Further ¢-supercongruences from the ¢g-Pfaff-Saalschiitz identity
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Abstract. Recently, Wei, Liu, and Wang gave a g-analogue of a supercongruence of
Long and Ramakrishna [Adv. Math. 290 (2016), 773-808] from the ¢-Pfaff-Saalschiitz
identity. In this note, we present a generalization of Wei-Liu-Wang’s g-supercongruence
with one more parameter by using the ¢-Pfaff-Saalschiitz identity and the method of
‘creative microscoping’ introduced by the second author and Zudilin again.
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1 Introduction

Let p be an odd prime and Z, the ring of all p-adic integers. Recall that Morita’s p-adic
Gamma function (see [12, Chapter 7]) is defined as follows:

I'y0)=1 and I'y(n)=(-1)" H k, forn=1,2,....
1<k<n
ptk
Notice that N is a dense subset of Z, with the p-adic norm | - |,. For each x € Z,, the
p-adic Gamma function I'y(x) is given by
L(e)= lim Tyn).
|z—n|p—0

In 2006, Long and Ramakrishna [11, Proposition 25| established the following super-

congruence: for any odd prime p,

p—1 O/ I‘p(%)6 (mod p?), ifp=1 (mod 6), L)
k=0 Kt —%QFP(%)G (mod p*), ifp=>5 (mod 6),
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where (z), = z(x +1)---(x + n — 1) is the rising factorial. Later the second author [3,
Theorem 1.1] obtained a partial g-analogue of the second case of (1.1): for n =2 (mod 3),

n—1

Z (g:g )g =0 (mod ®,(q)?). (1.2)

“ (6% ¢%);
Here and in what follows, the ¢-shifted factorial is defined as
(r;9)0=1 and (2;¢)n=(1—2)(1—2q)--- (1 —2¢" ") forn=12,...,

and ®,,(q) stands for the n-th cyclotomic polynomial in g¢:
()= [ (@—¢")
1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. For convenience, we will also adopt the compact
notation:

(1,22, T On = (215, On(T2; O -+ (T O

Moreover, the basic hypergeometric series ,,1¢, is defined as

o
A1, A2, - .., Qr41 (a17a2a"-7ar+1;q>k k
4, 2| = Z .
r+1¢r |: b17b27--'7br :| ; (q, bl,bg,...,br;q)k

Recently, using the ¢-Pfaff-Saalschiitz identity (see [2, Appendix (II.12)]):
™ a,b c/a,c/b;q),
3¢2{ e 14 Q] = Ma (1.3)

¢,q" "abfe T (c,c/ab;q),

together with the method of ‘creative microscoping’ introduced by the second author and
Zudilin [6] and the Chinese remainder theorem for coprime polynomials, Wei, Liu, and
Wang [14] gave the following complete g-analogue of (1.1): for any positive integer n with
n =1 (mod 3), modulo ®,(q)*, we have

(n—1)/3 2. .3\2 (n—1)/3 k—1
()} s (n—1)/3 (a%q )(nfl)/3 2 q’
=q" — 1 —_— 1.4
Z 334 q . )2 +[n] ; [3]@_1}2 ) ( )

3. 3
=0 (% a*); (%4 (n—1)/3
where [n] = (1 —¢")/(1 — q) is the g-integer, and for any positive integer n with n = 2
(mod 3), modulo ®,,(q)*, we have
(2n—1)/3 2. .32 (2n—1)/3 _
Z (¢; °)i qsk — 2n-1/3 (4%q >(2n—1)/3 1 — [2n)? Z ¢! ‘ (1.5)
=0 (% ¢*); (qgsqg)?ml)/s k=1 3k — 1]

For more recent g-supercongruences, we refer the reader to [1,4,5,7-10,13,15] and refer-
ences therein.

In this note, using the same method of Wei-Liu-Wang, we shall prove the following
generalizations of the g-supercongruences (1.4) and (1.5).
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Theorem 1.1. Let n and s be positive integers with n =1 (mod 3) and s < (n —1)/3.
Then, modulo ®,(q)3,

(n-1)/3 (q: )3

2 5

— (0% )h—s(0% P )irs (2% 4

24-3s.

