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Abstract. By making use of Andrews’ terminating q-analogue of Watson’s for-
mula and a double sum identity, we give a q-analogue of the following congruence:
for any prime p ≡ 1 (mod 4),

(p−1)/2∑

k=0

(
(p− 1)/2

k

)(
(p− 1)/2 + k

k

)
≡ 1

2(p−1)/2

(
(p− 1)/2
(p− 1)/4

)
(mod p2).

In view of the Chowla–Dwork–Evans congruence, our q-congruence may somewhat
be regarded as a q-analogue of the Beukers–Van Hamme congruence:

(p−1)/2∑

k=0

(
(p− 1)/2

k

)(
(p− 1)/2 + k

k

)
≡ (−1)(p−1)/4

(
2a− p

2a

)
(mod p2),

where p = a2 + b2 with a, b ∈ Z and a ≡ 1 (mod 4).

1. Introduction

The Legendre polynomials Pn(x) can be defined as follows:

Pn(x) =
n∑

k=0

(
n

k

)(
n + k

k

)(
x− 1

2

)k

.

In different books on orthogonal polynomials, there are quite different definitions of
Legendre polynomials (see [17] for a collection of such definitions). The numbers

cn = Pn(3) =
n∑

k=0

(
n

k

)(
n + k

k

)

also known as the (central) Delannoy numbers (see [20]) play an important role
in proving that log 2 is irrational with measure of irrationality 4.622 . . . (see [1]).
Carlitz [3] proved that the numbers cn satisfy the following congruence: for any
prime p ≡ 1 (mod 4),

c(p−1)/2 ≡ (−1)(p−1)/4 · 2a (mod p), (1.1)
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where p = a2 + b2 with a, b ∈ Z and a ≡ 1 (mod 4). Van Hamme [24] further
established a stronger version of (1.1):

c(p−1)/2 ≡ (−1)(p−1)/4(a + bi) ≡ (−1)(p−1)/4
(
2a− p

2a

)
(mod p2), (1.2)

where i is a p-adic integer such that i2 = −1. An Atkin and Swinnerton-Dyer type
generalization of (1.2) was given by Coster and Van Hamme [5]. It is clear that
(1.2) implies the following congruence:

c2
(p−1)/2 ≡ 4a2 − 2p (mod p2),

which was originally conjectured by Beukers.
For any odd prime p and 0 6 k 6 (p− 1)/2, one can easily check that

(
(p− 1)/2

k

)(
(p− 1)/2 + k

k

)
=

k∏
j=1

((p + 1)/2− j)((p− 1)/2 + j)

j2

≡ (−1)k

k∏
j=1

(j − 1
2
)2

j2
=

1

16k

(
2k

k

)2

(−1)k (mod p2),

and so

c(p−1)/2 ≡
(p−1)/2∑

k=0

1

16k

(
2k

k

)2

(−1)k (mod p2).

Twenty-five years after Van Hamme’s work [24], Z.-H. Sun [21] reproved the following
result: for any prime p ≡ 1 (mod 4),

(p−1)/2∑

k=0

1

16k

(
2k

k

)2

(−1)k ≡ (−1)(p−1)/4
(
2a− p

2a

)
(mod p2), (1.3)

where p = a2 + b2 with a, b ∈ Z and a ≡ 1 (mod 4). Note that the congruence (1.3)
also appears as a conjecture in [22].

Recall that the q-shifted factorials are defined as (a; q)0 = 1 and

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1) for n = 1, 2, . . . ,

and the q-binomial coefficients
[
n
k

]
q

are defined by

[
n

k

]
=

[
n

k

]

q

=





(q; q)n

(q; q)k(q; q)n−k

, if 0 6 k 6 n,

0, otherwise.

Moreover, the n-th cyclotomic polynomial Φn(q) may be given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. It is well known that Φp(1) = p for any
prime p.
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The objective of this note is to give the following q-congruence which implies the
Beukers–Van Hamme congruence (1.2).

