A ¢-CONGRUENCE IMPLYING THE BEUKERS-VAN HAMME
CONGRUENCE
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ABSTRACT. By making use of Andrews’ terminating g-analogue of Watson’s for-
mula and a double sum identity, we give a g-analogue of the following congruence:
for any prime p =1 (mod 4),

<pkzi/2 (P2 (@0 ) = Sk (B0 moan)

In view of the Chowla—Dwork—Evans congruence, our g-congruence may somewhat
be regarded as a g-analogue of the Beukers—Van Hamme congruence:

<p§/2 ((p _kl)/2) <(p - 1;/2 + k:) = (—1)-D/t (Qa _ 2%) (mod p?),

k=0
where p = a? + b with a,b € Z and a = 1 (mod 4).

1. INTRODUCTION

The Legendre polynomials P, (x) can be defined as follows:

ro- 2 () (5

In different books on orthogonal polynomials, there are quite different definitions of
Legendre polynomials (see [17] for a collection of such definitions). The numbers

- 0)(1Y

k=0

also known as the (central) Delannoy numbers (see [20]) play an important role
in proving that log2 is irrational with measure of irrationality 4.622... (see [1]).
Carlitz [3] proved that the numbers ¢, satisfy the following congruence: for any
prime p = 1 (mod 4),

cp-1yy2 = (=1)P"V/*. 26 (mod p), (1.1)
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where p = a® + b? with a,b € Z and a = 1 (mod 4). Van Hamme [24] further
established a stronger version of (1.1):

Cpvje = (DT a+bi) = ()P (20— L) (mod p?),  (12)

where i is a p-adic integer such that i> = —1. An Atkin and Swinnerton-Dyer type
generalization of (1.2) was given by Coster and Van Hamme [5]. It is clear that
(1.2) implies the following congruence:

C%p—1)/2 =4a®> —2p (mod p?),

which was originally conjectured by Beukers.
For any odd prime p and 0 < k < (p — 1)/2, one can easily check that

(p—1)/2\((p—-1)/2+k\ 17 ((0+1)/2—)p—1)/2+7)
() -1

j=1

T = () o moa s

;2
and so
(p—1)/2 2
1 /2k
Co-n2= Y 1_6’“( k) (—1F  (mod p?).
k=0

Twenty-five years after Van Hamme’s work [24], Z.-H. Sun [21] reproved the following
result: for any prime p =1 (mod 4),

(p—1)/2

S (L) e o e ) e

k=0

where p = a® +b? with a,b € Z and a =1 (mod 4). Note that the congruence (1.3)
also appears as a conjecture in [22].
Recall that the g-shifted factorials are defined as (a;q)o = 1 and

(a;Q)n=(1—a)1—aq)---(1—aqg" ") forn=1,2,...,
and the q-binomial coefficients mq are defined by

m - m = (q;q;Z;(;]? Z)H’ it0<k<n,

k k

0, otherwise.

Moreover, the n-th cyclotomic polynomial ®,(q) may be given by

Oug)= [ (a—¢)

1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. It is well known that ®,(1) = p for any
prime p.
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The objective of this note is to give the following g-congruence which implies the
Beukers—Van Hamme congruence (1.2).

Theorem 1.1. Let n be an integer with n =1 (mod 4) and n > 1. Then

(n—1)/2
[(” - 1)/2} [(” -1)/2+ k} gk
k=0 k q? k q?
(n—1)/4 (¢% q4)(n71)/4 9
=q —————  (mod ®,(q)7). (1.4)

(% 4*) (n-1)/
Letting n = p be a prime and taking ¢ — 1 in (1.4), we are led to

_ 1 (flp-1))2 2
Co-1)/2 = 55172 (é B 1)/4> (mod p?). (1.5)

Note that Chowla, Dwork, and Evans [4] have proved the following result:

@: 3@ = ¥ <2a - 2%) (mod p?), (1.6)

where p =1 (mod 4) and p = a® + b* with a =1 (mod 4). Therefore,

1 (p—1)/2\ 2P 141 p
200-1)/2 ((p —1)/4) T 2D/ (2“ - %) ' (L.7)
For p =1 (mod 4), we have 2P~1/2 = (—1)P=1/% (mod p) and so
2P~ 41 _
W = (—1)(10 /4 (mOd p2) (18)

Combining (1.5), (1.7), and (1.8), we see that the g-congruence (1.4) implies the
Beukers—Van Hamme congruence (1.2).
We have another weaker result as follows.