(n—1)/3s o
(QQ qg)z(q27q 7q3)(n—1)/3—s A 9 q3k+3 1

3.3 3.3 | 1+ [n] Z oL a3 | (1.6)
(2% @) (n-1)/3+5(0% @) (n-1)3 — 3k + 3s — 1]

where A =3s+ (1+3s)((n—1)/3 —s).

It is easy to see that the s = 0 case of (1.6) reduces to (1.4). Letting n = p be an odd
prime and taking ¢ — 1 in (1.6), we obtain the following supercongruence: for any prime
p =1 (mod 3) and nonnegative integer s < (p — 1)/3,

(r—1)/3 (

)i
2 (k — s)I(k + 5)I&!

k=s

(p—1)/3—s
(%)2(%)(%1)/373(%)(1,71)/3 p? 5
= 1+ mod p°).
(%)s(1>(p—1)/3+s(1)(;7—1)/3 kz:; (3k +3s —1)2 ( )

Theorem 1.2. Let n and s be positive integers with n = 2 (mod 3) and s < (n — 2)/3.
Then, modulo ®,,(¢)?,

e (¢:6°)3*
Z (% ¢°)

— k=307 0% )krs (0% )i

. 3\3(.2 243s. .3 (2n—1)/3-s 3k+3s—1
(¢ %)@ 1 @) en-1)/3-s v (1 ~ np? q > (.7)
—1

(2% @*)@n—1)/3+s(¢*; ¢*) 2n—1)/3 £ [3k + 3s — 1]2

where B =3s+ (1+3s)((2n—1)/3 — s).

When s = 0, the g-supercongruence (1.7) reduces to (1.5). Similarly as before, from
(1.7) we can deduce the following supercongruence: for any prime p = 2 (mod 3) and
nonnegative integer s < (p — 2)/3,

(2p—1)/3 1\3
3 (3)k
—~ (k= s)!(k+ s)lk!

(2p—1)/3—s
e (TS ) )
%)S(1)(2p71)/3+s(1)(2p71)/3 — (3k +3s—1)2



2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first give two lemmas.

Lemma 2.1. Let n and s be positive integers with n = 1 (mod 3) and s < (n —1)/3.
Then, modulo (1 — aq"™)(a — ¢"),

(n—1)/3
(aq, q/a, a/b; ¢ )rg*
e Qkaq Q)k-‘rs(g/bQ)

S

_ (ag, q/a,q/b;¢*)s(@* ba****; @) (1) j3-s0” <q1+3s)(””/3s (2.1)
(@583 n-1)/3+s(@ /05 ) (n-1)/3 b

Proof. When a = ¢~" or a = ¢", the left-hand side of (2.1) is equal to
(n—1)/3 o in
Z (¢" " q"" q/b; g™
(0% @) (0% @*)irs (/03 6 )i

(n—

1)/3=s —n n s
3 (@ ™ ", q/b; )iy sg* TP
(@)@ ¢ )kr2s (0P /65 6 )rvs

(ql , 1+n’ q/b7 q3)8q3 1—n+3s’ q1+n+3s’ q1+3s/b

q 3
= 1 q°, . 2.2
(@3 4%)2s (a3 /b5 ¢%)s 392 ¢, *35 /b ¢ (22)

In view of the ¢-Pfaff-Saalschiitz identity (1.3), the right-hand side of (2.2) can be sim-
plified as

(@' """ /b 6%)sa® (@77 06 %) 1) 3
(4% 4%)2s(a%/ b5 ¢%)s (%195, b¢ ™ ¢%) (n-1)/3—5
_ @ a6 %) (@ 067 ) 1y -5 <q1+35>(”_1)/ o
(q3;q3)(n—1)/3+s( 3/57(1 )(n—1)/3 b 7
)

which is equal to the right-hand side of (2.1) for a = ¢~™ or @ = ¢". Namely, the ¢-
congruence (2.1) holds modulo 1 — ag¢™ and a — ¢". Since 1 — aq"™ and a — ¢" are coprime
polynomials in ¢, we complete the proof. O

Lemma 2.2. Let n and s be positive integers with n = 1 (mod 3) and s < (n — 1)/3.
Then, modulo 1 — bq"™,

(n—1)/3
aq q/a /b, ¢*)eg**
(0% @) r-s (0% 4w (63 /0;. 6

(ag, q/a,q/b; ¢*)s(aq*™, ¢*73 a; ¢*) (n-1)/3—s4>

= . 2.3
(@ P)on5es P I5 NG ) rysss (23)




