On Jensen's and related combinatorial identities ${ }^{1}$

Victor J. W. Guo

Abstract. Motivated by the recent work of Chu [Electron. J. Combin. 17 (2010), \#N24], we give simple proofs of Jensen's identity

$$
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k}=\sum_{k=0}^{n}\binom{x+y-k}{n-k} z^{k}
$$

and Chu's and Mohanty-Handa's generalizations of Jensen's identity. We also give a quite simple proof of an equivalent form of Graham-Knuth-Patashnik's identity

$$
\sum_{k \geq 0}\binom{m+r}{m-n-k}\binom{n+k}{n} x^{m-n-k} y^{k}=\sum_{k \geq 0}\binom{-r}{m-n-k}\binom{n+k}{n}(-x)^{m-n-k}(x+y)^{k},
$$

which was rediscovered, respectively, by Sun in 2003 and Munarini in 2005. Finally we give a multinomial coefficient generalization of this identity.

1 Introduction

Abel's identity (see, for example, [8, §3.1])

$$
\sum_{k=0}^{n}\binom{n}{k} x(x+k z)^{k-1}(y-k z)^{n-k}=(x+y)^{n}
$$

and Rothe's identity [23] (or Hagen-Rothe's identity, see, for example, [9, §5.4])

$$
\sum_{k=0}^{n} \frac{x}{x-k z}\binom{x-k z}{k}\binom{y+k z}{n-k}=\binom{x+y}{n}
$$

are famous in the literature and play an important role in enumerative combinatorics. Recently, Chu [6] gave elementary proofs of Abel's identity and Rothe's identity by using the binomial theorem and the Chu-Vandermonde convolution formula respectively.

Motivated by Chu's work, we shall study Jensen's identity [17], which is closely related to Rothe's identity, and can be stated as follows:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k}=\sum_{k=0}^{n}\binom{x+y-k}{n-k} z^{k} . \tag{1}
\end{equation*}
$$

[^0]Jensen's identity (1) has ever attracted much attention by different authors. Gould [11] obtained the following Abel-type analogue:

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(x+k z)^{k}}{k!} \frac{(y-k z)^{n-k}}{(n-k)!}=\sum_{k=0}^{n} \frac{(x+y)^{k}}{k!} z^{n-k} \tag{2}
\end{equation*}
$$

Carlitz [1] gave two interesting theorem related to (1) and (2) by mathematical induction. With the help of generating functions, Gould [12] derived the following variation of Jensen's identity (1):

$$
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k}=\sum_{k=0}^{n} k\binom{x+y-k}{n-k} \frac{x+y-(n-k) z-k}{x+y-k} z^{k} .
$$

E. G.-Rodeja F. [10] deduced Gould's identity (2) from (1) by establishing an identity which includes both. Cohen and Sun [7] also gave an expression which unifies (1) and (2). Chu [4] generalized Jensen's identity (1) to a multi-sum form:

$$
\begin{equation*}
\sum_{k_{1}+\cdots+k_{s}=n} \prod_{i=1}^{s}\binom{x_{i}+k_{i} z}{k_{i}}=\sum_{k=0}^{n}\binom{k+s-2}{k}\binom{x_{1}+\cdots+x_{s}+n z-k}{n-k} z^{k} . \tag{3}
\end{equation*}
$$

Moreover, the identities (1) and (3) were respectively generalized by Mohanty and Handa [19] and Chu [5] to the case of multinomial coefficients (to be stated in Section 4).

The first purpose of this paper is to give simple proofs of Jensen's identity, Chu's identity (3), Mohanty-Handa's identity, and Chu's generalization of Mohanty-Handa's identity. We shall use the Chu-Vandermonde convolution formula

$$
\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}=\binom{x+y}{n}
$$

and the well-known identity

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{r}= \begin{cases}0, & \text { if } 0 \leq r \leq n-1 \tag{4}\\ n!, & \text { if } r=n\end{cases}
$$

Eq. (4) may be easily deduced from the Stirling numbers of the second kind [27, p. 34, (24a)]. The first case of (4) was already utilized by the author [13] to give a simple proof of Dixon's identity and by Chu [6] in his proofs of Abel's and Rothe's identities.

