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Abstract. We establish some supercongruences related to a supercongruence of Van
Hamme, such as

(p+1)/2 (_l)f}
> (DR = ) B = p(- )R 4 p 2 - Byg) (mod pt),
k=0 \

(p+1)/2 (_1)4

> (4k—1)° ,jf =16p (mod p?),

k=0 )

where p is an odd prime and E,_3 is the (p — 3)-th Euler number. Our proof uses some
congruences of Z.-W. Sun, the Wilf-Zeilberger method, Whipple’s 7 Fy transformation,
and the Mathematica package Sigma developed by Schneider. We also put forward two
related conjectures.

Keywords: supercongruence; Euler numbers; gamma function; Whipple’s 7 Fg transforma-
tion; WZ-pair.

AMS Subject Classifications: 33C20, 33B15, 11A07, 11B65, 65B10

1. Introduction

In 1997, Van Hamme [32] conjectured that the Ramanujan-type formula for 1/7:

C (3 2
;(_1)k(4k5 + 1)% =

0

N |—=
w

due to Bauer [2], possesses a nice p-adic analogue:

(r—1)/2 (;)3
(—1)*(4k + 1);—!3’“ =p(=1)®" D2 (mod p?). (1.1)

*Corresponding author.
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Here and throughout the paper, p is an odd prime and (a)y = a(a+1)---(a+k —1) is
the Pochhammer symbol. The supercongruence (1.1) was first proved by Mortenson [24]
in 2008 and reproved by Zudilin [34] in 2009. Motivated by Zudilin’s work, in 2018, the
first author [5] gave a g-analogue of (1.1) as follows:

(p—1)/2
> (=1 k2[4k+ﬂ% = [plg® A1) (mod [p]?),

where (a;¢), = (1 —a)(1 —aq)---(1 —ag® ') and [n] = [n], =1+q+---+¢* ' For
more supercongruences and g-supercongruences, we refer the reader to [4,6-21,27,30,31].
On the other hand, there is a similar supercongruence as follows:

(p+1)/2 133
> (k=) 2 = p ) (amod ), 12)

which is a special case of [9, Theorem 1.3] or [17, Theorem 4.9] (see also [16, Section 5]).
Note that Sun [29] gave the following refinement of (1.1) modulo p*:

(p— 1)/2 (
F(4k +1)

l\')ll—l

)i

T = p(—l)(p_l)/2 —|—p3Ep_3 (mod p4), (1.3)

k=0
where F,, is the n-th Euler number which may be defined by

i x_ = for |z| < z
— "n! 6236—1—1 2

Inspired by Sun’s result (1.3), we shall prove the following refinement of (1.2) modulo p.

Theorem 1.1. We have

(p+1)/2 1\3
> (—1)k(k - 1)( k'g) =p(—1)P*V2 4 p3(2— B, 5) (mod p*). (1.4)
k=0

We shall also prove the following weaker supercongruence.

Theorem 1.2. We have

(p+1)/2 (_1)3
> (—1Fk - 1) kfg b =3p(—1)P Y2 (mod p?). (1.5)
k=0 '

To the best of our knowledge, there are no ¢-congruences involving the
Euler numbers £, ;5 in the literature. For this reason, we believe that it is
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difficult to find a ¢g-analogue of (1.4). Recently, the first author [6, Theorem
5.1] gave a g-analogue of (1.5) as follows:

(p+1)/2
S (1R [k — 1[4k — 12

k=0

—2
q - _1)2 _

1403 — 3 [p]cﬂq(p D /2(_1)(;9 /2 (mod [P]3)~
(¢*q"); q

The first author and Schlosser [15] proved the following supercongruence

(p+1)/2 (_1)4
Z (4k — 1) k|24 b= _5p* (mod p°)
k=0 '

In this paper, using the same method in [20], we shall prove the following related result.