Theorem 1.1. Let n be an integer with n ≡ 1 (mod 4) and n > 1. Then

(n−1)/2∑

k=0

[
(n− 1)/2

k

]

q2

[
(n− 1)/2 + k

k

]

q2

qk2+k−nk

≡ q(n−1)/4 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2). (1.4)

Letting n = p be a prime and taking q → 1 in (1.4), we are led to

c(p−1)/2 ≡ 1

2(p−1)/2

(
(p− 1)/2

(p− 1)/4

)
(mod p2). (1.5)

Note that Chowla, Dwork, and Evans [4] have proved the following result:
(

(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2a− p

2a

)
(mod p2), (1.6)

where p ≡ 1 (mod 4) and p = a2 + b2 with a ≡ 1 (mod 4). Therefore,

1

2(p−1)/2

(
(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2(p+1)/2

(
2a− p

2a

)
. (1.7)

For p ≡ 1 (mod 4), we have 2(p−1)/2 ≡ (−1)(p−1)/4 (mod p) and so

2p−1 + 1

2(p+1)/2
≡ (−1)(p−1)/4 (mod p2). (1.8)

Combining (1.5), (1.7), and (1.8), we see that the q-congruence (1.4) implies the
Beukers–Van Hamme congruence (1.2).

We have another weaker result as follows.

Theorem 1.2. Let n be a positive integer with n ≡ 3 (mod 4). Then

(n−1)/2∑

k=0

[
(n− 1)/2

k

]

q2

[
(n− 1)/2 + k

k

]

q2

qk2+k ≡ 0 (mod Φn(q)). (1.9)

Our proof of Theorems 1.1 and 1.2 is based on Andrews’ terminating q-analogue
of Watson’s formula (see [2] or [6, (II.17)]):

4φ3

[
q−n, a2qn+1, b, −b

aq, −aq, b2 ; q, q

]
=





0, if n is odd,

bn(q, a2q2/b2; q2)n/2

(a2q2, b2q; q2)n/2

, if n is even,
(1.10)

where the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k

,

and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n.
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2. Two Lemmas

Besides Andrews’ summation formula, we also need another two lemmas.

Lemma 2.1. Let n be a positive odd integer. Then, modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

(−q)k ≡ (−1)(n−1)/2q(1−n2)/4

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k. (2.1)

Proof. The first author [8, Theorem 4.2] has proved that, modulo (1− aqn)(a− qn),

n−1∑

k=0

(aq; q2)k(q/a; q2)k

(q2; q2)2
k

xk ≡ (−1)(n−1)/2q(1−n2)/4

n−1∑

k=0

(aq; q2)k(q/a; q2)k

(q2; q2)2
k

q2k(x; q2)k.

(2.2)

Note that (1− qn)2 has the factor Φn(q)2, which is coprime with the denominators
on both sides of (2.2). Letting a = 1 and x = −q in (2.2), we arrive at (2.1). ¤
Lemma 2.2. For any positive integer n, there holds

2n∑

k=0

(q−4n; q2)k(q
2; q4)k

(q2; q2)2
k

q2k

k∑
i=1

q2i−1

1− q2i−1
= −nq2n (q2; q4)n

(q4; q4)n

. (2.3)

Proof. Let Ln and Rn denote the left-hand side and the right-hand side of (2.3),
respectively. Using the symbolic summation package Sigma developed by Schneider
[19], we can obtain the following recurrence satisfied by Ln:

− q10(1− q4n+2)(1− q4n+4)(1− q4n+6)(1− q4n+9)Ln

+ q4(1− q4n+6)(1 + 2q4 − q4n+5 − 4q4n+8 − 2q4n+10 − 2q4n+13

+ 2q8n+12 + 2q8n+15 + 4q8n+17 + q8n+20 − 2q12n+21 + q12n+25)Ln+1

− q2(1− q4n+8)(2 + q4 − 2q4n+5 − 2q4n+8 − 4q4n+10 − q4n+13

+ q8n+12 + 4q8n+15 + 2q8n+17 + 2q8n+20 − q12n+21 − 2q12n+25)Ln+2

+ (1− q4n+5)(1− q4n+8)(1− q4n+10)(1− q4n+12)Ln+3 = 0. (2.4)

It is trivial to verify that {Rn}n≥1 also satisfies the recurrence (2.4) and Ln = Rn

for n = 1, 2, 3. This completes the proof of (2.3). ¤

3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. It is clear that, for any k > 0 and indeterminates a, b,

(aq, bq; q2)k ≡ (q, abq; q2)k (mod (1− a)(1− b)).