It is interesting that our proof of Chu's identity (3) will also leads to a very short proof of Graham-Knuth-Patashnik's identity, which was rediscovered several times in the past few years. The second purpose of this paper is to give a multinomial coefficient generalization of Graham-Knuth-Patashnik's identity.

2 Proof of Jensen's identity

By the Chu-Vandermonde convolution formula, we have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k}=\sum_{k=0}^{n}\binom{x+k z}{k} \sum_{i=k}^{n}\binom{x+y+1}{n-i}\binom{-x-k z-1}{i-k} . \tag{5}
\end{equation*}
$$

Interchanging the summation order in (5) and noticing that

$$
\binom{x+k z}{k}\binom{-x-k z-1}{i-k}=(-1)^{i-k}\binom{i}{k}\binom{x+k z+i-k}{i},
$$

we have

$$
\begin{align*}
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k} & =\sum_{i=0}^{n}\binom{x+y+1}{n-i} \sum_{k=0}^{i}(-1)^{i-k}\binom{i}{k}\binom{x+k z+i-k}{i} \\
& =\sum_{i=0}^{n}\binom{x+y+1}{n-i}(z-1)^{i}, \tag{6}
\end{align*}
$$

where the second equality holds because $\binom{x+k z+i-k}{i}$ is a polynomial in k of degree i with leading coefficient $(z-1)^{i} / i$! and we can apply (4) to simplify. We now substitute $x \rightarrow$ $-x-1, y \rightarrow-y+n-1$ and $z \rightarrow-z+1$ in (6) and observe that

$$
\begin{equation*}
\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k} . \tag{7}
\end{equation*}
$$

Then we obtain

$$
\sum_{k=0}^{n}\binom{x+k z}{k}\binom{y-k z}{n-k}=\sum_{i=0}^{n}\binom{x+y-i}{n-i} z^{i},
$$

as desired.
Combining (1) and (6), we get the following identity:

$$
\sum_{k=0}^{n}\binom{x-k}{n-k} z^{k}=\sum_{k=0}^{n}\binom{x+1}{n-k}(z-1)^{k},
$$

which is equivalent to the following identity in Graham et al. [9, p. 218]:

$$
\sum_{k \leq m}\binom{m+r}{k} x^{k} y^{m-k}=\sum_{k \leq m}\binom{-r}{k}(-x)^{k}(x+y)^{m-k}
$$

3 Proofs of Chu's and Graham-Knuth-Patashnik's identities

Comparing the coefficients of x^{n} in both sides of the equation

$$
(1+x)^{a_{1}+\cdots+a_{s}}=(1+x)^{a_{1}} \cdots(1+x)^{a_{s}}
$$

by the binomial theorem, we have

$$
\begin{equation*}
\binom{a_{1}+\cdots+a_{s}}{n}=\sum_{i_{1}+\cdots+i_{s}=n}\binom{a_{1}}{i_{1}} \cdots\binom{a_{s}}{i_{s}} . \tag{8}
\end{equation*}
$$

Letting $a_{i}=-x_{i}-k_{i} z-1(1 \leq i \leq s-1)$ and $a_{s}=x_{1}+\cdots+x_{s}+n z+s-1$ in (8), we have

$$
\begin{aligned}
\binom{x_{s}+k_{s} z}{k_{s}}= & \binom{x_{s}+\left(n-k_{1}-\cdots-k_{s-1}\right) z}{n-k_{1}-\cdots-k_{s-1}} \\
= & \sum_{j=k_{1}+\cdots+k_{s-1}}^{n} \sum_{j_{1}+\cdots+j_{s-1}=j}\binom{x_{1}+\cdots+x_{s}+n z+s-1}{n-j} \\
& \times \prod_{i=1}^{s-1}\binom{-x_{i}-k_{i} z-1}{j_{i}-k_{i}},
\end{aligned}
$$