Theorem 1.3. We have

(p+1)/2
g (_2>i

> (k- 1) 3

k=0

{2 (—4)}
(4k — 1)° ki

[—=

_ 4
== =0 (mod p"),

)
+
—

—

=16p (mod p%),

i\

—~
=
+

_
N2
~

[\

=

(_Q)é

(4k —1)7 i

0

=80p (mod p*).

i

We can also give similar supercongruences for ,Ezﬁ)l)/Q(élk —1)™(—3)s/k!* for
some other odd integers m > 9. But the proofs will become more complicated
and we omit these results here.

2. Proof of Theorem 1.1

We first give the following result due to Sun [28].

Lemma 2.1. We have

(p—1)/2 Ak
Z m =F, -1+ (-1)®Y2 (mod p). (2.1)
k=1 k

We also need the following congruence, which was given in the proof of [29, Theo-
rem 1.1] implicitly.

Lemma 2.2. For 1 < k< (p—1)/2, we have

(
1 1
(— 1)@/ 2k 2(3) (02 o-ny2en p*4*

(WE 12V erny2-1(3)i = 2k(2k — D) (mod p*). (2.2)
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Proof of Theorem 1.1. For all non-negative integers n and k, define the functions

F(n, k) = (—1)v+k (4n — 1

212 (= Dnres
(D2 (Doe(— 17

where we assume that 1/(1),, = 0 for m = —1,—2,.... The functions F(n, k) and G(n, k)
form a Wilf-Zeilberger pair (WZ-pair). Namely, they satisfy the following relation

G(n, k) = (=1)"+*

F(n,k—1)—F(n,k) =Gn+1,k) — G(n, k). (2.3)

This WZ-pair is similar to one WZ-pair in [34] and can be found in the spirit of [3,25].
Summing (2.3) over n from 0 to (p + 1)/2, we obtain

(p+1)/2 (p+1)/2 b3 b3
; F(n,k—1) - ; F(n,k) =G <Tk:) —G(0,k) =G (Tk) . (24)

Summing (2.4) further over k =1,2,...,(p+1)/2, we get

(p+1)/2 (p+1)/2
p+1 p+1 p+3
Fno)=F——, —— G|——.k 2.5
n§:0 (n,0) (272>+k§1 (2, : (2.5)

where we have used F(n,k) =0 for n < k.
It is easy to see that

. (p+1 p+1) _ @p+1(=g)p _ 2p(2p+1) <2p) (( p—1 )

2 7 2 Wiy #e+12\p/)\(p—1)/2

(- PEEED) - ()0 —p) mod ), (26)

where we have used Wolstenholme’s congruence [33]:

2
( p) =2 (mod p®) forp> 3,
p

and Morley’s congruence [23]:

((pp—_l )1/ 2)

(1) 2" (mod p*) for p > 3.
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Moreover, we have
(p+1)/2 (p— 1)/2
3 3
> () =e () X o (B )

= (—1)-D/2 P
(p+1 323<p D\ (p— 1)/2

~1)/2
_'_ (p )/ ( )(p+5 /2+]€ 2( ) p+3 /2(_%)(])4!‘3)/2-‘!‘]6
— (W20 er2-5(—3)F 0
(p—1)/2 1)2 1 P
=P — (_1)(P+1)/2+k 4(5)(p+1)/2(5)(p+1)/2+k(5 + k) (mod p4)
N 2 1\2 2 :
=1 (1)(p—1)/2(1)(p+1)/27k(§)k(p +1)
By (2.2), modulo p* we may write the right-hand side of the above congruence as
3 (p-1)/2 Ak
3
P 2 Z N -
(p+1) k=1 (2 — 1)(k)
Therefore, by (2.1), we obtain
(p+1)/2 p+3
Y @ <T k:) — P (Ep_g — 1+ (=1)® D2} (mod p*). (2.7)
k=1
Substituting (2.6) and (2.7) into (2.5), we arrive at (1.4). O

3. Proof of Theorem 1.2

Recall that the gamma function I'(z), for any complex number z with the real part positive,
may be defined by

and can be uniquely analytically extended to a meromorphic function defined for all
complex numbers z, except for non-positive integers. It is worthwhile to mention that the
gamma function has the property I'(z + 1) = 2I'(2).

