left(-q^{2}, q^{2+2 n}, q^{2-2 n} ; q^{4}\right)_{j_{2}+1}}{\left(q^{4} ; q^{4}\right) j_{2}\left(q^{4}, q^{4},-q^{4} ; q^{4}\right)_{j_{2}+1}^{4 j_{2}}} q^{\left(1-q^{4}\right)^{2}\left(1+q^{4}\right)} \sum_{j_{2}=0}^{2(1-3) / 2} \frac{\left(q^{2},-q^{6}, q^{6+2 n}, q^{6-2 n} ; q^{4}\right)_{j_{2}}}{\left(q^{4}, q^{8}, q^{8},-q^{8} ; q^{4}\right)_{j_{2}}} q^{4 j_{2}} \\
& \quad=\frac{\left(1+q^{2}\right)\left(1-q^{2+2 n}\right)\left(1-q^{2-2 n}\right)}{(1-2 n}, \quad \text { if } n \equiv 1 \quad(\bmod 4), \\
& \quad= \begin{cases}q^{n-3} \frac{\left(1+q^{2}\right)\left(1-q^{2+2 n}\right)\left(1-q^{2-2 n}\right)\left(q^{4} ; q^{8}\right)_{(n-1) / 4}^{2}}{\left(1-q^{4}\right)^{2}\left(q^{8} ; q^{8}\right)_{(n-1) / 4}^{2}} \\
q^{n-3} \frac{\left(1+q^{2}\right)\left(1-q^{2+2 n}\right)\left(1-q^{2-2 n}\right)\left(q^{4}, q^{12} ; q^{8}\right)_{(n-3) / 4}}{\left(1-q^{4}\right)^{2}\left(1+q^{4}\right)\left(q^{8}, q^{16} ; q^{8}\right)_{(n-3) / 4}}, & \text { if } n \equiv 3 \quad(\bmod 4) .\end{cases}
\end{aligned}
$$

Substituting the above two identities into (2.5), we obtain

$$
\begin{aligned}
& \sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2-2 n}, q^{2+2 n} ; q^{4}\right)_{k}\left(q^{2} ; q^{4}\right)_{k}^{2}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4-2 n}, q^{4+2 n} ; q^{4}\right)_{k}\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \\
& \quad=\left\{\begin{array}{lll}
\left(1-\frac{(1+q)\left(1-q^{2+2 n}\right)\left(1-q^{2-2 n}\right)}{(1-q)\left(1-q^{4}\right)}\right) \frac{\left(q^{4} ; q^{8}\right)_{(n-1) / 4}^{2}}{\left(q^{8} ; q^{8}\right)_{(n-1) / 4}^{2}}[n]_{q^{2}}^{2}, & \text { if } n \equiv 1 & (\bmod 4), \\
\frac{(1+q)\left(1-q^{2+2 n}\right)\left(1-q^{2-2 n}\right)\left(q^{4}, q^{12} ; q^{8}\right)_{(n-3) / 4}}{(1-q)\left(1-q^{8}\right)\left(q^{8}, q^{16} ; q^{8}\right)_{(n-3) / 4}}, & \text { if } n \equiv 3 & (\bmod 4) .
\end{array}\right.
\end{aligned}
$$

This proves that both sides of (2.4) are equal when $a=q^{ \pm 2 n}$. Namely, the q-congruence (2.4) holds modulo $1-a q^{2 n}$ or $a-q^{2 n}$.

Moreover, in view of Lemma 2.1, we can verify that the k-th and $((n-1) / 2-k)$-th summands cancel each other modulo $\Phi_{n}\left(q^{2}\right)$ for any positive odd integer n. It follows that

$$
\begin{equation*}
\sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(a q^{2}, q^{2} / a ; q^{4}\right)_{k}\left(q^{2} ; q^{4}\right)_{k}^{2}\left(q^{4} ; q^{8}\right)_{k}}{\left(a q^{4}, q^{4} / a ; q^{4}\right)_{k}\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \equiv 0 \quad\left(\bmod \Phi_{n}\left(q^{2}\right)\right) \tag{2.6}
\end{equation*}
$$

Noticing that $[n]_{q^{2}} \equiv 0\left(\bmod \Phi_{n}\left(q^{2}\right)\right)$ for $n>1$, we conclude that the q-congruence (2.4) also holds modulo $\Phi_{n}(q)$.