where $k_{1}+\cdots+k_{s}=n$. It follows that

$$
\begin{align*}
\sum_{k_{1}+\cdots+k_{s}=n} \prod_{i=1}^{s}\binom{x_{i}+k_{i} z}{k_{i}}= & \sum_{k_{1}+\cdots+k_{s-1}=0}^{n} \sum_{j=k_{1}+\cdots+k_{s-1}}^{n} \sum_{j_{1}+\cdots+j_{s-1}=j}\binom{x_{1}+\cdots+x_{s}+n z+s-1}{n-j} \\
& \times \prod_{i=1}^{s-1}\binom{x_{i}+k_{i} z}{k_{i}}\binom{-x_{i}-k_{i} z-1}{j_{i}-k_{i}} . \tag{9}
\end{align*}
$$

Interchanging the summation order in (9) and observing that

$$
\binom{x_{i}+k_{i} z}{k_{i}}\binom{-x_{i}-k_{i} z-1}{j_{i}-k_{i}}=(-1)^{j_{i}-k_{i}}\binom{j_{i}}{k_{i}}\binom{x_{i}+k_{i} z+j_{i}-k_{i}}{j_{i}}
$$

and $\left({ }^{x_{i}+k_{i} z+j_{i}-k_{i}}\right)$ is a polynomial in k_{i} of degree j_{i} with leading coefficient $(z-1)^{j_{i}} / j_{i}$!, by (4) we get

$$
\begin{align*}
\sum_{k_{1}+\cdots+k_{s}=n} \prod_{i=1}^{s}\binom{x_{i}+k_{i} z}{k_{i}} & =\sum_{j=0}^{n}\binom{x_{1}+\cdots+x_{s}+n z+s-1}{n-j} \sum_{j_{1}+\cdots+j_{s-1}=j}(z-1)^{j} \\
& =\sum_{j=0}^{n}\binom{j+s-2}{j}\binom{x_{1}+\cdots+x_{s}+n z+s-1}{n-j}(z-1)^{j} . \tag{10}
\end{align*}
$$

Substituting $x_{i} \rightarrow-x_{i}-1(i=1, \ldots, s)$ and $z \rightarrow-z+1$ in (10) and using (7), we immediately get Chu's identity (3).

Comparing (3) with (10) and replacing s by $s+2$, we obtain

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{k+s}{k}\binom{x-k}{n-k} z^{k}=\sum_{k=0}^{n}\binom{k+s}{k}\binom{x+s+1}{n-k}(z-1)^{k} . \tag{11}
\end{equation*}
$$

It is easy to see that the identity (11) is equivalent to each of the following known identities:

- Graham-Knuth-Patashnik's identity [9, p. 218]

$$
\begin{equation*}
\sum_{k \geq 0}\binom{m+r}{m-n-k}\binom{n+k}{n} x^{m-n-k} y^{k}=\sum_{k \geq 0}\binom{-r}{m-n-k}\binom{n+k}{n}(-x)^{m-n-k}(x+y)^{k} \tag{12}
\end{equation*}
$$

- Sun's identity [29]

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\binom{n+k}{a}(1+x)^{n+k-a}=\sum_{k=0}^{n}\binom{n}{k}\binom{m+k}{a} x^{m+k-a} \tag{13}
\end{equation*}
$$

- Munarini's identity [20]

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{\beta-\alpha+n}{n-k}\binom{\beta+k}{k}(1+x)^{k}=\sum_{k=0}^{n}\binom{\alpha}{n-k}\binom{\beta+k}{k} x^{k} \tag{14}
\end{equation*}
$$

For example, substituting $n \rightarrow m-n, s \rightarrow n, x \rightarrow-n-r-1$ and $z \rightarrow-y / x$ in (11), we are led to (12). Replacing k by $m-k$ and $n-k$ respectively in both sides of (13), we get

$$
\sum_{k=0}^{m+n-a}(-1)^{m-k}\binom{m}{k}\binom{m+n-k}{a}(1+x)^{m+n-k-a}=\sum_{k=0}^{m+n-a}\binom{n}{k}\binom{m+n-k}{a} x^{m+n-k-a}
$$

which is equivalent to (11) by changing k to $m+n-a-k$.
Moreover, the following special case

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{n+k}{k}(1+x)^{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} x^{k} \tag{15}
\end{equation*}
$$

was reproved by Simons [26], Hirschhorn [15], Chapman [2], Prodinger [21], Wang and Sun [30].