Theorem 1.2. Let n be a positive integer with n = 3 (mod 4). Then

(niﬂ [(n — 1) /z] | [(n - 1}1 2+ k:] A0 mod b)) (19

k
k=0 q?

Our proof of Theorems 1.1 and 1.2 is based on Andrews’ terminating g-analogue
of Watson’s formula (see [2] or [6, (II.17)]):

n 2t b 0, if n is odd,
q ;a4 y Uy U _ n
4¢3[ ag, —aq, b2 7Q7Q:| =4 0"(q,a*¢/b%¢%)nj2 o (1.10)
’ ’ 5 5 T2 5 , if n is even,
(G, q-, b q;9q )n/2

where the basic hypergeometric series ,.1¢, is defined as

o0 k
ai, g, ..., 041 (a1,a27-~,ar+1;q)k2
“q. 2| =
r+1¢r|: bl,bg,...7br @ 1 kZ:O (q,bl,...,br;q)k ’

and (a1,a9,...,0m;¢)n = (a1;¢)n(a2;@)n -+ (Qm; Qn-
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2. Two LEMMAS
Besides Andrews’ summation formula, we also need another two lemmas.

Lemma 2.1. Let n be a positive odd integer. Then, modulo ®,(q)?,

(n—1)/2 (n—1)/2
Z (q; q2)% (_q)k = (_1)(n—1)/2q(1—n2)/4 Z (q; q2)k(q2; q4)kq2k. (2‘1>
—~ (% 4% —~ (%)
Proof. The first author [8, Theorem 4.2] has proved that, modulo (1 — ag")(a — ¢"),
n—1 2 2 n—1
aq;q9~)k\q/a, 9" )k n— n2 aq, qaq k
Z ( ()2( 2/2 ) o = (—1) (D20 /42 / ) (2 ).
po 7% %)} — I
(2.2)

Note that (1 — ¢")? has the factor ®,(q)?, which is coprime with the denominators
on both sides of (2.2). Letting a = 1 and x = —¢q in (2.2), we arrive at (2.1). O

Lemma 2.2. For any positive integer n, there holds
2n
U ,q)qqu 7" on (@ 4")n
— (2.3)
,; (4% ¢*) Z ¢! (¢%4")n

Proof. Let L, and R,, denote the left-hand side and the right-hand side of (2.3),
respectively. Using the symbolic summation package Sigma developed by Schneider
[19], we can obtain the following recurrence satisfied by L,:

. q10<1 . q4n+2)(1 _ q4n+4)(1 _ q4n+6)(1 _ q4n+9)Ln

4 q4(1 o q4n+6)<1 + 2q4 - q4n+5 _ 4q4n+8 _ 2q4n+10 o 2q4n+l3
+ 2q8n+12 + 2q8n+15 4 4q8n+17 + q8n+20 _ 2q12n+21 + q12n+25)Ln+1
— q2(1 — q4n+8)(2 + gt — 2g*D — gt t8 4t t10 _ gt

§ B2y ggBnHls o SnHIT | 9 8nd20 | (12nd21  gol2nt25yp

+ (1= g1 = ¢" ) (1 = ¢ (1 = ¢ ) Ly = 0. (24)
It is trivial to verify that {R,},>1 also satisfies the recurrence (2.4) and L, = R,
for n = 1,2,3. This completes the proof of (2.3). O

3. PROOF OF THEOREMS 1.1 AND 1.2
Proof of Theorem 1.1. It is clear that, for any k£ > 0 and indeterminates a, b,

(aq,bq; ¢*)i = (¢, abg; ¢*)r  (mod (1 —a)(1—b)).