Proof. When b = ¢", the left-hand side of (2.3) is equal to
(n—1)/3
aq q/a ¢ " 4% )kg*
= (% @*)i—s (0% @* s (¥ )
(n—1)/3—s

T (aq,q/a,q" " ¢°)irsq
(@) )25 6 ks

1-n. 3 3s 1+3s 1+3s 1—n+3s
aq,q/a,q 147 )sq a a
= ( 3. /3 3—n. )3 3¢2 4 / nf?as ;q37 (]3 . (24)
(q 1 q )25((] g )s q

By (1.3), the right-hand side of (2.4) can be simplified as

3k+3s

3+6s
) C]

(ag,q/a,q¢" " ¢* (ag®3, %7 /a; ¢*) (n—1)/3—s

7°)sq
(36%)2s(® ™ %) s (15563 (n-1)/3-5(0 @) (n—1)/3—5

which is just the right-hand side of (2.3) for b = ¢". Namely, the g-congruence (2.3)
holds. O

Proof of Theorem 1.1. It is obvious that the polynomials (1 —ag™)(a —¢") and b— ¢™ are
coprime polynomials in ¢q. Noticing the g-congruences

(b—q")(ab—1—a?+ aq")

=1 (mod (1—aq")(a—q")),

(a —b)(1 — ab)
(1_aqn>(a_qn) _ n
aon—ay) — ¢ (medb—d"),

and applying the Chinese remainder theorem for coprime polynomials, we are led to the
following g-congruence: modulo (1 — ag™)(a — ¢")(1 — bg™),

(n—1)/3
3 (aq,q/a, q/b; ¢*)kg*
(¢

(0% ) k(0% P (@ /¢
(b—q")(ab—1—a*+aq")
(a —b)(1 — ab)

X (aq, a/a,q/b;¢%)s(4*,04° 1 ¢°) n-1)/3-54 (q1+38)(n_1)/3_5
(¢% ) n-1y/345(6%/0; ) (n1)3 b

(1 —aqg")(a —q") (aq, q/a, q/b; ¢*)s(ag®?, ¢*7% Ja; ¢*) -1y /3-5G**
(a—0)(1— ab) (@35 6%) n=1) /345 (/05 ¢3) s (€5 ¢3) (n—1) 3—5

Taking b =1 in (2.5) and using the identity

+

(2.5)

(1—q")(1+a"—a—aq") = (1-a)"+(1-aqg")(a—q"),



we arrive at the following g-congruence: modulo ®,,(¢)(1 — aq¢™)(a — ¢"),

(n—1)/3
aq, q/a, q; ¢*)pg**

Pyl kzsq C]) (Qaqg)k

2+3s. 3s+(1+3s)((n—1)/3—s)

_ (ag,q/a,4,6°)s(a*, @7 @) -1y /354
(6% @) (n-1)/3+5(6*: @*) (n-1)/3

(1 —aq")(a—q")(aq,q/a,q;¢°)s¢*
(1 —a)*(g% qg)(nfl)/3+s

(@5, % ) ys—s (a@®T5,¢77 /a5 %) 1y j3—s
x 3. 3 - 3 ; (2.6)
(4% ¢%)s(¢: 6®) (n-1)/3-s (0% 4%)s(4 ¢®) (n-1)/3-s
where we have utilized the g-congruence
q(1+38)((n—1)/3—s) (q2; q3)(n71)/3*s _ q(1+38)((n_1)/3_8) (923 (13)(71/*1)/3*8
(4% ¢*)(n-1)/3 (2% 6) (@35, ¢%) (n-1)/3-s
_ (q2 n+3s’q )( —-1)/3—s
(@3 ¢®) (@7 @3) (n—1)/3—s
2+33
= (g )13 (mod ®,,(q)) (2.7)

(q3§ q3>s(qa q )(n—l)/S—s
in the brackets.
By the L’Hospital rule, we get

2+35 2+3s

. (1—ag™)(a—q" s s
lim ( )( ) ((q2+3 s

a—1 (1—a)? /a;q ) (n— 1)/375)

3 Qg)(n71)/3fs - (aq

s o o (n—1)/3—s iias
_ +3s.
= [P (@50 e D Bk+3s 17

k=1

Letting @ — 1 in (3.1) and applying the above limit, we obtain the following result:
modulo ®,,(¢)?,