Since $1-a q^{2 n}, a-q^{2 n}$, and $\Phi_{n}\left(q^{2}\right)$ are pairwise relatively prime polynomials in q, we complete the proof of the theorem.

Proof of Theorem 1.1. It is easy to see that the denominators on both sides of (2.4) when $a=1$ are relatively prime to $\Phi_{n}\left(q^{2}\right)$. On the other hand, when $a=1$, the polynomial $\left(1-a q^{2 n}\right)\left(a-q^{2 n}\right)$ contains the factor $\Phi_{n}\left(q^{2}\right)^{2}$. Therefore, the $a=1$ case of (2.4) implies that (1.5) is true modulo $\Phi_{n}\left(q^{2}\right)^{3}$ for $M=(n-1) / 2$. Furthermore, since $\left(q^{2} ; q^{4}\right)_{k}^{4}\left(q^{4} ; q^{8}\right)_{k} /\left(\left(q^{4} ; q^{4}\right)_{k}^{4}\left(q^{8} ; q^{8}\right)_{k}\right) \equiv 0\left(\bmod \Phi_{n}\left(q^{2}\right)^{5}\right)$ for k in the range $(n-1) / 2<k \leqslant$ $n-1$, we see that (1.5) is also true modulo $\Phi_{n}\left(q^{2}\right)^{3}$ for $M=n-1$.

It remains to prove the following two q-congruences:

$$
\begin{align*}
& \sum_{k=0}^{(n-1) / 2}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2} ; q^{4}\right)_{k}^{4}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{4}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \equiv 0 \quad\left(\bmod [n]_{q^{2}}\right) \tag{2.7}\\
& \sum_{k=0}^{n-1}(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2} ; q^{4}\right)_{k}^{4}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{4}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} \equiv 0 \quad\left(\bmod [n]_{q^{2}}\right) . \tag{2.8}
\end{align*}
$$

For $n>1$, let $\zeta \neq 1$ be an n-th root of unity, possibly not primitive. Namely, ζ is a primitive root of unity of odd degree d satisfying $d \mid n$. Let $c_{q}(k)$ be the k-th term on the left-hand side of the congruences (2.7) and (2.8). Namely,

$$
c_{q}(k)=(-1)^{k}[4 k+1]_{q^{2}}[4 k+1]^{2} \frac{\left(q^{2} ; q^{4}\right)_{k}^{4}\left(q^{4} ; q^{8}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{4}\left(q^{8} ; q^{8}\right)_{k}} q^{-2 k} .
$$

Observe that (2.6) is true for any odd $n>1$. Thus, letting $a=1$ and $n=d$ in (2.6), we obtain

$$
\sum_{k=0}^{(d-1) / 2} c_{\zeta}(k)=\sum_{k=0}^{d-1} c_{\zeta}(k)=0, \quad \text { and } \quad \sum_{k=0}^{(d-1) / 2} c_{-\zeta}(k)=\sum_{k=0}^{d-1} c_{-\zeta}(k)=0 .
$$

Noticing that

$$
\frac{c_{\zeta}(\ell d+k)}{c_{\zeta}(\ell d)}=\lim _{q \rightarrow \zeta} \frac{c_{q}(\ell d+k)}{c_{q}(\ell d)}=c_{\zeta}(k)
$$

we have

$$
\sum_{k=0}^{n-1} c_{\zeta}(k)=\sum_{\ell=0}^{n / d-1} \sum_{k=0}^{d-1} c_{\zeta}(\ell d+k)=\sum_{\ell=0}^{n / d-1} c_{\zeta}(\ell d) \sum_{k=0}^{d-1} c_{\zeta}(k)=0
$$

and

$$
\sum_{k=0}^{(n-1) / 2} c_{\zeta}(k)=\sum_{\ell=0}^{(n / d-3) / 2} c_{\zeta}(\ell d) \sum_{k=0}^{d-1} c_{\zeta}(k)+\sum_{k=0}^{(d-1) / 2} c_{\zeta}((n-d) / 2+k)=0
$$

This means that both the sums $\sum_{k=0}^{n-1} c_{q}(k)$ and $\sum_{k=0}^{(n-1) / 2} c_{q}(k)$ are divisible $\Phi_{d}(q)$. Similarly, we can show that they are also divisible by $\Phi_{d}(-q)$. Since d can be any divisor of n larger than 1 , we deduce that each of them is congruent to 0 modulo

$$
\prod_{d \mid n, d>1} \Phi_{d}(q) \Phi_{d}(-q)=[n]_{q^{2}},
$$

thus establishing (2.7) and (2.8).