4 Mohanty-Handa's identity and Chu's generalization

Let m be a fixed positive integer. For $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{C}^{m}$, set $|\mathbf{a}|=a_{1}+\cdots+a_{m}, \mathbf{a}!=a_{1}!\cdots a_{m}!, \mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, \ldots, a_{m}+b_{m}\right), \mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+\cdots+a_{m} b_{m}$, and $\mathbf{b}^{\mathbf{a}}=b_{1}^{a_{1}} \cdots b_{m}^{a_{m}}$. For any variable x and $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{Z}^{m}$, the multinomial coefficient $\binom{x}{\mathbf{n}}$ is defined by

$$
\binom{x}{\mathbf{n}}= \begin{cases}x(x-1) \cdots(x-|\mathbf{n}|+1) / \mathbf{n}!, & \text { if } \mathbf{n} \in \mathbb{N}^{m} \\ 0, & \text { otherwise }\end{cases}
$$

Moreover, we let $\mathbf{0}=(0, \ldots, 0)$ and $\mathbf{1}=(1, \ldots, 1)$.
Note that the Chu-Vandermonde convolution formula has the following trivial generalization

$$
\begin{equation*}
\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{x}{\mathbf{k}}\binom{y}{\mathbf{n}-\mathbf{k}}=\binom{x+y}{\mathbf{n}} \tag{16}
\end{equation*}
$$

as mentioned by Zeng [32], while (4) can be easily generalized as

$$
\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}(-1)^{|\mathbf{n}|-|\mathbf{k}|}\binom{\mathbf{n}}{\mathbf{k}} \mathbf{k}^{\mathbf{r}}= \begin{cases}0, & \text { if } r_{i}<n_{i} \text { for some } 1 \leq i \leq m \tag{17}\\ \mathbf{n}!, & \text { if } \mathbf{r}=\mathbf{n},\end{cases}
$$

where

$$
\binom{\mathbf{n}}{\mathbf{k}}:=\prod_{i=1}^{m}\binom{n_{i}}{k_{i}} .
$$

In 1969, Mohanty and Handa [19] established the following multinomial coefficient generalization of Jensen's identity

$$
\begin{equation*}
\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{x+\mathbf{k} \cdot \mathbf{z}}{\mathbf{k}}\binom{y-\mathbf{k} \cdot \mathbf{z}}{\mathbf{n}-\mathbf{k}}=\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{x+y-|\mathbf{k}|}{\mathbf{n}-\mathbf{k}}\binom{|\mathbf{k}|}{\mathbf{k}} \mathbf{z}^{\mathbf{k}} . \tag{18}
\end{equation*}
$$

Here and in what follows, $\mathbf{k}=\left(k_{1}, \ldots, k_{m}\right)$. Twenty years later, Mohanty-Handa's identity was generalized by Chu [5] as follows:

$$
\begin{equation*}
\sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}} \prod_{i=1}^{s}\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}}{\mathbf{k}_{i}}=\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{|\mathbf{k}|+s-2}{\mathbf{k}}\binom{x_{1}+\cdots+x_{s}+\mathbf{n} \cdot \mathbf{z}-|\mathbf{k}|}{\mathbf{n}-\mathbf{k}} \mathbf{z}^{\mathbf{k}} \tag{19}
\end{equation*}
$$

which is also a generalization of (3). Here $\mathbf{k}_{i}=\left(k_{i 1}, \ldots, k_{i m}\right), i=1, \ldots, m$.
Remark. Note that the corresponding multinomial coefficient generalization of Rothe's identity was already obtained by Raney [22] (for a special case) and Mohanty [18]. The reader is referred to Strehl [28] for a historical note on Raney-Mohanty's identity.