(n—-1)/3 3 3k

3 (:4%)3a

(%) ks (0% P (P 6 )i
(q;q3)§(q2 q2+3s’q )(n—l)/3—s 3s+(143s)((n—1)/3—s)
(@35 @%) (n—1) /345 (@5 @) (n—1)3

R e R L N L
(@ )13+ P)s (6 P)n-vyj3-s = Bk +3s =12

(2.8)

Substituting (2.7) into (2.8) and noticing that the denominator of 37" "/3~ % is

coprime with ®,,(¢), we complete the proof of the theorem. ]



3 Proof of Theorem 1.2
Note that n = 2 (mod 3) and s < (n — 2)/3. Similarly to the proof of Theorem 1.1, we
can prove that, modulo (1 — ag¢*)(a — ¢**)(1 — bg*™),

(2n—1)/3
(aq,q/a,q/b; ¢*)kg*

; (0% @®)1—s(a% @*)k+s(a° /05 P

(b—q¢*")(ab — 1 — a* + ag*™)

= (a—0)(1—ab)
(ag,q/a,q/b; ¢*)s (%, 0>, ¢*) on—1y /3G (q”?’s) (Bn=1)/5s
(@2 03) 2n-1)/3+5 (3 /b; ¢®) (2n-1)/3 b
(3.1)

(1 —ag®)(a — ¢*) (aq,q/a, q/b; ¢*)s(aq®t?, ¢*T35 [a; ¢*) 2n—1)/3-54°
(@ —b)(1 — ab) (0% @) 2n—1) 3+ (@ /05 6) s (@ @®) (2n—-1) 13—

Then take b = 1 in (3.1) to obtain the following result: modulo ®,(q)(1 — a¢®")(a — ¢*"),

(2n—1)/3
3 (agq.q/a, q; ¢*)pg®
(% ) i—s(0®; ) ts (@5 )i

k=s
_ (ag,q/a,4;6°)s(¢* 75 @) 2n—1) /354
(2% @) 2n-1)3+s(@; @) 2n-1)/3

3s+(1+3s)((2n—1)/3—s)

") (aq, q/a, ¢; ¢%)s¢**

(1 —ag*)(a —
(1 —a)*(¢% ¢%)(2n—1)/3+s
(@, % ) on1y3—s  (a@*T5, %1% /a5 %) (on—1)/3—s 39
@@ ENCTORCY: -
197 )s\45497 ) (2n—1)/3—s q-;q S(CLQ)(anl)/st

where we have applied the g-congruence
243s. 3
)03 0y (1mod @,(q))

(1+35)((2n—1)/3—s) (% Q3)(2n—1)/3—s _ (q
(@) en-1ys (@36%)s(a563) 2n-1)/3-s

in the brackets.
Letting a — 1 in (3.2) and applying the L’Hospital rule, we arrive at the following

g-supercongruence: modulo ®@,,(q)3,

(2n—1)/3
(¢: )i

; (0% %) k—s(@% ®)rrs(0% ¢
((]; q3)§(q2’ q2+385 q3)(2n71)/37s q33+(1+3s)((2n_1)/3_s)

(613; q3)(2n—1)/3+s(q3; q3)(2n—1)/3
(2n—1)/3=s 31
(3.3)

N 2n]%(4; 4*)2(6* % ¢*) o1y 30> 5"
(@3 @) 2n—1)/3+s(@% ) s (@ ¢) (2n—1) /3—s — 3k + 3s — 1]*




Moreover, it is routine to verify the congruence:
(0% 0%)s(@:@°) 2n-1) 735
= (@)1=l —¢") - (1 -
= (%)L = ¢ )L =g ") (L= q7°7)

_ (_1)(2nf1)/375qf(2n+2+35)((2n71)/375)/2(q3; q3)(2n—1)/3 (mod (I)n(q))7 (34)
and
(q2+38;q3)(2n71)/375 . (q2n+1735;q3>5 — (q1735;q3)5 o (_1)3 —s(3s+1)/2 d o
2. 3 - 2. 3 = 2. 3 = q (mod ®@,(q)).
(4% ¢®) 2n-1)/3—s (4% 43)s (4% ¢3)s
(3.5)

Substituting (3.4) and (3.5) into (3.3) and noticing that (—1)?"~1/3 = —1, we finish the
proof of Theorem 1.2.
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