3. Two open problems

Swisher [13] proposed many interesting conjectures on generalizations of Van Hamme's supercongruences (A.2)-(L.2). Recently, the author and Zudilin [9] have proved some conjectures of Swisher by establishing their q-analogues. Here we would like to propose a similar conjecture.

Conjecture 3.1. Let $p \equiv 1(\bmod 4)$ and let $r, s \geqslant 1$. Then

$$
\begin{equation*}
\sum_{k=0}^{\left(p^{r}-1\right) / d}(-1)^{k}(4 k+1)^{2 s+1} \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv-p \Gamma_{p}\left(\frac{1}{4}\right)^{4} \sum_{k=0}^{\left(p^{r-1}-1\right) / d}(-1)^{k}(4 k+1)^{2 s+1} \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \quad\left(\bmod p^{3 r-2}\right) \tag{3.1}
\end{equation*}
$$

where $d=1$ or 2 .
For $s=0$, Swisher [13, (A.3)] and the author [5, Conjecture 4.1] conjectured that (3.1) holds modulo $p^{5 r}$ for $p>5$. From (1.8) we can easily see that (3.1) is true modulo p^{r} for $s=1$.

Finally, motivated by [4, Conjecture 4.5], we believe that the following generalization of Corollary 1.2 for p of the form $4 k+3$ should be true.

Conjecture 3.2. Let $p \equiv 3(\bmod 4)$ and let $r \geqslant 2$ be even. Then

$$
\sum_{k=0}^{\left(p^{r}-1\right) / d}(-1)^{k}(4 k+1)\left(8 k^{2}+4 k+1\right) \frac{\left(\frac{1}{2}\right)_{k}^{5}}{k!^{5}} \equiv 0 \quad\left(\bmod p^{2 r}\right)
$$

where $d=1$ or 2 .

References

[1] G.E. Andrews, Problems and prospects for basic hypergeometric functions, in: Theory and Application for Basic Hypergeometric Functions, R.A. Askey, ed., Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191-224.
[2] G.E. Andrews, On q-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), 332-336.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[4] V.J.W. Guo, Some generalizations of a supercongruence of van Hamme, Integral Transforms Spec. Funct. 28 (2017), 888-899.
[5] V.J.W. Guo, A q-analogue of the (A.2) supercongruence of Van Hamme for primes $p \equiv 1$ (mod 4), Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), Art. 123.
[6] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[7] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[8] V.J.W. Guo and W. Zudilin, A common q-analogue of two supercongruences, Results Math. 75 (2020), Art. 46.
[9] V.J.W. Guo and W. Zudilin, Dwork-type supercongruences through a creative q microscope, J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
[10] J.-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471 (2019), 613-622.
[11] D. McCarthy and R. Osburn, A p-adic analogue of a formula of Ramanujan, Arch. Math. 91 (2008), 492-504.
[12] A.M. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics, SpringerVerlag, New York, 2000.
[13] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015), Art. 18.
[14] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, in: Proceedings of the Conference on p-Adic Analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, 1986, pp. 189-195.
[15] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[16] X. Wang and M. Yue, A q-analogue of the (A.2) supercongruence of Van Hamme for any prime $p \equiv 3(\bmod 4)$, Int. J. Number Theory 16 (2020), 1325-1335.
[17] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A 182 (2021), Art. 105469.
[18] C. Wei, Some q-supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial, preprint, 2021, arXiv: 2104.07025.
[19] C. Wei, D. Gong, and J. Li, Summation formulae for q-Watson type ${ }_{4} \phi_{3}$-series, Discrete Math. 313 (2013), 1589-1593.

