On Jensen’s and related combinatorial identities!
Victor J. W. Guo

Abstract. Motivated by the recent work of Chu [Electron. J. Combin. 17 (2010), #N24],
we give simple proofs of Jensen’s identity
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and Chu’s and Mohanty-Handa’s generalizations of Jensen’s identity. We also give a quite
simple proof of an equivalent form of Graham-Knuth-Patashnik’s identity
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which was rediscovered, respectively, by Sun in 2003 and Munarini in 2005. Finally we
give a multinomial coefficient generalization of this identity:.

1 Introduction

Abel’s identity (see, for example, [8, §3.1])
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and Rothe’s identity [23] (or Hagen-Rothe’s identity, see, for example, [9, §5.4])
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are famous in the literature and play an important role in enumerative combinatorics.
Recently, Chu [6] gave elementary proofs of Abel’s identity and Rothe’s identity by using
the binomial theorem and the Chu-Vandermonde convolution formula respectively.

Motivated by Chu’s work, we shall study Jensen’s identity [17], which is closely related
to Rothe’s identity, and can be stated as follows:
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Jensen’s identity (1) has ever attracted much attention by different authors. Gould [11]
obtained the following Abel-type analogue:
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Carlitz [1] gave two interesting theorem related to (1) and (2) by mathematical induc-
tion. With the help of generating functions, Gould [12] derived the following variation of
Jensen’s identity (1):
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E. G.-Rodeja F. [10] deduced Gould’s identity (2) from (1) by establishing an identity
which includes both. Cohen and Sun [7] also gave an expression which unifies (1) and (2).
Chu [4] generalized Jensen’s identity (1) to a multi-sum form:
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Moreover, the identities (1) and (3) were respectively generalized by Mohanty and Handa
[19] and Chu [5] to the case of multinomial coefficients (to be stated in Section 4).

The first purpose of this paper is to give simple proofs of Jensen’s identity, Chu’s
identity (3), Mohanty-Handa’s identity, and Chu’s generalization of Mohanty-Handa’s
identity. We shall use the Chu-Vandermonde convolution formula
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and the well-known identity
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Eq. (4) may be easily deduced from the Stirling numbers of the second kind [27, p. 34,
(24a)]. The first case of (4) was already utilized by the author [13] to give a simple proof
of Dixon’s identity and by Chu [6] in his proofs of Abel’s and Rothe’s identities.

It is interesting that our proof of Chu’s identity (3) will also leads to a very short
proof of Graham-Knuth-Patashnik’s identity, which was rediscovered several times in the
past few years. The second purpose of this paper is to give a multinomial coefficient
generalization of Graham-Knuth-Patashnik’s identity.



2 Proof of Jensen’s identity

By the Chu-Vandermonde convolution formula, we have
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Interchanging the summation order in (5) and noticing that
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we have
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where the second equality holds because (“kzji*k) is a polynomial in k& of degree ¢ with

leading coefficient (z — 1)"/i! and we can apply (4) to simplify. We now substitute z —
—x—1,y— —y+n—1and 2z — —z+ 1 in (6) and observe that
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as desired.

Combining (1) and (6), we get the following identity:

Then we obtain
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which is equivalent to the following identity in Graham et al. [9, p. 218]:

S (") =X () ot

k<m k<m



3 Proofs of Chu’s and Graham-Knuth-Patashnik’s iden-
tities
Comparing the coefficients of ™ in both sides of the equation
(1+z)2tF% = (14 2)" - (1 +2)%

by the binomial theorem, we have
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where k1 + -+ - + ks, = n. It follows that
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Interchanging the summation order in (9) and observing that
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and (“““k‘;ﬂ_k) is a polynomial in k; of degree j; with leading coefficient (z — 1)%i/7;!,

by (4) we gzet
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Substituting z; — —x; —1 (1 = 1,...,s) and 2 — —z + 1 in (10) and using (7), we
immediately get Chu’s identity (3).
Comparing (3) with (10) and replacing s by s + 2, we obtain
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It is easy to see that the identity (11) is equivalent to each of the following known identities:
e Graham-Knuth-Patashnik’s identity [9, p. 218]
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e Sun’s identity [29]

B (@) (20T oo

k=0 k=0

e Munarini’s identity [20]
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For example, substitutingn — m—n, s - n,x - —n—r—1and z — —y/x in (11), we
are led to (12). Replacing k by m — k and n — k respectively in both sides of (13), we get
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which is equivalent to (11) by changing k to m +n —a — k.
Moreover, the following special case
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was reproved by Simons [26], Hirschhorn [15], Chapman [2], Prodinger [21], Wang and
Sun [30].



