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Abstract. Recently, Wei, Liu, and Wang gave a q-analogue of a supercongruence of
Long and Ramakrishna [Adv. Math. 290 (2016), 773–808] from the q-Pfaff–Saalschütz
identity. In this note, we present a generalization of Wei–Liu–Wang’s q-supercongruence
with one more parameter by using the q-Pfaff–Saalschütz identity and the method of
‘creative microscoping’ introduced by the second author and Zudilin again.
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1 Introduction

Let p be an odd prime and Zp the ring of all p-adic integers. Recall that Morita’s p-adic
Gamma function (see [12, Chapter 7]) is defined as follows:

Γp(0) = 1 and Γp(n) = (−1)n
∏

16k<n
p-k

k, for n = 1, 2, . . . .

Notice that N is a dense subset of Zp with the p-adic norm | · |p. For each x ∈ Zp, the
p-adic Gamma function Γp(x) is given by

Γp(x) = lim
n∈N

|x−n|p→0

Γp(n).

In 2006, Long and Ramakrishna [11, Proposition 25] established the following super-
congruence: for any odd prime p,

p−1∑

k=0

(1
3
)3
k

k!3
≡





Γp(
1
3
)6 (mod p3), if p ≡ 1 (mod 6),

−p2

3
Γp(

1
3
)6 (mod p3), if p ≡ 5 (mod 6),

(1.1)
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where (x)n = x(x + 1) · · · (x + n − 1) is the rising factorial. Later the second author [3,
Theorem 1.1] obtained a partial q-analogue of the second case of (1.1): for n ≡ 2 (mod 3),

n−1∑

k=0

(q; q3)3
k

(q3; q3)3
k

q3k ≡ 0 (mod Φn(q)2). (1.2)

Here and in what follows, the q-shifted factorial is defined as

(x; q)0 = 1 and (x; q)n = (1− x)(1− xq) · · · (1− xqn−1) for n = 1, 2, . . . ,

and Φn(q) stands for the n-th cyclotomic polynomial in q:

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. For convenience, we will also adopt the compact
notation:

(x1, x2, . . . , xm; q)n = (x1; q)n(x2; q)n · · · (xm; q)n.

Moreover, the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k

zk.

Recently, using the q-Pfaff–Saalschütz identity (see [2, Appendix (II.12)]):

3φ2

[
q−n, a, b

c, q1−nab/c
; q, q

]
=

(c/a, c/b; q)n

(c, c/ab; q)n

, (1.3)

together with the method of ‘creative microscoping’ introduced by the second author and
Zudilin [6] and the Chinese remainder theorem for coprime polynomials, Wei, Liu, and
Wang [14] gave the following complete q-analogue of (1.1): for any positive integer n with
n ≡ 1 (mod 3), modulo Φn(q)3, we have

(n−1)/3∑

k=0

(q; q3)3
k

(q3; q3)3
k

q3k ≡ q(n−1)/3
(q2; q3)2

(n−1)/3

(q3; q3)2
(n−1)/3

(
1 + [n]2

(n−1)/3∑

k=1

q3k−1

[3k − 1]2

)
, (1.4)

where [n] = (1 − qn)/(1 − q) is the q-integer, and for any positive integer n with n ≡ 2
(mod 3), modulo Φn(q)3, we have

(2n−1)/3∑

k=0

(q; q3)3
k

(q3; q3)3
k

q3k ≡ q(2n−1)/3
(q2; q3)2

(2n−1)/3

(q3; q3)2
(2n−1)/3

(
1− [2n]2

(2n−1)/3∑

k=1

q3k−1

[3k − 1]2

)
. (1.5)

For more recent q-supercongruences, we refer the reader to [1, 4, 5, 7–10,13,15] and refer-
ences therein.

In this note, using the same method of Wei–Liu–Wang, we shall prove the following
generalizations of the q-supercongruences (1.4) and (1.5).
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Theorem 1.1. Let n and s be positive integers with n ≡ 1 (mod 3) and s 6 (n − 1)/3.
Then, modulo Φn(q)3,

(n−1)/3∑

k=s

(q; q3)3
kq

3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (q; q3)3
s(q

2, q2+3s; q3)(n−1)/3−s

(q3; q3)(n−1)/3+s(q3; q3)(n−1)/3

qA

(
1 + [n]2

(n−1)/3−s∑

k=1

q3k+3s−1

[3k + 3s− 1]2

)
, (1.6)

where A = 3s + (1 + 3s)((n− 1)/3− s).