Putting a = q−n and b = qn in the above congruence and noticing that 1 − q±n

contains the factor Φn(q), we get

(q1−n, q1+n; q2)k ≡ (q; q2)2
k (mod Φn(q)2).
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Therefore, by the definition of q-binomial coefficients, the left-hand side of (1.4) can
be written as

(n−1)/2∑

k=0

(q1−n, q1+n; q2)k

(q2; q2)2
k

(−q)k ≡
(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

(−q)k (mod Φn(q)2). (3.1)

Since n ≡ 1 (mod 4), by Lemma 2.1, the right-hand side modulo Φn(q)2 is congruent
to

q(1−n2)/4

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k.

To prove the theorem, it suffices to prove that

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k ≡ q(n−1)(n+2)/4 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2). (3.2)

Making the parameter substitutions a 7→ 0, b 7→ q, q 7→ q2, and n 7→ (n− 1)/2 in
(1.10) gives

(n−1)/2∑

k=0

(q1−n; q2)k(q
2; q4)k

(q2; q2)2
k

q2k = q(n−1)/2 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

. (3.3)

Note that, for 0 6 k 6 (n− 1)/2,

(q1−n; q2)k =
k∏

i=1

(1− q2i−1−n)

=
k∏

i=1

(
1− q2i−1 − (1− qn)q2i−1−n

)

≡
k∏

i=1

(1− q2i−1)

(
1− (1− qn)

k∑
i=1

q2i−1

1− q2i−1

)

= (q; q2)k

(
1− (1− qn)

k∑
i=1

q2i−1

1− q2i−1

)
(mod Φn(q)2). (3.4)

Substituting (3.4) into the left-hand side of (3.3), we obtain

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k

(
1− (1− qn)

k∑
i=1

q2i−1

1− q2i−1

)

≡ q(n−1)/2 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2). (3.5)
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Now, letting n 7→ (n− 1)/4 in (2.3) and using q−n ≡ 1 (mod Φn(q)), we arrive at

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k

k∑
i=1

q2i−1

1− q2i−1
≡ 1− n

4
q(n−1)/2 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)).

(3.6)

Combining (3.5) and (3.6) yields that

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k

≡ q(n−1)/2 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4

+
1− n

4
q(n−1)/2(1− qn)

(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

= q(n−1)/2

(
1 +

1− n

4
(1− qn)

)
(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)2). (3.7)

Since for all integers s,

qsn = 1− (1− qsn)

= 1− (1− qn)(1 + qn + q2n + · · ·+ q(s−1)n)

≡ 1− s(1− qn) (mod Φn(q)2),

we have

q(n−1)(n+2)/4 = q(n−1)n/4+(n−1)/2 ≡ q(n−1)/2

(
1 +

1− n

4
(1− qn)

)
(mod Φn(q)2).

(3.8)

The proof of (3.2) then follows from (3.7) and (3.8). ¤
Proof of Theorem 1.2. Since n ≡ 3 (mod 4), similarly as the proof of Theorem 1.1,
we know that the left-hand side of (1.9) is congruent to

(n−1)/2∑

k=0

(q1−n, q1+n; q2)k

(q2; q2)2
k

(−q)k ≡
(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)2
k

(−q)k

≡ −q(1−n2)/4

(n−1)/2∑

k=0

(q; q2)k(q
2; q4)k

(q2; q2)2
k

q2k (mod Φn(q)).

(3.9)

Performing the parameter substitutions a 7→ 0, b 7→ q, q 7→ q2, and n 7→ (n − 1)/2
in (1.10) produces

(n−1)/2∑

k=0

(q1−n; q2)k(q
2; q4)k

(q2; q2)2
k

q2k = 0.

In light of q−n ≡ 1 (mod Φn(q)), we immediately conclude that the right-hand side
of (3.9) is congruent to 0 modulo Φn(q). This completes the proof. ¤
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4. Concluding remarks

In this paper, we mainly give a q-analogue of the congruence (1.5), which, in view
of the Chowla–Dwork–Evans congruence (1.6), implies the Beukers–Van Hamme
congruence (1.2). It remains a challenging problem to find a q-analogue of the
Chowla–Dwork–Evans congruence (1.6) (or its weaker form (1.1)).