We need the following hypergeometric identity, which is a specialization of Whipple’s
7Fs transformation (see [1, p. 28]):

a, 1+%a, b, c, d, e
65 1 ;-1
24, l1+a—-0b, 1+a—¢, 1+a—d, 1+a—e
F(1+a—d)F(1+a—€) 1+a_b_c7 da €
I'l+a)l(1+a—d—e) l+a—b, 1+a—-c
)
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where
ag, a1, ..., G & (ao)e(ar)e - (ar)k 4
re1Fr 2| =
o bi, ooy by ] ; R0 )k - (0
Motivated by McCarthy and Osburn [22] and Mortenson [24], we take the following
choice of variables in (3.1). Letting a = -1, b=c =3, d = _12_”, and e = =2
conclude immediately that
13 3 38  -lop -lip
Nyl 2 4; 41> 4; 2 2 7_1]
- —1» —p L+5 1-%
1+ g)l"(l — g) 7 -1, —12—1)’ —12+p X
= 3472 K
NONE S

It is easy to see that, for k =0,1,...,(p—1)/2,

(=52), (52), - ﬁ (25 —3)* = p? _ (_%)i (mod p?)
1+5),0-8), 1 4°-p .
Applying the property I'(x 4+ 1) = 2T'(x), we obtain
NCETIV R N
LT (3)
and so
1)/2 -
) (pi/ S k'lg)g = p(-) R | _12;7 _1;;
k=0 ) 4
- (_1)(p (1 —4(1—p%)
=-3p(-1)"7  (mod p?)
as desired.

4. Proof of Theorem 1.3

Let Hr(f) =Y ", %. The following lemma plays an important role in our proof.

7 1

Lemma 4.1. For any integer n > 2 and odd positive integer m with 3 <

T TRV G ) 18 G/ et VS
2 R e D G,

k 2 2

k=0 k j=1

where f(n) and g,,(n) are listed in the following table:

6
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Table 1: Values of f,,(n) and g¢,,(n).

m | fm(n) gm(n)
(2n—1)2(7n2-Tn+1
3|0 4712((71—1)2 )

(2n—1)(256n5—640n°+320n*+414n3—493n2+145n—1)
4n?(n—1)2

5 | —64n(n—1)(2n—1) +32n(n — 1)(2n — 1)H?

(2n—1)(6144n8—21504n7 42432015 —1920n5 — 18496n* +17582n3 —7557n2+1433n—1)
4n2(n—1)2

7 | —=64n(n — 1)(2n -

1)(24n2 — 24n + 11
)(24n” — 24n +11) +32n(n — 1)(2n — 1) (24n2 — 24n + 11) H?

Remark. For fixed odd m > 9, there exist similar formulas for (4.1) and (4.2).
But the formulas will become larger and larger and there are no general for-
mulas for these m’s.

Proof. By using the Mathematica package Sigma due to Schneider [26], one can automat-
ically discover and prove (4.1) and (4.2). For example, the steps to discover and prove
(4.2) for m =5 are as follows.

Define the following sum:
In[1]:=mySum=3"7_, (4k — 1)° ED(LL% 5 (2 =~ )
Compute the recurrence for this sum:

In[2]:=rec=GenerateRecurrence[mySum,n]|[[1]]

Out2]=(1 4 n)(1 + 2n)SUM[n] — (—1 4+ n)(—1 + 2n)SUM][1 + n|
_ (“1420)(142n)(78-183n2+109n%) | n(=142n)°(14+2n)% (3+2n) (3+4n)* (— )2 (~14n)n (=n)n
2(—1+n)2n(1+n)2 2(14n)3(1+4n)(1)2 (5 —n), (5+n),,

n(—142n)% (14+2n)%(3+2n) (3+4n)* (= 1)? (= 1+n)n(—n)n
2(1+n)3(1+4n)(1)%(%(37277,)) (2a+2n) ) n

n _n(—1+2n)3(1+2n)(3+4n)4(—%)n(—1+n)n(—n)n n(—1+2n)3(1+2n)(3+4n)4(—%)i(—l—‘—n)n(—n)n i'i
2(1+n) (14+4n) (1)2 (5 —n), (5+n) 2(1+n) (1+4n) (D)2 (3 (3—2n))  (F (1+2n)) .