Putting @ = ¢~™ and b = ¢" in the above congruence and noticing that 1 — ¢™™"
contains the factor ®,,(q), we get

(@™ "™ Ak = (¢:6%)}  (mod @,(q)?).
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Therefore, by the definition of g-binomial coefficients, the left-hand side of (1.4) can
be written as

(n—1)/2 2 (n— 1)/2 2 2

3 (" q —g)* (mod 0,(g)%).  (3.1)

2. 42
= (¢%q ) —~ (¢%q

??‘

Sincen = 1 (mod 4), by Lemma 2.1, the right-hand side modulo ®,,(¢)? is congruent
to
(n—1)/2
NEETE'S (95 4°)eq% D ok

2. 42)2
P (4% )}

To prove the theorem, it suffices to prove that

(n—1)/2 2 2. 4 2. 4
) e 1)(na2)/4 (@53 @) (n=1)/4
S OGS e — yomnomna D00t 04 g, (7). (32)
0 (C] 1 q )(n71)/4

Making the parameter substitutions a +— 0, b +— ¢, ¢ — ¢*, and n +— (n —1)/2 in

(1.10) gives

(n— 1)/2

>

=0

¢Sk ok )2 (0550 ) ey (3.3)
(% )7 R CETa |
1497 ) q7;49")(n—1)/4

k
Note that, for 0 < k < (n—1)/2,

_ H (1 T (1- qn)q%flfn)

k k q2i—1

_ 2i—1

:H(l—q )< (1—-¢" Zl g2 1>
3 =1

k 2i—1

= (¢: ¢ )k (1 —(1—q")) 13—61%_1) (mod ®,(q)?). (3.4)

i=1
Substituting (3.4) into the left-hand side of (3.3), we obtain

(n—1)/2

k 2i—1
3 (¢; qz)k(q2§q4)kq2k (1 BT . )
2. 42)2 21 1
(4% 9°)5 —~1-

k=0

= q(n—l)/Zm (mod ®,(q)?). (3.5)
(g% %) (n-1)/4
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Now, letting n +— (n — 1)/4 in (2.3) and using ¢~ " = 1 (mod ®,(q)), we arrive at

(n-1)/2 .
(; q2)k(q2§q4)k 2k ¢! _1l—n (n—1)/2 (q2;q4)(n—1)/4

Z 2. 2\2 q Z 1 2i-1 — 4 q 4. 4 (mod ®,(q)).
prd (4% %)% —~1—q (% 4*) (n-1)/

(3.6)
Combining (3.5) and (3.6) yields that

(n=1)/2
(Q; q2)k(q2; q4)k 2k
—~ (")

— q(nfl)/Q (¢ Q4)(n—1)/4 4 1-— nq(nfl)/2(1 o (¢ q4)(n—1)/4
(g% ") (n—1)/a 4 (g% ") (n—1)/a

_ 1 n (Q2Q4) n—1)/4
_ (n—1)/2 n ) ( )/ 2
=q 1+ —(1—¢q )— mod ®,(q)7). 3.7

Since for all integers s,
qsn — 1 _ (1 _ qsn)
=1-5(1—-¢") (mod ®,(¢q)?),

we have
—1)(n n—1)n n— n— l—n n
D@D/ (n=Dn/a+(n-1)/2 = ((n-1)/2 (1 T >> (mod ®,(q)?).
(3.8)
The proof of (3.2) then follows from (3.7) and (3.8). O

Proof of Theorem 1.2. Since n =3 (mod 4), similarly as the proof of Theorem 1.1,
we know that the left-hand side of (1.9) is congruent to

(n—1)/2 (n—1)/2

('™ ql*”;q2)k(_ T (¢; )} (—q)*
(¢ q 2. 2)?2 q

S q2); —~ (g%

~—
-

k=0
(n—1)/2

2 2. 4
—n q;q a9
= _q(l 2)/4 § : ( (q);(qg)z )k’q2k (mod cI)n(Q))
k=0 Tk

(3.9)

Performing the parameter substitutions a — 0, b — ¢, ¢ — ¢*, and n +— (n — 1)/2
in (1.10) produces

(n=1)/2 1 p. 2\ (2. 4
Z (' ™ (g’ g )kqQk —0

2. 42)2

In light of g™ =1 (mod ®,(q)), we immediately conclude that the right-hand side
of (3.9) is congruent to 0 modulo ®,(¢). This completes the proof. O



4. CONCLUDING REMARKS

In this paper, we mainly give a g-analogue of the congruence (1.5), which, in view
of the Chowla-Dwork-Evans congruence (1.6), implies the Beukers—Van Hamme
congruence (1.2). It remains a challenging problem to find a g-analogue of the
Chowla-Dwork-Evans congruence (1.6) (or its weaker form (1.1)).