It is easy to see that the s = 0 case of (1.6) reduces to (1.4). Letting n = p be an odd
prime and taking q → 1 in (1.6), we obtain the following supercongruence: for any prime
p ≡ 1 (mod 3) and nonnegative integer s 6 (p− 1)/3,

(p−1)/3∑

k=s

(1
3
)3
k

(k − s)!(k + s)!k!

≡ (1
3
)3
s(

2
3
)(p−1)/3−s(

2
3
)(p−1)/3

(2
3
)s(1)(p−1)/3+s(1)(p−1)/3

(
1 +

(p−1)/3−s∑

k=1

p2

(3k + 3s− 1)2

)
(mod p3).

Theorem 1.2. Let n and s be positive integers with n ≡ 2 (mod 3) and s 6 (n − 2)/3.
Then, modulo Φn(q)3,

(2n−1)/3∑

k=s

(q; q3)3
kq

3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (q; q3)3
s(q

2, q2+3s; q3)(2n−1)/3−s

(q3; q3)(2n−1)/3+s(q3; q3)(2n−1)/3

qB

(
1− [2n]2

(2n−1)/3−s∑

k=1

q3k+3s−1

[3k + 3s− 1]2

)
, (1.7)

where B = 3s + (1 + 3s)((2n− 1)/3− s).

When s = 0, the q-supercongruence (1.7) reduces to (1.5). Similarly as before, from
(1.7) we can deduce the following supercongruence: for any prime p ≡ 2 (mod 3) and
nonnegative integer s 6 (p− 2)/3,

(2p−1)/3∑

k=s

(1
3
)3
k

(k − s)!(k + s)!k!

≡ (1
3
)3
s(

2
3
)(2p−1)/3−s(

2
3
)(2p−1)/3

(2
3
)s(1)(2p−1)/3+s(1)(2p−1)/3

(
1−

(2p−1)/3−s∑

k=1

4p2

(3k + 3s− 1)2

)
(mod p3).
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2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first give two lemmas.

Lemma 2.1. Let n and s be positive integers with n ≡ 1 (mod 3) and s 6 (n − 1)/3.
Then, modulo (1− aqn)(a− qn),

(n−1)/3∑

k=s

(aq, q/a, q/b; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3/b; q3)k

≡ (aq, q/a, q/b; q3)s(q
2, bq2+3s; q3)(n−1)/3−sq

3s

(q3; q3)(n−1)/3+s(q3/b; q3)(n−1)/3

(
q1+3s

b

)(n−1)/3−s

. (2.1)

Proof. When a = q−n or a = qn, the left-hand side of (2.1) is equal to

(n−1)/3∑

k=s

(q1−n, q1+n, q/b; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3/b; q3)k

=

(n−1)/3−s∑

k=0

(q1−n, q1+n, q/b; q3)k+sq
3k+3s

(q3; q3)k(q3; q3)k+2s(q3/b; q3)k+s

=
(q1−n, q1+n, q/b; q3)sq

3s

(q3; q3)2s(q3/b; q3)s
3φ2

[
q1−n+3s, q1+n+3s, q1+3s/b

q3+6s, q3+3s/b
; q3, q3

]
. (2.2)

In view of the q-Pfaff–Saalschütz identity (1.3), the right-hand side of (2.2) can be sim-
plified as

(q1−n, q1+n, q/b; q3)sq
3s

(q3; q3)2s(q3/b; q3)s

· (q2+3s−n, bq2+3s; q3)(n−1)/3−s

(q3+6s, bq1−n; q3)(n−1)/3−s

=
(q1−n, q1+n, q/b; q3)s(q

2, bq2+3s; q3)(n−1)/3−sq
3s

(q3; q3)(n−1)/3+s(q3/b; q3)(n−1)/3

(
q1+3s

b

)(n−1)/3−s

,

which is equal to the right-hand side of (2.1) for a = q−n or a = qn. Namely, the q-
congruence (2.1) holds modulo 1− aqn and a− qn. Since 1− aqn and a− qn are coprime
polynomials in q, we complete the proof.