4 Mohanty-Handa’s identity and Chu’s generaliza-
tion

Let m be a fixed positive integer. For a = (ay,...,a,,) € N* and b = (by,...,b,) € C™,

set |a] = a1+ Fam, al = a1 - ay!, a+b = (a1+b1, ..., apn+by), a-b = a1by+- - +ap by,

and b?* = bj*---b%. For any variable x and n = (nq,...,n,) € Z™, the multinomial
coefficient (z) is defined by

(:c) _ {x(m—l)---(w—|n|—|—1)/n!, if n e N™,

n 0, otherwise.

Moreover, we let 0 = (0,...,0) and 1 = (1,...,1).
Note that the Chu-Vandermonde convolution formula has the following trivial gener-

alization
> ()0 - (1)

as mentioned by Zeng [32], while (4) can be easily generalized as
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In 1969, Mohanty and Handa [19] established the following multinomial coefficient
generalization of Jensen’s identity
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where

Here and in what follows, k = (kq,. .., k;). Twenty years later, Mohanty-Handa’s identity
was generalized by Chu [5] as follows:
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which is also a generalization of (3). Here k; = (kj,. .., kim), 1 =1,...,m.

Remark. Note that the corresponding multinomial coefficient generalization of Rothe’s
identity was already obtained by Raney [22] (for a special case) and Mohanty [18]. The
reader is referred to Strehl [28] for a historical note on Raney-Mohanty’s identity.

We will give an elementary proof of Chu’s identity (19) similar to that of (3).
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Lemma 4.1 Forn € N and s > 1, there holds
k; -1
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Proof. For any nonnegative integers ay,...,a, such that a; + --- + as = |n|, by the
Chu-Vandermonde convolution formula (16), the following identity holds
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Moreover, for k; + - -+ + k, = n, we have
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=1

Thus, the identity (21) may be rewritten as
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By repeatedly using the convolution formula (16), we may rewrite the left-hand side
of (19) as
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Interchanging the summation order in (22), observing that
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and )
(xz’ +ki -z + [ji| - \k,-|>
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is a polynomial in k;1, ..., k;,, with the coefficient of k; being (g?') (z —1)/j,;!, applying
(17), we get
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where the second equality follows from (20). Substituting z; — —x; —1 (i =1,...,s) and
z — —z+ 1 in (23) and observing that (%) = (—1) (H‘ll:'*l), we immediately get (19).
Comparing (19) with (23) and replacing s by s + 2, we obtain the following result.

Theorem 4.2 Forn € N™ and z € C™, there holds
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It is easy to see that (24) is a multinomial coefficient generalization of (11). Substi-
tuting s — 3,z —a—F—1land z — 1+ x in (24), we get

n

i (B —a+nf\ B+ K ~( a \(B+k|
_pyni-n (B 1)k — Ko
k=0 k=0
which is a generalization of Munarini’s identity (14). If & = § = |n|, then (25) reduces to
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which is a generalization of Simons’ identity (15). Note that Shattuck [25] and Chen
and Pang [3] have given different combinatorial proofs of (14). It is natural to ask the
following problem.

Problem 4.3 Is there a combinatorial interpretation of (25)?

In fact, such a proof was recently found by Yang [31].



5 Concluding remarks

We know that binomial coefficient identities usually have nice g-analogues. However, there
are only curious (not natural) g-analogues of Abel’s and Rothe’s identities (see [24] and
references therein) up to now. There seems to have no g-analogues of Jensen’s identity in
the literature.

It is interesting that Hou and Zeng [16] gave a g-analogue of Sun’s identity (13):
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Clearly, (26) may be written as a g-analogue of Munarini’s identity (14):
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as mentioned by Guo and Zeng [14]. We end this paper with the following problem.

Problem 5.1 Ts there a g-analogue of (25)? Or equivalently, is there a multi-sum general-
ization of (27)7?
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