There are also some other congruences related to (1.2). For example, the (H.2)
supercongruence of Van Hamme [25] can be stated as follows: for any odd prime p,

(p−1)/2∑

k=0

1

64k

(
2k

k

)3

≡
{
−Γp(

1
4
)4 (mod p2) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4),
(4.1)

where Γp(x) denotes the p-adic Gamma function. Recently, the first author and
Zudilin [12, Theorem 2] proved that, for positive odd integers n, modulo Φn(q)2,

(n−1)/2∑

k=0

(q; q2)2
k(q

2; q4)k

(q2; q2)2
k(q

4; q4)k

q2k ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

which is a q-analogue of the following congruence:

(p−1)/2∑

k=0

1

64k

(
2k

k

)3

≡
{

1
2p−1

(
(p−1)/2
(p−1)/4

)2
(mod p2) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4).
(4.2)

In view of [24, Theorem 3]:

1

2(p−1)/2

(
(p− 1)/2

(p− 1)/4

)
=

( −1/2

(p− 1)/4

)
≡ −Γp(

1
4
)2

Γp(
1
2
)

(mod p2),

and Γp(
1
2
)2 = −1 for p ≡ 1 (mod 4). Thus, we see that the congruence (4.2) is

equivalent to (4.1). In light of (1.6), the congruence (4.2) can also be written as

(p−1)/2∑

k=0

1

64k

(
2k

k

)3

≡
{

2(a2 − b2) (mod p2) if p = a2 + b2 with a odd,

0 (mod p2) if p ≡ 3 (mod 4).

The first author and Zudilin [13] also gave another q-analogue of (4.2) as follows:

(n−1)/2∑

k=0

(1 + q4k+1)(q2; q4)3
k

(1 + q)(q4; q4)3
k

qk

≡





(1 + qn)(q2; q4)2
(n−1)/4

(1 + q)(q4; q4)2
(n−1)/4

(mod Φn(q)2) if n ≡ 1 (mod 4),

0 (mod Φn(q)2) if n ≡ 3 (mod 4).

(A typo has been corrected here.)
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Moreover, Van Hamme [25, (A.2)] made the following conjecture:

(p−1)/2∑

k=0

(−1)k(4k + 1)
(1

2
)5
k

k!5
≡




− p

Γp(
3
4
)4

(mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4).
(4.3)

This supercongruence was first proved by McCarthy and Osburn [18]. Swisher [23]
then showed that (4.3) also holds modulo p5 for any prime p ≡ 1 (mod 4) and p > 5.
The second author [15] extended the second part of (4.3) to the modulus p4 case.
Wang and Yue [26] and the first author [9] built the following q-congruence: for odd
n, modulo [n]Φn(q)2,

(n−1)/2∑

k=0

(−1)k[4k + 1]
(q; q2)4

k(q
2; q4)k

(q2; q2)4
k(q

4; q4)k

qk ≡





(q2; q4)2
(n−1)/4

(q4; q4)2
(n−1)/4

[n] if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

which may somewhat be deemed a q-analogue of (4.3).
The last congruence we want to mention is a result due to He [14]: for any odd

prime p, modulo p2,

(p−1)/2∑

k=0

(6k + 1)
(1

2
)3
k(

1
4
)k

k!44k
≡





(−1)(p+3)/4pΓp(
1
2
)Γp(

1
4
)2 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).
(4.4)

Liu and Wang [16] established the following q-congruence: for positive odd integers
n, modulo [n]Φn(q)2,

(n−1)/2∑

k=0

[6k + 1]
(q; q2)3

k(q; q
4)kq

k2+k

(q2; q2)k(q4; q4)3
k

≡




(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

[n]q(1−n)/4 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

which again may somewhat be considered as a q-analogue of (4.4) modulo p3.
Therefore, if one can find a q-analogue of Beukers–Van Hamme congruence (1.2),

then we will obtain more q-congruences, which are full q-analogues of some classical
congruences in the literature. However, this work seems rather difficult!

In 2019, the first author and Zudilin [11] devised a method, called “creative mi-
croscoping”, to prove a number of q-supercongruences. Although this method is
very useful in many cases (see, for example, [7, 9, 10, 12, 13, 16, 26, 27]), we do not
know how to use it to prove Theorem 1.1 in this paper. Thus, our proof of Theorem
1.1 is a little complicated. Moreover, we only give a computer proof of Lemma 2.2.
It would be very interesting if one can find out a human proof.

Declaration of competing interest. There is no competing interest.

Data availability. No data was used for the research described in the article.
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