There are also some other congruences related to (1.2). For example, the (H.2)
supercongruence of Van Hamme [25] can be stated as follows: for any odd prime p,

(p_zl)/z 1 /2k\° _ —Tp(3)* (mod p?) ifp=1 (mod 4), (4.1)
G4 |0 (mod p?) ifp=3 (mod 4), '
where I',(z) denotes the p-adic Gamma function. Recently, the first author and
Zudilin [12, Theorem 2| proved that, for positive odd integers n, modulo ®,,(¢)?,

2. 4\2
e (@ 4) 1)/ S/

4a°)e(a* a )k o T iy ifn=1 (mod4),
(4% q )(n—l)/4

q

2. 22 (ohe g4
o (G )ileh ifn=3 (mod 4),

which is a g-analogue of the following congruence:

(p—1)/2 _ 2 .
S [ ) =1t
k=0 G4% \ K 0 (mod p?) ifp=3 (mod 4).

In view of [24, Theorem 3]:

L (=12 _ ([ -1/2 Y _ L) (mod )
26-1/2\(p—1)/4 (p=1)/4) " Tu(3) ’
and T)(3)> = —1 for p = 1 (mod 4). Thus, we see that the congruence (4.2) is
equivalent to (4.1). In light of (1.6), the congruence (4.2) can also be written as

(p—zl)/2 L 2%\ 3 _ 2(a®> —v*) (mod p?) if p=a®+ b* with a odd,
64k “lo (mod p2) ifp=3 (mod 4).

k=0
The first author and Zudilin [13] also gave another g-analogue of (4.2) as follows:

(n—1)/2

Z (1+ ¢* ) (g% Q)qu
(1+q) (g% q)3
(1+q )( 4)%71 1 4

=1 (L+a)(eh a7 1y
0 (mod ®@,(q)?) ifn=3 (mod 4).

k=0

(mod ®,(q)?) ifn=1 (mod 4),

(A typo has been corrected here.)



8 VICTOR J. W. GUO AND JI-CAI LIU

Moreover, Van Hamme [25, (A.2)] made the following conjecture:

(p—1)/2 1\5 — mod p?) ifp=1 (mod 4),
(—1)F(4k + 1)<ﬂ = T3 mod 7 ity ( ) (4.3)
k=0 ' 0 (mod p?) ifp=3 (mod 4).

This supercongruence was first proved by McCarthy and Osburn [18]. Swisher [23]
then showed that (4.3) also holds modulo p° for any prime p = 1 (mod 4) and p > 5.
The second author [15] extended the second part of (4.3) to the modulus p? case.
Wang and Yue [26] and the first author [9] built the following g-congruence: for odd
n, modulo [n|®,(q)?,

(n—1)/2 N4/ 2 4 (% q4)%n—1)/4 e
(—1)%[4k + 1] (0°)1(@% 4" e & = W[n] ifn=1 (mod 4),
(% (a0 ')/
k=0 0 ifn=3 (mod 4),

which may somewhat be deemed a g-analogue of (4.3).
The last congruence we want to mention is a result due to He [14]: for any odd
prime p, modulo p?,

(p—1)/2 _1)(p+3)/4 1 R
P (%)%(%)k B (—1) plL(5)I(3)7 ifp=1 (mod 4),
k=0 ' 0 ifp=3 (mod 4).

Liu and Wang [16] established the following g-congruence: for positive odd integers
n, modulo [n]®,,(q)?,

(n-1)/2 (¢%5 q") (n-1)/4 o e
U (TR i P LTV ) gem/t iy =1 (mod 4),
Z (6K + 1] (% )r(g ¢ )2 =< (754" -1/
k=0 ARk 0 ifn=3 (mod 4),

which again may somewhat be considered as a g-analogue of (4.4) modulo p3.

Therefore, if one can find a g-analogue of Beukers—Van Hamme congruence (1.2),
then we will obtain more g-congruences, which are full g-analogues of some classical
congruences in the literature. However, this work seems rather difficult!

In 2019, the first author and Zudilin [11] devised a method, called “creative mi-
croscoping”, to prove a number of g-supercongruences. Although this method is
very useful in many cases (see, for example, [7,9,10,12, 13,16, 26, 27]), we do not
know how to use it to prove Theorem 1.1 in this paper. Thus, our proof of Theorem
1.1 is a little complicated. Moreover, we only give a computer proof of Lemma 2.2.
It would be very interesting if one can find out a human proof.