Lemma 2.2. Let n and s be positive integers with n ≡ 1 (mod 3) and s 6 (n − 1)/3.
Then, modulo 1− bqn,

(n−1)/3∑

k=s

(aq, q/a, q/b; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3/b; q3)k

≡ (aq, q/a, q/b; q3)s(aq2+3s, q2+3s/a; q3)(n−1)/3−sq
3s

(q3; q3)(n−1)/3+s(q3/b; q3)s(q; q3)(n−1)/3−s

. (2.3)
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Proof. When b = qn, the left-hand side of (2.3) is equal to

(n−1)/3∑

k=s

(aq, q/a, q1−n; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3−n; q3)k

=

(n−1)/3−s∑

k=0

(aq, q/a, q1−n; q3)k+sq
3k+3s

(q3; q3)k(q3; q3)k+2s(q3−n; q3)k+s

=
(aq, q/a, q1−n; q3)sq

3s

(q3; q3)2s(q3−n; q3)s
3φ2

[
aq1+3s, q1+3s/a, q1−n+3s

q3+6s, q3−n+3s ; q3, q3

]
. (2.4)

By (1.3), the right-hand side of (2.4) can be simplified as

(aq, q/a, q1−n; q3)sq
3s

(q3; q3)2s(q3−n; q3)s

· (aq2+3s, q2+3s/a; q3)(n−1)/3−s

(q3+6s; q3)(n−1)/3−s(q; q3)(n−1)/3−s

,

which is just the right-hand side of (2.3) for b = qn. Namely, the q-congruence (2.3)
holds.

Proof of Theorem 1.1. It is obvious that the polynomials (1− aqn)(a− qn) and b− qn are
coprime polynomials in q. Noticing the q-congruences

(b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)
≡ 1 (mod (1− aqn)(a− qn)),

(1− aqn)(a− qn)

(a− b)(1− ab)
≡ 1 (mod b− qn),

and applying the Chinese remainder theorem for coprime polynomials, we are led to the
following q-congruence: modulo (1− aqn)(a− qn)(1− bqn),

(n−1)/3∑

k=s

(aq, q/a, q/b; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3/b; q3)k

≡ (b− qn)(ab− 1− a2 + aqn)

(a− b)(1− ab)

× (aq, q/a, q/b; q3)s(q
2, bq2+3s; q3)(n−1)/3−sq

3s

(q3; q3)(n−1)/3+s(q3/b; q3)(n−1)/3

(
q1+3s

b

)(n−1)/3−s

+
(1− aqn)(a− qn)

(a− b)(1− ab)

(aq, q/a, q/b; q3)s(aq2+3s, q2+3s/a; q3)(n−1)/3−sq
3s

(q3; q3)(n−1)/3+s(q3/b; q3)s(q; q3)(n−1)/3−s

. (2.5)

Taking b = 1 in (2.5) and using the identity

(1− qn)(1 + a2 − a− aqn) = (1− a)2 + (1− aqn)(a− qn),
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we arrive at the following q-congruence: modulo Φn(q)(1− aqn)(a− qn),

(n−1)/3∑

k=s

(aq, q/a, q; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (aq, q/a, q; q3)s(q
2, q2+3s; q3)(n−1)/3−sq

3s+(1+3s)((n−1)/3−s)

(q3; q3)(n−1)/3+s(q3; q3)(n−1)/3

+
(1− aqn)(a− qn)(aq, q/a, q; q3)sq

3s

(1− a)2(q3; q3)(n−1)/3+s

×
(

(q2+3s, q2+3s; q3)(n−1)/3−s

(q3; q3)s(q; q3)(n−1)/3−s

− (aq2+3s, q2+3s/a; q3)(n−1)/3−s

(q3; q3)s(q; q3)(n−1)/3−s

)
, (2.6)

where we have utilized the q-congruence

q(1+3s)((n−1)/3−s) (q
2; q3)(n−1)/3−s

(q3; q3)(n−1)/3

=
q(1+3s)((n−1)/3−s)(q2; q3)(n−1)/3−s

(q3; q3)s(q3+3s; q3)(n−1)/3−s

=
(q2−n+3s; q3)(n−1)/3−s

(q3; q3)s(q1−n; q3)(n−1)/3−s

≡ (q2+3s; q3)(n−1)/3−s

(q3; q3)s(q; q3)(n−1)/3−s

(mod Φn(q)) (2.7)

in the brackets.
By the L’Hôspital rule, we get

lim
a→1

(1− aqn)(a− qn)

(1− a)2

(
(q2+3s, q2+3s; q3)(n−1)/3−s − (aq2+3s, q2+3s/a; q3)(n−1)/3−s

)

= [n]2(q2+3s; q3)2
(n−1)/3−s

(n−1)/3−s∑

k=1

q3k+3s−1

[3k + 3s− 1]2
.