2z
v
n n =171

(1+n)(14+4n)(1)2 (3 "L(%+ )., - (1+n)(1+4n) (D2 (5 (3-2n)) ( (142n) lel(—HleT?

+(2n(71+2n)3(1+2n>(3+4n) (=32 (“1tn)n(=n)n  2n(=142n)3 (1420) (3+4n)* (= 1) (—14n)n (— >)< 0o )
n) )
Now we solve this recurrence:
In[3]:=recSol=SolveRecurrence[rec,SUM[n]]
Out[3]={{0, (=1 + n)n(-1+2n)},

(—142n)(—14145n—493n24670n° —448n* +128n° n
{1, al e e ) 4 32(-1 4 myn(~1+2n) [ 33 z

=1

Finally, we combine the solutions to represent mySum:

In[4]:=FindLinearCombination[recSol,mySum,1]

URL: http:/mc.manuscriptcentral.com/gitr
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(—1+2n)(—1+145n—493n2 +414n3 +320n* —640n° +256n°)
4(—14n)2n2

Out[4]= + 32(—1 4 n)n(—1+ 2n) <

e
-
»—7&"—‘
N———

L

Thus, we discover and prove (4.2) for m = 5.

Proof of Theorem 1.3. Observe that

(2 —3)2—=2® [(2j-3\° 3(4j-3) , s
@) - ( 2 ) ) row,

and

Ha]—i-bx (H@) <1+x22%>+0(x4)

Jj=1

Hence, for 0 < k § (p+1)/2, we have

(0 (25 =3 - p?
(RN T | SeT

Letting n = (p+1)/2 in (4.1) and using (4

(p+1)/2
m(=3 p 1
> (k-1 i (1+ Z< ERCTI ))

k=0
= fm (Zil) (mod p*).

Furthermore, it follows from (4.3) that

we get

(7127p>k<#)k — (_%)% (mod p2)
(A '
Letting n = (p 4+ 1)/2 in (4.2) and noticing (4.5), we obtain

(p+1)/2

k=0

Finally, combining (4.4) and (4.6) we are led to

(p+21)/2(4k; _ 1)m( kl) _ (E) P, <1i1) (mod p).

2
k=0

Note that

[\]

2
(2) _ _
H(p+1 <m) + H(p 1)/2 =4 (mod p)

The proof then follows from (4.7), (4.8) and Lemma 4.1.

URL: http:/mc.manuscriptcentral.com/gitr
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5. Two open problems

We end the paper with the following two conjectures, which are generalizations of Theo-
rems 1.2 and 1.3. Note that there are similar unsolved conjectures in [4].

Conjecture 5.1. For any odd positive integer m, there exists an integer c,, such that,
for any odd prime p and positive integer r, there hold

p"

+
[un

- m(_l)3 T (p—1)r T
(—1)*(4k — 1) k;'23 P =cnp'(=1) 2 (mod p't?),
k=0 '
X (—3)i (—1)r
(—DF 4k — 1) 2L = ¢ p"(—1) 2 (mod p"*3).

k13

o
]

In particular, we have ¢y = —1, c3 = 3, ¢5 = 23, ¢; = =5, ¢cg = 1647, and c1; = —96973.

Conjecture 5.2. For any odd positive integer m, there exists an integer d,, such that,
for any odd prime p and positive integer r, there hold

- (-1t 3
(4k —1)™ = dmp”  (mod p"*?),
k=0 ’
(=2
(4k —1)™ k'24 =d,p" (mod p"*?).

k=

In particular, we have dy = d3 =0, ds = 16, d7 = 80, dy = 192, dy; = 640, di3 = —3472,
and d15 = 138480.

[en]

Note that, Conjecture 5.1 is true for m = 1 by [9, Theorem 1.3], and Conjecture 5.2
is also true for m = 1 by [15, Theorem 1.1].

Acknowledgments. The second author was supported by the National Natural Science
Foundation of China (grant 11801417).
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