We will give an elementary proof of Chu's identity (19) similar to that of (3).

Lemma 4.1 For $\mathbf{n} \in \mathbb{N}^{m}$ and $s \geq 1$, there holds

$$
\begin{equation*}
\sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}} \prod_{i=1}^{s}\binom{\left|\mathbf{k}_{i}\right|}{\mathbf{k}_{i}}=\binom{|\mathbf{n}|+s-1}{\mathbf{n}} \tag{20}
\end{equation*}
$$

Proof. For any nonnegative integers a_{1}, \ldots, a_{s} such that $a_{1}+\cdots+a_{s}=|\mathbf{n}|$, by the Chu-Vandermonde convolution formula (16), the following identity holds

$$
\begin{equation*}
\sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}} \prod_{i=1}^{s}\binom{a_{i}}{\mathbf{k}_{i}}=\binom{|\mathbf{n}|}{\mathbf{n}} . \tag{21}
\end{equation*}
$$

Moreover, for $\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}$, we have

$$
\prod_{i=1}^{s}\binom{a_{i}}{\mathbf{k}_{i}} \neq 0 \quad \text { if and only if } \quad\left|\mathbf{k}_{i}\right|=a_{i}(i=1, \ldots, s)
$$

Thus, the identity (21) may be rewritten as

$$
\sum_{\substack{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n} \\\left|\mathbf{k}_{1}\right|=a_{1}, \ldots,\left|\mathbf{k}_{s}\right|=a_{s}}} \prod_{i=1}^{s}\binom{a_{i}}{\mathbf{k}_{i}}=\binom{|\mathbf{n}|}{\mathbf{n}}
$$

It follows that

$$
\begin{aligned}
\sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}} \prod_{i=1}^{s}\binom{\left|\mathbf{k}_{i}\right|}{\mathbf{k}_{i}} & =\sum_{a_{1}+\cdots+a_{s}=|\mathbf{n}|} \sum_{\substack{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n} \\
\left|\mathbf{k}_{1}\right|=a_{1}, \ldots,\left|\mathbf{k}_{s}\right|=a_{s}}} \prod_{i=1}^{s}\binom{a_{i}}{\mathbf{k}_{i}} \\
& =\sum_{a_{1}+\cdots+a_{s}=|\mathbf{n}|}\binom{|\mathbf{n}|}{\mathbf{n}} \\
& =\binom{|\mathbf{n}|+s-1}{|\mathbf{n}|}\binom{|\mathbf{n}|}{\mathbf{n}},
\end{aligned}
$$

as desired.
By repeatedly using the convolution formula (16), we may rewrite the left-hand side of (19) as

$$
\begin{align*}
& \sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s-1}=\mathbf{0}}^{\mathbf{n}} \sum_{\mathbf{j}=\mathbf{k}_{1}+\cdots+\mathbf{k}_{s-1}}^{\mathbf{n}} \sum_{\mathbf{j}_{1}+\cdots+\mathbf{j}_{s-1}=\mathbf{j}}\binom{x_{1}+\cdots+x_{s}+\mathbf{n} \cdot \mathbf{z}+m-1}{\mathbf{n}-\mathbf{j}} \\
& \quad \times \prod_{i=1}^{s-1}\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}}{\mathbf{k}_{i}}\binom{-x_{i}-\mathbf{k}_{i} \cdot \mathbf{z}-1}{\mathbf{j}_{i}-\mathbf{k}_{i}} . \tag{22}
\end{align*}
$$