Declaration of competing interest. There is no competing interest.

Data availability. No data was used for the research described in the article.



REFERENCES

[1] K. Alladi and M.L. Robinson, On certain values of the logarithm, In: Lecture Notes in Math-
ematics, Vol. 751, Springer, Berlin, 1979, pp. 1-9.

[2] G.E. Andrews, On g-analogues of the Watson and Whipple summations, STAM J. Math. Anal.
7 (1976), 332-336.

[3] L. Carlitz, Advanced problem 4628, Amer. Math. Mothly 62 (1955), 186; 63 (1956), 348-350.

[4] S. Chowla, B. Dwork, and R.J. Evans, On the mod p? determination of (Ep_l)/2)7 J. Number

p—1)/4

Theory 24 (1986), 188-196.

[5] M.J. Coster and L. Van Hamme, Supercongruences of Atkin and Swinnerton-Dyer type for
Legendre polynomials, J. Number Theory 38 (1991), 265-286.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Edition, Encyclopedia of
Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.

[7] G. Gu and X. Wang, Proof of two conjectures of Guo and of Tang, J. Math. Anal. Appl. 541
(2025), Art. 128712.

[8] V.J.W. Guo, Some g-congruences with parameters, Acta Arith. 190 (2019), 381-393.

[9] V.J.W. Guo, A g¢-analogue of the (A.2) supercongruence of Van Hamme for primes p = 1
(mod 4), Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. RACSAM 114 (2020), Art. 123.

[10] V.J.W. Guo and M.J. Schlosser, Some g-supercongruences from transformation formulas for
basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.

[11] V.J.W. Guo and W. Zudilin, A g-microscope for supercongruences, Adv. Math. 346 (2019),
329-358.

[12] V.J.W. Guo and W. Zudilin, On a g-deformation of modular forms, J. Math. Anal. Appl. 475
(2019), 1636-646.

[13] V.J.W. Guo and W. Zudilin, A common g-analogue of two supercongruences, Results Math.
75 (2020), Art. 46.

[14] B. He, Supercongruences and truncated hypergeometric series, Proc. Amer. Math. Soc. 145
(2017), 501-508.

[15] J.-C. Liu, On Van Hamme’s (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471
(2019), 613-622.

[16] Y. Liu and X. Wang, Some g¢-supercongruences from a quadratic transformation by Rahman,
Results Math. 77 (2022), Art. 44.

[17] W. Koepf, Hypergeometric summation, An algorithmic approach to summation and special
function identities, 2nd edition, Universitext, Springer, London, 2014.

[18] D. McCarthy and R. Osburn, A p-adic analogue of a formula of Ramanujan, Arch. Math. 91
(2008), 492-504.

[19] C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2007),
B56b, 36 pp.

[20] R.A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003),
Article 03.1.5.

[21] Z.-H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011),
1915-1929.

[22] Z.-W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131
(2011), 2219-2238.

[23] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015),
Art. 18.

[24] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the
conference on p-adic analysis (Houthalen, 1987), Vrije Universiteit Brussel, Department of
Mathematics, Brussels, 1986, pp. 189-195.

[25] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric se-
ries, in: p-Adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math.
192, Dekker, New York, 1997, pp. 223-236.



10 VICTOR J. W. GUO AND JI-CAI LIU

[26] X. Wang and M. Yue, A g-analogue of the (A.2) supercongruence of Van Hamme for any
prime p = 3 (mod 4), Int. J. Number Theory 16 (2020), 1325-1335.

[27] C. Wei, A g-supercongruence from a g-analogue of Whipple’s 3F, summation formula, J.
Combin. Theory Ser. A 194 (2023), Art. 105705.

SCHOOL OF MATHEMATICS, HANGZHOU NORMAL UNIVERSITY, HANGZHOU 311121, PEO-
PLE’S REPUBLIC OF CHINA
E-mail address: jwguo@math.ecnu.edu.cn

DEPARTMENT OF MATHEMATICS, WENZHOU UNIVERSITY, WENZHOU 325035, PEOPLE’S RE-
PUBLIC OF CHINA
E-mail address: jcliu2016@gmail.com