Letting a → 1 in (3.1) and applying the above limit, we obtain the following result:
modulo Φn(q)3,

(n−1)/3∑

k=s

(q; q3)3
kq

3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (q; q3)3
s(q

2, q2+3s; q3)(n−1)/3−s

(q3; q3)(n−1)/3+s(q3; q3)(n−1)/3

q3s+(1+3s)((n−1)/3−s)

+
[n]2(q; q3)3

s(q
2+3s; q3)2

(n−1)/3−sq
3s

(q3; q3)(n−1)/3+s(q3; q3)s(q; q3)(n−1)/3−s

(n−1)/3−s∑

k=1

q3k+3s−1

[3k + 3s− 1]2
. (2.8)

Substituting (2.7) into (2.8) and noticing that the denominator of
∑(n−1)/3−s

k=1
q3k+3s−1

[3k+3s−1]2
is

coprime with Φn(q), we complete the proof of the theorem.
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3 Proof of Theorem 1.2

Note that n ≡ 2 (mod 3) and s 6 (n − 2)/3. Similarly to the proof of Theorem 1.1, we
can prove that, modulo (1− aq2n)(a− q2n)(1− bq2n),

(2n−1)/3∑

k=s

(aq, q/a, q/b; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3/b; q3)k

≡ (b− q2n)(ab− 1− a2 + aq2n)

(a− b)(1− ab)

× (aq, q/a, q/b; q3)s(q
2, bq2+3s; q3)(2n−1)/3−sq

3s

(q3; q3)(2n−1)/3+s(q3/b; q3)(2n−1)/3

(
q1+3s

b

)(2n−1)/3−s

+
(1− aq2n)(a− q2n)

(a− b)(1− ab)

(aq, q/a, q/b; q3)s(aq2+3s, q2+3s/a; q3)(2n−1)/3−sq
3s

(q3; q3)(2n−1)/3+s(q3/b; q3)s(q; q3)(2n−1)/3−s

. (3.1)

Then take b = 1 in (3.1) to obtain the following result: modulo Φn(q)(1− aq2n)(a− q2n),

(2n−1)/3∑

k=s

(aq, q/a, q; q3)kq
3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (aq, q/a, q; q3)s(q
2, q2+3s; q3)(2n−1)/3−sq

3s+(1+3s)((2n−1)/3−s)

(q3; q3)(2n−1)/3+s(q3; q3)(2n−1)/3

+
(1− aq2n)(a− q2n)(aq, q/a, q; q3)sq

3s

(1− a)2(q3; q3)(2n−1)/3+s

×
(

(q2+3s, q2+3s; q3)(2n−1)/3−s

(q3; q3)s(q; q3)(2n−1)/3−s

− (aq2+3s, q2+3s/a; q3)(2n−1)/3−s

(q3; q3)s(q; q3)(2n−1)/3−s

)
, (3.2)

where we have applied the q-congruence

q(1+3s)((2n−1)/3−s) (q
2; q3)(2n−1)/3−s

(q3; q3)(2n−1)/3

≡ (q2+3s; q3)(2n−1)/3−s

(q3; q3)s(q; q3)(2n−1)/3−s

(≡ 0) (mod Φn(q))

in the brackets.
Letting a → 1 in (3.2) and applying the L’Hôspital rule, we arrive at the following

q-supercongruence: modulo Φn(q)3,

(2n−1)/3∑

k=s

(q; q3)3
kq

3k

(q3; q3)k−s(q3; q3)k+s(q3; q3)k

≡ (q; q3)3
s(q

2, q2+3s; q3)(2n−1)/3−s

(q3; q3)(2n−1)/3+s(q3; q3)(2n−1)/3

q3s+(1+3s)((2n−1)/3−s)

+
[2n]2(q; q3)3

s(q
2+3s; q3)2

(2n−1)/3−sq
3s

(q3; q3)(2n−1)/3+s(q3; q3)s(q; q3)(2n−1)/3−s

(2n−1)/3−s∑

k=1

q3k+3s−1

[3k + 3s− 1]2
. (3.3)

7



Moreover, it is routine to verify the congruence:

(q3; q3)s(q; q
3)(2n−1)/3−s

= (q3; q3)s(1− q)(1− q4) · · · (1− q2n−3−3s)

≡ (q3; q3)s(1− q1−2n)(1− q4−2n) · · · (1− q−3−3s)

= (−1)(2n−1)/3−sq−(2n+2+3s)((2n−1)/3−s)/2(q3; q3)(2n−1)/3 (mod Φn(q)), (3.4)

and

(q2+3s; q3)(2n−1)/3−s

(q2; q3)(2n−1)/3−s

=
(q2n+1−3s; q3)s

(q2; q3)s

≡ (q1−3s; q3)s

(q2; q3)s

= (−1)sq−s(3s+1)/2 (mod Φn(q)).

(3.5)

Substituting (3.4) and (3.5) into (3.3) and noticing that (−1)(2n−1)/3 = −1, we finish the
proof of Theorem 1.2.
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