Interchanging the summation order in (22), observing that

$$
\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}}{\mathbf{k}_{i}}\binom{-x_{i}-\mathbf{k}_{i} \cdot \mathbf{z}-1}{\mathbf{j}_{i}-\mathbf{k}_{i}}=(-1)^{\left|\mathbf{j}_{i}\right|-\left|\mathbf{k}_{i}\right|}\binom{\mathbf{j}_{i}}{\mathbf{k}_{i}}\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}+\left|\mathbf{j}_{i}\right|-\left|\mathbf{k}_{i}\right|}{\mathbf{j}_{i}}
$$

and

$$
\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}+\left|\mathbf{j}_{i}\right|-\left|\mathbf{k}_{i}\right|}{\mathbf{j}_{i}}
$$

is a polynomial in $k_{i 1}, \ldots, k_{i m}$ with the coefficient of $\mathbf{k}_{i}^{\mathbf{j}_{i}}$ being $\left(\begin{array}{l}\left|\mathbf{j}_{i}\right|\end{array}\right)(\mathbf{z}-\mathbf{1})^{\mathbf{j}_{i}} / \mathbf{j}_{i}$!, applying (17), we get

$$
\begin{align*}
& \sum_{\mathbf{k}_{1}+\cdots+\mathbf{k}_{s}=\mathbf{n}} \prod_{i=1}^{s}\binom{x_{i}+\mathbf{k}_{i} \cdot \mathbf{z}}{\mathbf{k}_{i}} \\
= & \sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{n}}\binom{x_{1}+\cdots+x_{s}+\mathbf{n} \cdot \mathbf{z}+s-1}{\mathbf{n}-\mathbf{j}}(\mathbf{z}-\mathbf{1})^{\mathbf{j}} \sum_{\mathbf{j}_{1}+\cdots+\mathbf{j}_{s-1}=\mathbf{j}} \prod_{i=1}^{m}\binom{\left|\mathbf{j}_{i}\right|}{\mathbf{j}_{i}} \\
= & \sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{n}}\binom{|\mathbf{j}|+s-2}{\mathbf{j}}\binom{x_{1}+\cdots+x_{s}+\mathbf{n} \cdot \mathbf{z}+s-1}{\mathbf{n}-\mathbf{j}}(\mathbf{z}-\mathbf{1})^{\mathbf{j}}, \tag{23}
\end{align*}
$$

where the second equality follows from (20). Substituting $x_{i} \rightarrow-x_{i}-1(i=1, \ldots, s)$ and $\mathbf{z} \rightarrow-\mathbf{z}+\mathbf{1}$ in (23) and observing that $\binom{-x}{\mathbf{k}}=(-1)^{|\mathbf{k}|}\binom{x+|\mathbf{k}|-1}{\mathbf{k}}$, we immediately get (19).

Comparing (19) with (23) and replacing s by $s+2$, we obtain the following result.
Theorem 4.2 For $\mathbf{n} \in \mathbb{N}^{m}$ and $\mathbf{z} \in \mathbb{C}^{m}$, there holds

$$
\begin{equation*}
\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{|\mathbf{k}|+s}{\mathbf{k}}\binom{x-|\mathbf{k}|}{\mathbf{n}-\mathbf{k}} \mathbf{z}^{\mathbf{k}}=\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{|\mathbf{k}|+s}{\mathbf{k}}\binom{x+s+1}{\mathbf{n}-\mathbf{k}}(\mathbf{z}-\mathbf{1})^{\mathbf{k}} . \tag{24}
\end{equation*}
$$

It is easy to see that (24) is a multinomial coefficient generalization of (11). Substituting $s \rightarrow \beta, x \rightarrow \alpha-\beta-1$ and $\mathbf{z} \rightarrow \mathbf{1}+\mathbf{x}$ in (24), we get

$$
\begin{equation*}
\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}(-1)^{|\mathbf{n}|-|\mathbf{k}|}\binom{\beta-\alpha+|\mathbf{n}|}{\mathbf{n}-\mathbf{k}}\binom{\beta+|\mathbf{k}|}{\mathbf{k}}(\mathbf{1}+\mathbf{x})^{\mathbf{k}}=\sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}}\binom{\alpha}{\mathbf{n}-\mathbf{k}}\binom{\beta+|\mathbf{k}|}{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \tag{25}
\end{equation*}
$$

which is a generalization of Munarini's identity (14). If $\alpha=\beta=|\mathbf{n}|$, then (25) reduces to

$$
\sum_{k=0}^{n}(-1)^{|\mathbf{n}|-|\mathbf{k}|}\binom{|\mathbf{n}|}{\mathbf{n}-\mathbf{k}}\binom{|\mathbf{n}|+|\mathbf{k}|}{\mathbf{k}}(\mathbf{1}+\mathrm{x})^{\mathbf{k}}=\sum_{\mathrm{k}=\mathbf{0}}^{\mathbf{n}}\binom{|\mathbf{n}|}{\mathbf{n}-\mathbf{k}}\binom{|\mathbf{n}|+|\mathbf{k}|}{\mathrm{k}} \mathrm{x}^{\mathrm{k}}
$$

which is a generalization of Simons' identity (15). Note that Shattuck [25] and Chen and Pang [3] have given different combinatorial proofs of (14). It is natural to ask the following problem.

Problem 4.3 Is there a combinatorial interpretation of (25)?
In fact, such a proof was recently found by Yang [31].

5 Concluding remarks

We know that binomial coefficient identities usually have nice q-analogues. However, there are only curious (not natural) q-analogues of Abel's and Rothe's identities (see [24] and references therein) up to now. There seems to have no q-analogues of Jensen's identity in the literature.

It is interesting that Hou and Zeng [16] gave a q-analogue of Sun's identity (13):

$$
\sum_{k=0}^{m}(-1)^{m-k}\left[\begin{array}{c}
m \tag{26}\\
k
\end{array}\right]\left[\begin{array}{c}
n+k \\
a
\end{array}\right]\left(-x q^{a} ; q\right)_{n+k-a} q^{\binom{k+1}{2}-m k+\binom{a}{2}}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{c}
m+k \\
a
\end{array}\right] x^{m+k-a} q^{m n+\binom{k}{2}},
$$

where $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ and

$$
\left[\begin{array}{l}
\alpha \\
k
\end{array}\right]= \begin{cases}\frac{\left(q^{\alpha-k+1} ; q\right)_{k}}{(q ; q)_{k}}, & \text { if } k \geq 0 \\
0, & \text { if } k<0\end{cases}
$$

Clearly, (26) may be written as a q-analogue of Munarini's identity (14):

$$
\begin{align*}
& \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{c}
\beta-\alpha+n \\
n-k
\end{array}\right]\left[\begin{array}{c}
\beta+k \\
k
\end{array}\right] q^{\binom{n-k}{2}-\binom{n}{2}}(-x ; q)_{k} \\
& =\sum_{k=0}^{n}\left[\begin{array}{c}
\alpha \\
n-k
\end{array}\right]\left[\begin{array}{c}
\beta+k \\
k
\end{array}\right] q^{\binom{n-k+1}{2}+(\beta-\alpha)(n-k)} x^{k}, \tag{27}
\end{align*}
$$

as mentioned by Guo and Zeng [14]. We end this paper with the following problem.
Problem 5.1 Is there a q-analogue of (25)? Or equivalently, is there a multi-sum generalization of (27)?

Acknowledgments. This work was partially supported by the Fundamental Research Funds for the Central Universities, Shanghai Rising-Star Program (\#09QA1401700), Shanghai Leading Academic Discipline Project (\#B407), and the National Science Foundation of China (\#10801054).

References

[1] L. Carlitz, Some formulas of Jensen and Gould, Duke Math. J., 27 (1960), 319-321.
[2] R. Chapman, A curious identity revisited. Math. Gazette, 87 (2003), 139-141.
[3] W. Y. C. Chen and S. X. M. Pang, On the combinatorics of the Pfaff identity. Discrete Math., 309 (2009), 2190-2196.
[4] W. Chu, On an extension of a partition identity and its Abel analog. J. Math. Res. Exposition, 6 (4) (1986), 37-39.
[5] W. Chu, Jensen's theorem on multinomial coefficients and its Abel-analog. Appl. Math. J. Chinese Univ., 4 (1989), 172-178 (in Chinese).
[6] W. Chu, Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Combin., 17 (2010), \#N24.
[7] M. E. Cohen and H. S. Sun, A note on the Jensen-Gould convolutions. Canad. Math. Bull., 23 (1980), 359-361.
[8] L. Comtet, Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht-Holland, 1974.
[9] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition, Addison-Wesley Publishing Company, Reading, MA, 1994.
[10] E. G.-Rodeja F., On identities of Jensen, Gould and Carlitz. in: Proc. Fifth Annual Reunion of Spanish Mathematicians (Valencia, 1964), Publ. Inst. "Jorge Juan" Mat., Madrid, 1967, pp. 11-14.
[11] H. W. Gould, Generalization of a theorem of Jensen concerning convolutions. Duke Math. J., 27 (1960), 71-76.
[12] H. W. Gould, Involving sums of binomial coefficients and a formula of Jensen. Amer. Math. Monthly, 69 (5) (1962), 400-402.
[13] V. J. W. Guo, A simple proof of Dixon's identity. Discrete Math., 268 (2003), 309-310.
[14] V. J. W. Guo and J. Zeng, Combinatorial proof of a curious q-binomial coefficient identity. Electron. J. Combin., 17 (2010), \#N13.
[15] M. Hirschhorn, Comment on a curious identity. Math. Gazette, 87 (2003), 528-530.
[16] S. J. X. Hou and J. Zeng, A q-analog of dual sequences with applications. European J. Combin., 28 (2007), 214-227.
[17] J. L. W. V. Jensen, Sur une identité d'Abel et sur d'autres formules analogues. Acta Math., 26 (1902), 307-318.
[18] S. G. Mohanty, Some convolutions with multinomial coefficients and related probability distributions. SIAM Rev., 8 (1966), 501-509.
[19] S. G. Mohanty and B. R. Handa, Extensions of Vandermonde type convolutions with several summations and their applications, I. Canad. Math. Bull., 12 (1969), 45-62.
[20] E. Munarini, Generalization of a binomial identity of Simons. Integers, 5 (2005), \#A15.
[21] H. Prodinger, A curious identity proved by Cauchy's integral formula. Math. Gazette, 89 (2005), 266-267.
[22] G. N. Raney, Functional composition patterns and power series reversion. Trans. Amer. Math. Soc., 94 (1960), 441-451.
[23] H. A. Rothe, Formulae de serierum reversione demonstratio universalis signis localibus combinatorio-analyticorum vicariis exhibita. Leipzig, 1793.
[24] M. Schlosser, Abel-Rothe type generalizations of Jacobi's triple product identity. in: Theory and Applications of Special Functions. Dev. Math., 13, Springer, New York, 2005, pp. 383400.
[25] M. Shattuck, Combinatorial proofs of some Simons-type binomial coefficient identities. Integers, 7 (2007), \#A27.
[26] S. Simons, A curious identity. Math. Gazette, 85 (2001), 296-298.
[27] R. P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997.
[28] V. Strehl, Identities of Rothe-Abel-Schläfli-Hurwitz-type. Discrete Math., 99 (1992), 321340.
[29] Z.-W. Sun, Combinatorial identities in dual sequences. European J. Combin., 24 (2003), 709-718.
[30] X. Wang and Y. Sun, A new proof of a curious identity. Math. Gazette, 91 (2007), 105-106.
[31] D.-M. Yang, A combinatorial proof of Guo's multi-generalization of Munarini's identity. Integers, to appear.
[32] J. Zeng, Multinomial convolution polynomials. Discrete Math., 160 (1996), 219-228.

Department of Mathematics,
East China Normal University,
Shanghai 200062, People's Republic of China
E-mail: jwguo@math.ecnu.edu.cn

[^0]: ${ }^{1} 2010$ Mathematics Subject Classification. Primary 05A10. Secondly 05A19.
 Keywords and Phrases. Jensen's identity, Chu's identity, Mohanty-Handa's identity, Graham-KnuthPatashnik's identity, multinomial coefficient.

